贝类中诺如病毒的风险评估及与组织血型抗原相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
诺如病毒(Noroviruses,NoVs)是引起世界范围内非细菌性急性肠胃炎的主要病原体,贝类是其最主要的传播载体。人们通常由于食用了生的或者加热不彻底的海产贝类而感染NoVs,并引起急性肠胃炎。我国是世界水产大国,贝类年产量1000多万吨,在我国国民经济中占有较重要的地位,NoVs作为贝类中常见的食源性致病微生物是质量安全一个不容忽视的问题。然而,NoVs尚不可体外培养,贝类中因NoVs含量少、存在PCR抑制剂多等原因给检测带来困难,我国尚未建立贝类中NoVs检测的国家标准;研究表明组织血型抗原是人体感染NoVs的受体,牡蛎中也存在类似的受体,但牡蛎中该受体与NoVs的相关性及其对牡蛎富集NoVs的影响尚不清楚。因此建立贝类中NoVs的富集检测方法,调查我国主要沿海地区贝类中NoVs的分布情况以及开展贝类中NoVs的风险评估;研究牡蛎中NoVs与组织血型抗原相关性,探索牡蛎等贝类富集NoVs的机理,对于保护消费者健康,保障我国贝类产业可持续健康发展具有重要的意义。
     本文以贝类中NoVs为研究对象,优化建立了海产贝类中GI和GII型NoVs的富集方法,调查了黄渤海区7个城市零售海产贝类中NoVs的污染状况,在上述研究的基础上,结合CAC的食品安全风险分析理论,开展贝类中NoVs的风险评估研究;针对NoVs受体,建立了太平洋牡蛎中A型组织血型抗原的ELISA检测方法,并调查了威海、青岛、日照3个城市太平洋牡蛎样品中A型组织血型抗原随季节的变化规律;利用RACE技术得到了一个太平洋牡蛎组织血型抗原合成相关基因FUT3的cDNA全长,并进行了原核表达;利用牡蛎全基因组序列,初步探索了温度对牡蛎组织学型抗原合成关键基因FUT2的表达调控。具体研究结果如下:
     1.贝类中NoVs富集方法的建立和优化
     通过人工污染实验,向牡蛎和菲律宾蛤仔的消化道匀浆物中分别添加不同浓度的GI.3和GII.4型NoVs,利用4种贝类中NoVs富集方法分别回收病毒,用实验室前期建立的real-time RT-PCR方法进行检测。以4种方法从牡蛎和菲律宾蛤仔中富集GI.3和GII.4型NoVs的富集效率评价4种方法的优劣,同时分析影响NoVs富集的主要因素。结果显示方法B(Proteinase K-PEG8000)操作简单,耗时较短,且稳定性和灵敏性均优于其他方法,其从牡蛎和菲律宾蛤仔中富集GI.3型NoVs的富集效率分别为9.3%和9.6%,对GII.4型NoV的富集效率分别为13.1%和12.3%,比其他三种方法的富集效率高(p<0.05)。研究结果还发现贝类品种及贝类中NoVs的含量是影响贝类中NoVs富集效率的主要因素。
     2.黄渤海贝类中NoVs污染状况调查
     从2009年12月至2011年11月,采集了大连、莱州、烟台、威海、青岛、日照、连云港7个黄渤海区沿海城市6种零售贝类样品840个。调查结果显示NoVs在6种贝类中均有检出,平均检出率为13.33%(112/840)。不同贝类中NoVs的检出率为:牡蛎19.35%,紫贻贝16.67%,扇贝5.70%,缢蛏8.82%,毛蚶13.74%,菲律宾蛤仔16.44%。贝类中NoVs的季节分布结果显示,夏季贝类中NoVs检出率最高,为16.44%,冬季和秋季次之,春季最低。此外,研究发现不同季节NoVs检出率存在明显的品种特异性差异。春季和冬季牡蛎样品中NoVs的检出率最高,夏季毛蚶样品中NoVs的检出率最高,而冬季菲律宾蛤仔中NoVs的检出率最高。在冬季采集的33个扇贝样品中,NoVs无检出。
     定量结果显示,112个阳性贝类样品中,96个样品中NoVs含量<103基因拷贝。运用spss17.0软件对不同贝类品种和不同季节贝类中NoV污染水平进行分析,非参检验(Kruskal-Wallis H tests)结果显示不同贝类品种和不同季节贝类中NoV污染水平均无明显差异(p>0.05)。112个阳性样品中,普通RT-PCR复检中仅96个样品琼脂糖凝胶电泳显示目的条带。将这96个样品测序结果输入Norovirus GenotypingTool Version1.0软件后,结果显示94个NoV属于GII.12变异株,2个属于GI.3。在冬季采集的菲律宾蛤仔和毛蚶中检测到GI.3型NoV。
     3.贝类中NoVs的风险评估
     本研究针对上述情况,利用前期调查研究获得的贝类中NoVs污染状况数据和相关膳食调查数据,对我国海产贝类中NoVs进行了定量风险评估,研究结果发现我国沿海城市居民食用贝类引发肠胃炎的平均概率为4.08E-7,预计每年0-4岁、5-64岁和65岁以上人口的发病数分别为119、9078和339人。本次评估只考虑贝类中NoVs污染率和污染水平以及贝类摄入量对风险的影响,存在一定的不确定性。国内外有关贝类中NoVs风险评估的研究较少,本次评估可以为贝类或其他食品中NoVs的风险评估提供一定的参考,相关调查资料可以为贝类食用安全提供指导意义。
     4.牡蛎组织血型抗原的检测
     在实验室前期研究的基础上改进前处理方法,建立了太平洋牡蛎中A型组织血型抗原的ELISA检测方法。运用建立的ELISA方法和第二章建立的贝类中NoVs的富集方法对2010年从威海、青岛、日照3个城市采集的36份太平洋牡蛎进行了A型组织血型抗原和NoVs的检测,结果表明三个城市太平洋牡蛎中A型组织血型抗原随季节变化呈现波动性变化,在全年不同月份出现峰值;36份牡蛎样品检出NoVs阳性6份,检出率为16.7%,且检出时间出现在A型组织血型抗原的高峰值处,推测贝类受NoVs污染可能与组织血型抗原表达相关。
     5.牡蛎组织血型抗原相关基因的克隆及原核表达
     参照人体组织血型抗原合成途径,选择FUT2基因作为牡蛎组织血型抗原合成关键基因。由于当时牡蛎全基因组序列尚未公布,通过Clustal X与Mega等分析软件,分析人、猩猩、小鼠、家犬等物种的FUT2基因氨基酸序列,推测牡蛎FUT2的保守区,根据保守序列设计引物。利用PCR方法扩增牡蛎组织血型抗原合成相关基因得到预期片段488bp的扩增产物,通过牡蛎“FUT2”扩增片段与人、小鼠、猩猩等物种的序列比对分析,可以初步证实牡蛎证实在牡蛎基因组中存在FUT2基因的保守片段。根据PCR方法得到的牡蛎“FUT2”的部分序列,设计引物,利用RACE扩增技术对牡蛎基因组进行扩增,克隆测序得到牡蛎“FUT2”基因3’和5’端序列,序列拼接后得到1086bp的cDNA全长基因。2012年9月,太平洋牡蛎全基因组序列公布,通过比对发现得到的牡蛎“FUT2”蛋白序列与FUT3基因同源性为98%,而与牡蛎FUT2基因的同源性为36%,因此证实所得序列为太平洋牡蛎FUT3基因。在此基础上,通过构建表达载体,成功诱导出FUT3的蛋白,大小为41.5kDa,为后续FUT3基因的功能验证打下基础。
     6.温度对牡蛎组织血型抗原的表达调控
     以β-actin作为内参基因,建立太平洋牡蛎中FUT2基因的荧光定量PCR检测方法。用高温(28℃)和低温(4℃)处理太平洋牡蛎,分别于48h和72h取样,研究牡蛎外套膜、闭壳肌、鳃和内脏4个组织中7组FUT2基因的表达情况。荧光定量PCR研究结果表明温度对FUT2部分基因的表达存在一定的影响。高温和低温条件,FUT2部分基因存在表达上调的现象。7组基因中,高温胁迫时FUT2.1和FUT2.3基因在牡蛎4个不同组织中表达上调;低温胁迫时,FUT2.4在外套膜和鳃组织中表达上调。
Noroviruses (NoVs) are commonly occurring pathogens that causegastroenteritis. NoVs can be isolated from water, vegetable, fruit andseafood samples, especially in shellfish samples frequently. It usually causesacute gastroenteritis associated with the consumption of raw or undercookedseafood. On rare occasion, infection can lead to severe dehydration and deathmay also occur subsequently. The annual production of shellfish was nearly upto10,000,000tons in China. For shellfish is delicious, the coastal residents arefond of it. Foodborne outbreaks caused by NoVs associated with theconsumption of shellfish were constantly reported in the coastal area of China.More attention should be paid to food safety issuses arised by NoVs.
     To investigate the prevalence of NoVs in shellfish, the quantitative detectionmethods were optimized. The level of NoVs in shellfish of seven cities aroundYellow Sea and Bohai Sea in China was investigated by real-time RT-PCR andthen the quantitative assessment was carried out. The recent studies showedthat NoVs recognize histo-blood group antigens (HBGAs) as receptors inoyster.To elucidate the mechanism of NoVs accumulated in oysters, firstly, the ELISA and PCR method was optimized to detect A-type HBGAs and keygenes of HBGAs in oyster. Second, total length cDNA of one key genes FUT3was got and the protein was expressed.Temperature effect on expression levelof FUT2was also studied.The main contents were as follows:
     1. The detection methods of NoVs in shellfish
     Aimed to identify a simple, rapid and highly efficient recovery method forreal-time RT-PCR detection of NoVs. Four methods were compared forrecovering GI.3and GII.4NoVs from spiked digestive tissues of oysters andclams, respectively. The method based on the application of proteinase K-PEG8000was found most efficient, with9.3%and13.1%of GI.3and GII.4NoVsrecovered from oysters and9.6%and12.3%of GI.3and GII.4NoVsrecovered from clams, respectively.
     2. Presence of Genogroup II Norovirus in Retail Shellfish from Yellow seasand Bohai seas in China
     Our objective was to evaluate the presence and contamination levels of NoVin shellfish sold at seafood markets in China. We tested840shellfish samples(Crassostrea gigas, Mytilus edulis, Azumapecten farreri, SinoNoVaculaconstricta, Scapharca subcrenata, Ruditapes philippinarum) that werecollected from seven cities around the Yellow and Bohai Seas in Chinabetween December2009and November2011. We used real-time RT-PCR todetect NoV in purified concentrates from the stomachand digestive diverticula of these shellfish. NoV was detected in19.35%(N=155),16.67%(N=114),5.70%(N=158),8.82%(N=136),13.74%(N=131), and16.44%(N=146) ofoyster, mussel, scallop, razor clam, ark shell, and clam samples, respectively.The average detection rate was13.33%(112/840). Nucleotide sequencing ofthe NoV RT-PCR products demonstrated that all strains belonged to NoVgenotype GII.12, except two that belonged to GI.3. More than102copies ofthe NoV genome were detected in69of112positive shellfish samples. Ourresults suggest that~13%of shellfish harbor NoV, and GII.12NoV is theprimary strain in shellfish purchased at markets in seven coastal cities inChina.
     3. Risk assessment of NoVs in shellfish
     Risk assessments of NoVs in shellfish were carried out based on the data ofinvestigation of NoVs presented in shellfish and shellfish diet survey. NoVsgastroenteritis infection probability of consumers along the coast areas ofChina by intake marine shellfish is4.08×10-7per person a day. The annualnumber of desease cases caused by consumption of polluted NoVs shellfish isabout229,17458and651among ages0-4,5-64and above65. Uncertaintyanalysis was also done in the study, which provides suggestion for NoVsassessment in shellfish or other food.
     4. HBGAs detection in pacific oyster
     The ELISA method based on was established for detection of A-type ofHBGAs in shellfish by optimized the concentration of heat treated oysterdigestive tisseues.36oyster samples were collected from Weihai, Qingdao andRizhao in2011. A-type of HBGAs and NoVs detection was analysed. Thedetection rate was100%and16.7%respectively. The results showed thatA-type of HBGAs changed along seasonal variation in fluctuating way.Interestingly, NoVs was detected at the time A-type of HBGAs showed peakvalue.
     5. Prokaryotic expression and cloning of genes related to HBGAs in pacificoyster
     Present on the oyster HBGAs synthesis of key gene has not been reported.With reference to the study of the synthetic pathway of human HBGAs, wedetermine the FUT genes for research purposes. By Clustal X and Mega andother analysis software, analysis of human, chimps, mice, dogs and otherspecies of the FUT2sequence, primers were designed based on conservedsequences of “FUT2”; The Pacific oyster (Crassostrea gigas) genomic DNAas the template for PCR amplification, cloning and sequencing the amplifiedproducts confirmed the existence in the oyster genome fragments from FUT2gene. In2012, with the completion of genome sequence of pacific oyster, the1081bp sequence we got was confirmed as FUT3. Prokaryotic expression ofFUT3was studied and We got the expected size of the protein.
     6. Temperature effect on the expression regulation of FUT2in differenttissues of oyster
     Real-time PCR detection method of FUT2genes in pacific oyster wasestablished with β-actin as the reference genes. FUT2genes expression inpacific oyster exposure to high temperature (28℃) and low temperature (4℃)was investigated by real-time quantitative PCR. The tissues analysed byquantitative real-time PCR were mantle, adductor, gill and digestive gland.Theexperiments were performed to investigate the expression level changes withinand between tissues at48h and72h.
     The results indicated that level of most FUT2gene expression wassignificant higher than control no matter exposure to high temperature or lowtemperature conditions. When exposure to high temperature stress, level ofFUT2.1and FUT2.3genes expresstion have raised in4different tissues ofoyster organizations are raised, while under the stress of low temperature,FUT2.4expressed in mantle and gill tissue raised.
引文
[1] Green, K.Y., Ando, T., Balayan, M.S., et al. Taxonomy of the caliciviruses. Journal of InfectiousDisease,2000,181(Suppl2): S322–S330.
    [2] Croci, L., Nadia, M., Suffredini, E., et al. Assessment of human enteric viruses in shellfish fromthe northernAdriatic sea. International Journal of Food Microbiology,2007,114:252-257.
    [3] Formiga-Cruz, M., Tofino-Quesada, G., Bofill-Mas, S., et al. Distribution of human viruscontamination in shellfish from different growing areas in Greece, Spain,Sweden and UnitedKingdom. Applied and Environmental Microbiology,2002,68:5990-5998.
    [4] Gabrieli R, Maccari F, Ruta A, Panà A, Divizia M, Norovirus Detection in Groundwater, Foodand Environmental Virology,2009,1:92-96
    [5] Le Guyader, F.S., Le Saux, J.C., Ambert-Balay, K., et al. Aichi virus, norovirus, astrovirus,enterovirus, and rotavirus involved in clinical cases from a French oyster-related gastroenteritisoutbreak. Journal of Clinical Microbiology,2008,46:4011-4017.
    [6] Lee, H., Kim, M., Lee, J.E., et al. Investigation of norovirus occurrence in groundwater inmetropolitan Seoul, Korea Science of the Total Environment,2011,409:2078-2084.
    [7] Cheesborough, J.S., Barkess-Jone, L., Brown, D.W.. Possible prolonged environmentalsurvival of small round structured viruses. Journal of Hospital Infection,1997,35:325-326.
    [8] Lopman, B., Zambon, M. and Brow, D.W.. The evolution of norovirus, the “gastric flu”. PlosMedicine,2008,5(2): e42.
    [9] Grohmann, G.S.,1997. Viruses, food and environment. In: AD Hocking; G Arnold; I Jenson et al.(eds). Foodborne Microorganisms of Public Health Significance. Fifth Edition. Sydney:Australian Institute of Food Science and Technology.
    [10] Lees, D.. Viruses and bivalve shellfish. International Journal of Food Microbiology,2000,59(1-2):81-116.
    [11] Schwab, K.J., Neill, F.H., Fankhauser, R.L., et al. Development of methods to detect"Norwalk-like viruses"(NLVs) and hepatitis A virus in delicatessen foods: application to afood-borne NLV outbreak. Applied and Environmental Microbiology,2000,66(1):213-218.
    [12] Seamer, C.,2007. The biology of virus uptake and elimination by Pacific oysters (Crassostreagigas). PhD thesis Wellington: Victoria University of Wellington.
    [13] Cheng, P.K., Wong, D.K., Chung, T.W., et al. Norovirus contamination found in oystersworldwide. Journal of Medical Virology,2005,76:593-597.
    [14] Jiang, X., Cubitt, W.D., Berke, T., et al. Sapporo-like human caliciviruses are genetically andantigenically diverse. Archives Virology,1997,142(9):1813-1827.
    [15] Nishida, T., Kimura, H., Saitoh, M.. Detection, Quantitation and PhylogeneticAnalysis ofNoroviruses in Japanese Oysters. Applied and Environmental Microbiology,2003,10(69):5782-5786.
    [16] Iijima, Y., Tanaka, S., Ohishi, H. Multiple outbreaks of gastroenteritis due to a single strain ofgenotype GII/4norovirus in Kobe, Japan,2006: risk factors for norovirus spread in health caresettings, Jpn. Journal of Infectious Diseases,2008,61:419-422.
    [17] Huppatz, C., Munnoch, S.A., Worqan, T., et al. Anorovirus outbreak associated withconsumption of NSW oysters: implications for quality assurance systems. Communicablediseases intelligence,2008,32:88-91.
    [18] Le Guyader, F.S., Atmar, R.L. and Le Pendu, J..Transmission of viruses through shellfish: whenspecific ligands come into play. Current Opinion in Virology,2012,2:103–110
    [19]陈军林,王滔,高建民,等.福州地区腹泻患者诺瓦克样病毒感染的.分子流行病学特点.中国人兽共患病杂志.2003,19(2):83-85.
    [20]戴迎春,聂军,刘翼,等.广州地区人类杯状病毒感染的初步研究.第一军医大学学报.2003,24(3):296-299.
    [21]董巧丽,金玉章菁,谢华萍,等.兰州地区婴幼儿轮状病毒和杯状病毒腹泻的研究.临床儿科杂志.2005,23(6):364-369.
    [22]靖宇,钱渊,王洛平.北京地区人群诺瓦克样病毒血清抗体水平调查.病毒学报.1998,14(4):322-328.
    [23]谢华萍,方肇寅,王光,等.长春市儿童医院1998~2001年婴幼儿杯状病毒腹泻流行病学研究.病毒学报.2002,18(4):332-336.
    [24] Jin, M., Xie, H., Duan Z., et al. Emergence of the GII4/2006b variant and recombinantnoroviruses in China. Journal of Medical Virology,2008,80(11):1997-2004.
    [25]卫生防护中心提醒市民对诺如病毒导致的肠胃炎提高警觉[OL].2010:2012-10-08.http://www.dh. gov.hk/chs/press/2010/100107.html.
    [26] Hutson, A.M., Atmar, R.L., Estes, M.K. Norovirus disease: changing epidemiology and hostsusceptibility factors. Trends in Microbiology,2004,12(6):279-287.
    [27] Dolin, R., Blacklow, N.R., DuPont, H., et al. Biological properties of Norwalk agent ofacute infectious nonbacterial gastroenteritis. Proc Soc Exp Biol Med,1972,140,578-83.
    [28] Kapikian, A.Z., Wyatt, R.G., Dolin, R., et al. Visualization by immune electronmicroscopy of a27-nm particle associated with acute infectious nonbacterial gastroenteritis. JVirol,1972,10,1075-81.
    [29] Jiang, X., Wang, J., Graham, D.Y. et al. Detection of Norwalk virus in stool bypolymerase chain reaction. J Clin Microbiol,1992a,30,2529-34.
    [30] Prasad, B.V., Hardy, M.E., Dokland, T., et al. X-ray crystallographic structure of theNorwalk virus capsid. Science,1999,286,287-90.
    [31] Bertolotti-Ciarlet, A., White, L.J., Chen, R., et al. Structural requirements for theassembly of Norwalk virus-like particles. J Virol,2002,76,4044-55.
    [32] Tan, M., Huang, P.W., Meller, J., et al. Mutations within the P2domain of norovirus capsidaffect binding to human histo-blood group antigens: evidence for a binding pocket. J. Virol,2003,77,12562–12571
    [33] Vinje, J., Hamidjaja, R.A. and Sobsey, M.D.. Development and application of a capsid VP1(region D) based reverse transcription PCR assay for genotyping of genogroup I and IInoroviruses. J Virol Methods,2004,116,109-17.
    [33] Ando, T., Noel, J.S. and Fankhauser, R.L.. Genetic classification of "Norwalk-likeviruses. J Infect Dis,2000,181Suppl2, S336-48.
    [35] Karst, S.M., Wobus, C.E., Lay, M., et al. STAT1-dependent innate immunity to aNorwalk-like virus. Science,2003,299,1575-8.
    [36] Koopmans, M.P.[Outbreaks of viral gastroenteritis, in particular due to the Norwalkvirus: an underestimated problem]. Ned Tijdschr Geneeskd,2002,146,2401-4.
    [37] Dastjerdi, A.M., Green, J., Gallimore, C.I., et al. The bovine Newbury agent-2is geneticallymore closely related to human SRSVs than to animal caliciviruses. Virology254,1999,1-5.
    [38] Sugieda, M., Nagaoka, H., Kakishima, Y., et al. Detection of Norwalk-like virus genesin the caecum contents of pigs. Arch Virol,1998,143,1215-21.
    [39] van Der Poel, W.H., Vinje, J., van Der Heide, et al. Norwalk-like calicivirus genes infarm animals. Emerg Infect Dis,2000,6,36-41.
    [40] Zheng, D.P., Ando, T., Fankhauser, R.L., et al. Norovirus classification and proposedstrain nomenclature. Virology,2006,346,312-23.
    [41] Wang, Q.H., Han, M.G., Cheetham, S., et al. Porcine noroviruses related to human noroviruses.Emerg Infect Dis,2005,11,1874-81.
    [42] Kojima S,Kageyama T,Fukushi S,et al. Genogroup-specific PCR primers for detection ofNorwalk-like viruses[J]. J Virol Methods,2002,100(1-2):107-114.
    [43] Lindesmith LC,Donaldson EF,Lobue AD,et al. Mechanisms of GII.4norovirus persistence inhuman populations[J]. PLoS Med,2008,5(2):269-290.
    [44] Bull RA, Tanaka MM, White PA.(2007) Norovirus recombination. Journal of GeneralVirology;88(Pt12):3347-59.
    [45] Koopmans M. Progress in understanding norovirus epidemiology. Current Opinion inInfectious Diseases,2008,21(5):544-52.
    [46] Siebenga J.J., Vennema H., Zheng D.P. et al. Norovirus illness is a global problem:emergence and spread of norovirus GII.4variants,2001-2007. Journal of InfectiousDiseases,2009,200(5):802-12.
    [47] Costantini V, Loisy F, Joens L et al. Human and animal enteric caliciviruses in oystersfrom different coastal regions of the United States.Applied and EnvironmentalMicrobiology,2006,72(3):1800-9.
    [48] Gallimore CI, Pipkin C, Shrimpton H et al. Detection of multiple enteric virus strainswithin a foodborne outbreak of gastroenteritis: an indication of the source ofcontamination. Epidemiology and Infection,2005,133(1):41-7.
    [49] Le Guyader FS, Bon F, DeMedici D et al. Detection of multiple norovirusesassociated with an international gastroenteritis outbreak linked to oyster consumption.Journal of Clinical Microbiology,2006b,44(11):3878-82.
    [50] Fankhauser, R.L., Monroe, S.S., Noel, J.S., et al. Epidemiologic and molecular trendsof"Norwalk-like viruses" associated with outbreaks of gastroenteritis in the United States. JInfect Dis,2002,186,1-7.
    [51] Glass, P.J., White, L.J., Ball, J.M., et al. Norwalk virus open reading frame3encodes aminor structural protein. J Virol,2000,74,6581-91.
    [52] Green, K.Y. Summary of the first international workshop on human caliciviruses. JInfect Dis,2000,181Suppl2, S252-3.
    [53] Widdowson, M.A., Cramer, E.H., Hadley, L., et al. Outbreaks of acute gastroenteritis on cruiseships and on land: identification of a predominant circulating strain of norovirus—United States,2002. J Infect Dis,2004,190,27-36.
    [54]戴迎春,聂军,刘翼,等.一起家庭聚集性诺瓦克样病毒感染的调查.第四军医大学学报,2004,25(17):1548-1550
    [55]秦小洁,陈军强,何淑兴.一起诺瓦克病毒感染引起的急性胃肠炎暴发的流行病学调查.华南预防医学,2004,30(4):50-51
    [56]黄念先,陈复才,熊杏茹,等.梅县学校食堂厨工诺瓦克病毒感染情况调查.热带医学杂志,2006,6(8):929~932)
    [57]邓丽丽,刘巍,隆文杰,等.一起诺如病毒引起的急性胃肠炎RT-PCR检测.应用预防医学,2007,13(2):107-109
    [58] Fankhauser, R.L., Noel, J.S., Monroe, S.S., et al. Molecular epidemiology of "Norwalk-likeviruses" in outbreaks of gastroenteritis in the United States. J Infect Dis,1998,178,1571-8.
    [59] Kaplan, J.E., Gary, G.W., Baron, R.C., et al. Epidemiology of Norwalk gastroenteritis and therole of Norwalk virus in outbreaks of acute nonbacterial gastroenteritis. Ann Intern Med,1982b,96,756-61.
    [60]刘翼,戴迎春,姚英民,等.广州市某医院儿童秋冬季腹泻诺瓦克样病毒感染的分子流行病学研究.中华流行病学杂志,2005,26(7):525-529.
    [61]贾宁,谢丽君,索继江,等.诺如病毒感染性腹泻分子流行病学调查.中华医院感染学杂志,2012,22:536-538.
    [62]Schwab K,Neill F,Estes M. Distribution of norwalk virus within shellfish followingbioaccumulation and subsequent depuration by detection using RT-PCR. J Food Prot,1998,61(12):1674-1680.
    [63] Tian P,Engelbrektson AL,Mandrell RE,et al.Seasonal tracking of histo-blood group antigenexpression and norovirus binding in oyster gastrointestinal cells.J Food Prot,2008,71(8):1696-1700.
    [64] Greening G, Lake R, Hudson J et al. Risk Profile: Norwalk-like virus in mollusca (raw).Areport for the New Zealand Food SafetyAuthority.2003a, Client Report FW0110.
    [65] Asahina AY, Lu Y, Wu C et al. Potential biosentinels of human waste in marine coastalwaters: bioaccumulation of human noroviruses and enteroviruses from sewage-pollutedwaters by indigenous mollusks. Journal of Virological Methods,2009,158(1-2):46-50.
    [66] Nenonen NP, Hannoun C, Horal P et al. Tracing of norovirus outbreak strains inmussels collected near sewage effluents. Applied and Environmental Microbiology,2008,74(8):2544-9.
    [67] Greening GE, Hewitt J, Hay BE et al. Persistence of Norwalk-like viruses over time inPacific oysters grown in the natural environment In: AVillalba; B Reguera; JLRomalde et al.(eds). Proceedings of4th International Conference on MolluscanShellfish Safety, Santiago de Compostela, Spain,2003b,367-77.
    [68] Greening GE, Mirams M, Berke T. Molecular epidemiology of 'Norwalk-like viruses'associated with gastroenteritis outbreaks in New Zealand. Journal of Medical Virology,2001,64(1):58-66.
    [69] Kingsley DH, Richards GP. Persistence of hepatitis Avirus in oysters. Journal of FoodProtection,2003,66(2):331-4.
    [70] Seamer C. The biology of virus uptake and elimination by Pacific oysters (Crassostreagigas).2007, PhD thesis Wellington: Victoria University of Wellington.
    [71] Wang D, Wu Q, Kou X et al. Distribution of norovirus in oyster tissues. Journal ofApplied Microbiology,2008a,105(6):1966-72.
    [72] Wang D, Wu Q, Yao L et al. New target tissue for food-borne virus detection inoysters. Letters in Applied Microbiology,2008b,47(5):405-9.
    [73] Tian P, Bates AH, Jensen HM et al. Norovirus binds to blood group A-like antigens inoyster gastrointestinal cells. Letters inApplied Microbiology,2006,43(6):645-51.
    [74] McLeod C, Hay B, Grant C et al. Localization of norovirus and poliovirus in Pacificoysters. Journal ofApplied Microbiology,2009,106(4):1220-30.
    [75] Le Guyader F, Neill FH, Estes MK, Monroe SS, T, Atmar RL: Detection and analysisof a Small Round-Structured virus strain in oysters implicated in an outbrek of acutegastroenteritis. Appl Environ Microbiol,1996,62:4268-4272.
    [76]Sugieda M, Nakajima K, Nakajima S: Outbreaks of Norwalk like virus associatedgastroenteritis traced to shellfish: coexistence of two genotypes in one specimen.Epidemiol Infect1996,116:339-346.
    [77]ShiehYSC, Monroe SS, Fankhauser RL, Langlois GW, Burkhardt W, Baris RS:Detection of Norwalk-like virus in shellfish implicated in illness. J Infect Dis,2000,181:360-366.
    [78] Le Guyader FS, Neill FH, Dubois E, Bon F, Loisy F, Kohli E, Pommepuy M,AtmarRL:Asemi-quantitative approach to estimate Norwalk-like virus contamination ofoysters implicated in an outbreak. Int J Food Microbiol,2003,87:107-112.
    [79]Boxman ILA, Tilburg JJHC, te Loeke NAJM, Vennema H, Jonker K, de Boer E,Koopmans M: Detection of noroviruses in shellfish in the Netherlands. Int J FoodMicrobiol,2006,108:391-396.
    [80] Kageyama T, Shinohara M, Uchida K, Fukushi S, Hoshino FB, Kojima S, Takai R,Oka T, Takeda N, Katayama K: Coexistence of multiple genotypes, including newlyidentified genotypes, in outbreaks of gastroenteritis due to norovirus in Japan. J ClinMicrobiol,2004,42:2988-2995.
    [81] Prato R, Lopalco PL, Chironna M, Barbuti G, Germinario C, Quarto M: Norovirusgastroenteritis general outbreak associated with raw shellfish consumption in SouthItaly. BMC Infect Dis,2004,4:1-6.
    [82]Webby RJ, Carville KS, Kirk MD, Greening G, Ratcliff RM, Creara SK, Dempsey K,Sarna M, Stafford R, Patel M, Hall G: Internationally distributed frozen oyster meatcausing multiple outbreaks of norovirus infection in Australia. Clin Infect Dis,2007,44:1026-1031.
    [83]David ST, McIntyre L, MacDougall L, Kelly D, Liem S, Schallie K, McNabbA, HoudeA, Mueller P, Ward P et al.:An outbreak of norovirus caused by consumption of oystersfrom geographically disperse harvest sites, Bristish Columbia, Canada,2004. FoodbornePathog Dis,2007,4:349-358.
    [84] SasakiY, KaiA, Hayashi Y, Shinkai T, Nogushi Y, Hasegawa M, Sadamasu K, Mori K,TabejY, Nagashima M et al.: Multiple viral infections and genomic divergence amongnoroviruses during an outbreak of acute gastroenteritis. J Clin Microbiol,2006,44:790-797.
    [85] Simmons G, Garbutt C, Hewitt J, Greening G:ANew Zealand outbreak of norovirusgastroenteritis linked to the consumption of imported raw Korean oyters. N Z Med J,2007,120:1-7.
    [86] Nakagawa-Okamoto R, Arita-Nishida T, Toda S, Kato H, Iwata H, Akiyama M, NishioO, Kimura H, Noda M, Takeda N, Oka T: Detection of multiple sapovirus genotypesand genogroups in oyster-associated outbreaks. Jpn J Inf Dis,2009,62:63-66.
    [87] Nenonen NP, Hannoun C, Olsson MB, Bergstrom T: Molecular analysis of anoyster-related norovirus outbreak. J Clin Virol,2009,45:105-108.
    [88] Le Guyader FS, Kroll J,Ambert-Balay K, Ruvoen-Clouet N, Desaubliaux B,Parnaudeau S, Le Saux J-C, Ponge A, Pothier P,Atmar RL, Le Pendu J: Comprehensiveanalysis of a norovirusassociated gastroenteritis outbreak, from the environment to theconsumer. J Clin Microbiol,2010,48:915-920.
    [89] IIzuka S, Oka T, Tabara K, Omura T, Katayama K, Takeda N, Noda M: Detection ofsapoviruses and noroviruses in an outbreak of gastroenteritis linked genetically toshellfish. J Med Virol2010,82:1247-1254.
    [90]Alfano-Sobsey E, Sweat D, HallA, Breedlove F, Rodriguez R, Greene S, Pierce A,Sobsey M, Davies M, Ledford SL: Norovirus outbreak asociated with undercookedoysters and secondary household transmission. Epidemiol Infect2011doi:10.1017/S0950268811000665.
    [91] Trujillo AA, McCaustland KA, Zheng D-P, Hadley LA, Vaughn G,AdamsSM,AndoT,GlassRI,MonroeSS:UseofTaq-Manreal-time reverse transcriptionPCR for rapid detection quantification and typing of norovirus. J Clin Microbiol,2006,44:1405-1412.
    [92] Kageyama T, Kojima S, Shinohara M, Uchida K, Fukushi S, Hoshino FB, Takeda N,Katayama K: Broadly reactive and highly sensitive assay for Norwalk-like viruses basedon real-time quantitative reverse transcription-PCR. J Clin Microbiol,2003,41:154-157
    [93] Mattison K, Grudeski E,Auk B, Charest H, Drews SJ, Fritzinger A, Gregorious N,Hayward S, Houde A, Lee BE et al.: Multicenter comparison of two norovirusORF2-based genotyping protocols. J Clin Microbiol,2009,47:3927-3932.
    [94] KronemanA, Vennema H, Deforche K, Avoort HVD, Penaranda S:An automatedgenotyping tool for enteroviruses and noroviruses. J Clin Virol,2011,51:121-125.
    [95]Phillips G, Tam CC, Rodrigues LC, Lopman B: Risk factor for symptomatic andasymptomatic norovirus infection in the community. Epidemiol Infect2010doi:10.1017/S0950268810002839.
    [96]Greig JD, RavelA: Analysis of foodborne outbreak data reported internationally forsource attribution. Int J Food Microbiol,2009,130:77-87.
    [97] Le Guyader FS,Atmar RL and Le Pendu J.Transmission of viruses through shellfish:when specific ligands come into play Current Opinion in Virology2012,2:103–110
    [98]Nishida T, Nishio O, Kato M, Chuma T, Kato H, Iwata H, Kimura H:Genotyping andquantitation of norovirus in oysters from twodistinct sea areas in Japan. MicrobiolImmunol,2007,51:177-184.
    [99] Lowther JA, Henshilwwod K, Lees DL: Determination of norovirus contamination inoysters from two commercial harvesting areas over an extended period, usingsemiquantitative real-time reverse trancription PCR. J Food Prot,2008,71:1427-1433.
    [100] Lowther JA, Avant JM, Gizysztof K, Rangdale EE, Lees DN:Comparison betweenquantitative real-time reverse transcription PCR results for norovirus in oysters andselfreported gastroenteritis illness in restaurant customers. J Food Prot,2010,73:305-311.
    [101]Gentry J, Vinje J, Guadagnoli D, Lipp EK: Norovirus distribution within a estuarineenvironment. Appl Environ Microbiol,2009,75:5474-5480.
    [102] Le Guyader FS, Parnaudeau S, Schaeffer J, BoschA, Loisy F, Pommepuy M,AtmarRL: Detection and quantification of noroviruses in shellfish. Appl Environ Microbiol,2009,74:618-624.
    [103]Woods JW, Burkhardt W III: Occurence of norovirus and hepatitis Avirus in USoysters. Food Environ Virol,2010,2:176-182.
    [104]Vilarino ML, Le Guyader FS, Polo D, Schaeffer J, Krol J, Romalde JL:Assessment ofhuman enteric viruses in cultured and wild bivalve molluscs. Int Microbiol,2009,12:145-151.
    [105]Suffredini E, Pepe T, Ventrone I, Croci L: Norovirus detection in shellfish using tworeal-time RT-PCR methods. New Microbiol,2011,34:9-16.
    [106] Polo D, Vilarino ML, Manso CF, Romalde JL: Imported mollusks and disseminationof human enteric viruses. Emerg Infect Dis,2010,16:1036-1037.
    [107] Ravn V, Dabelsteen E. Tissue distribution of histo-blood group antigens. Apmis,2000,108(1):1-28.
    [108] Tan, M. and Jiang, X. Norovirus and its histo-blood group antigen receptors: an answer to ahistorical puzzle. Trends in Microbiology,2005a,13:285-293.
    [109] Ruvoen-Clouet, N., Ganiere, J.P., Andre-Fontaine, G., et al. Binding of rabbit hemorrhagicdisease virus to antigens of the ABH histo-blood group family. J Virol,2000,74,11950-4.
    [110] Hutson, A.M., Airaud, F., LePendu, J., et al. Norwalk virus infection associates withsecretor status genotyped from sera. J Med Virol77,2005,116-20.
    [111] Lindesmith, L., Moe, C., Marionneau, S., et al. Human susceptibility and resistance toNorwalk virus infection. Nat Med,2003,9,548-53.
    [112] Jiang, X., Matson, D.O., Ruiz-Palacios, G.M., et al. Expression, self-assembly, andantigenicity of a snow mountain agent-like calicivirus capsid protein. J Clin Microbiol,1995a,33,1452-5.
    [113] Jiang, X., Wang, M., Graham, D.Y. et al. Expression, self-assembly, and antigenicity of theNorwalk virus capsid protein. J Virol,1992b,66,6527-32.
    [114] Jiang, X., Zhong, W., Kaplan, M., et al. Expression and characterization of Sapporo-likehuman calicivirus capsid proteins in baculovirus. J Virol Methods,1999b,78,81-91.
    [115] Green, K.Y., Lew, J.F., Jiang, X., et al. Comparison of the reactivities ofbaculovirus-expressed recombinant Norwalk virus capsid antigen with those of the nativeNorwalk virus antigen in serologic assays and some epidemiologic observations. J ClinMicrobiol,1993,31,2185-91.
    [116] White, L.J., Ball, J.M., Hardy, M.E., et al. Attachment and entry of recombinant Norwalk viruscapsids to cultured human and animal cell lines. J Virol,1996,70,6589-97
    [117] Marionneau, S., Ruvoen, N., Le Moullac-Vaidye, et al. Norwalk virus binds to histo-bloodgroup antigens present on gastroduodenal epithelial cells of secretor individuals.Gastroenterology,2002,122,1967-77.
    [118] Huang, P., Farkas, T., Marionneau, S., et al. Noroviruses bind to human ABO, Lewis, andsecretor histo-blood group antigens: identification of4distinct strain-specific patterns. J InfectDis,2003,188,19-31.
    [119] Huang, P., Farkas, T., Zhong, W., et al. Norovirus and histo-blood group antigens:demonstration of a wide spectrum of strain specificities and classification of two major bindinggroups among multiple binding patterns. J Virol,2005,79,6714-22.
    [120] Harrington, P.R., Lindesmith, L., et al. Binding of Norwalk virus-like particles to ABHhisto-blood group antigens is blocked by antisera from infected human volunteers orexperimentally vaccinated mice. J Virol,2002,76,12335-43.
    [121] Harrington, P.R., Vinje, J., Moe, C.L. et al. Norovirus capture with histo-blood group antigensreveals novel virus-ligand interactions. J Virol,2004,78,3035-45.
    [122] Di Girolamo R, Liston J, Matches J. Ionic bonding, the mechanism of viral uptake by shellfishmucus. Appl Environ Microbiol,1977,33(1):19-25.
    [123] Le Guyader FS, Loisy F, Atmar RL, et al. Norwalk virus specific binding to oyster digestivetissues. Emerg Infect Dis,2006,12:931-936.
    [124] Maalouf H, Zakhour M, Le Pendu J, et al. Norovirus genogroup I and II ligands in oysters:tissue distribution and seasonal variations. Appl Environ Microbiol,2010,76:5621-5630.
    [125] Maalouf H, Schaeffer J, Parnaudeau S, et al. Strain-Dependent Norovirus Bioaccumulation inOysters. Applied and Environmental Microbiology,2011,77:3189-3196
    [126]陈艳,郭云昌,王竹天,等.2006年中国食源性疾病爆发的监测资料分析.卫生研究,2010,39(3):331-334
    [127] CAC. Principles and guidelines for the conduct of microbiological riskassessment.CAC/GL-30.[S/OL].[1999]. http://www. codexalimentarius.net/download/standards/357CXG030e. pdf.
    [128] FAO/WHO. Application of risk analysis to food standard issues. Report of the JointFAO/WHO Expert Consultation[R]. Geneva, Switzerland:WHO,1995.
    [129] FAO/WHO. Risk management and food safety. Report of the Joint FAO/WHO ExpertConsultation[R]. Rome, Italy:FAO/WHO,1997.
    [130] FAO.Application of risk assessment in the fish industry. FAO fisheries technical paper,2004.
    [131]中华人民共和国食品安全法
    [132]李寿崧,宁芊.食品微生物定量风险评估研究现状、基本框架及其发展趋势.中国食品学报,2007,7(3):1-8.
    [133] Ross T,Sumner J. A simple spreadsheet-based food safety risk assessment tool,Int J FoodMicrobiol,2002,77:39-53.
    [134] US FDA/FSIS. Draft assessment of the relative risk to public health from foodborne Listeriamonocytogenes among selected categories of ready-to-eat foods [R/OL].[2001].http://www.foodsafety. Gov/dms/lmrisk. htm.
    [135]王巍.食品安全微生物风险评估研究.硕士学位论文,中国人民大学,2007.
    [136] France with assistance of Argentina et al. Proposed draft principles and guidelines for theconduct of microbiological risk management (at step3of the procedure)[C]. CCFH Thirty-fifth Session, Orlando, USA,27-31, January2003
    [137]王迪,程永友,杨曙明,等.农产品中微生物风险评估研究.食品与发酵工业,2008,34(4):118-121.
    [138] Michael H.,Cassin, Anna M. et al. Quantitative risk assessment for Escherichia coliO157:H7in ground beef hamburgers. Int J Food Microbiol,1998,41:21–44.
    [139] FAO/WHO. Risk assessments of Salmonella in eggs and broiler chickens. MRA series2
    [M].FAO/WHO,2002.
    [140] FAO/WHO. Risk assessment of Campylobacter spp.in broiler chickens and Vibrio spp. inseafood. MRAseries2[M].FAO/WHO,2002.
    [141] FAO/WHO. Risk assessment of Vibrio vulnificus in raw oysters: interpretative summary andtechnical report.MRAseries8[R/OL].[2005].http://www.who.int/foodsafety/publications/micro/mra8. pdf.
    [142] FAO/WHO. Risk assessment of Listeria monocytogenes in ready-to-eat foods: interpretativesummary. MRA series4[R/OL].[2004]. http://www. who. Int/foodsafety/publications/micro/en/mra4. pdf.
    [143] FAO/WHO. Risk assessment of Listeria monocytogenes in ready-to-eat foods: technicalreport. MRA series5[R/OL].[2004]. http://www. who. Int/foodsafety/publications/micro/mra/listeria/en/i ndex. html.
    [144] US Depar tment of Agriculture Food Safety and Inspection Service. Salmonella enteritidisrisk assessment: shell eggs and egg products [R/OL].[1998]. http://www.fsis.usda.Gov/ophs/risk.
    [145] US FDA. Draft risk assessment on the public health impactof Vibrio parahaemolyticus in rawmolluscan shellfish.[R/OL].[2000]. http://www. cfsan. fda. Gov/dms/vprisk.html.
    [146] US FDA. Quantitative risk assessment on the public healthimpact of Vibrio parahaemolyticusin raw oysters[R/OL].[2000]. http://www. cfsan. fda. Gov/dms/vpra2toc.html.
    [147] ELISA L E, JOHN E K.Risk assessment used to evaluate the US position on Listeriamonocytogenes in seafood [J].In t J Food Microbiol,2000,(62):253-260.
    [148] US FDA/FSIS. Draft assessment of the relative risk to public health from foodborne Listeriamonocytogenes among selected categories of ready-to-eat foods [R/OL].[2001].http://www.foodsafety.Gov/dms/lmrisk. htm.
    [149] EFSA. Quantitative Microbiological Risk Assessment on Salmonella in Slaughter andBreeder pigs: Final Report [2010]. http://www.efsa.europa.eu/en/supporting/pub/46e.htm
    [150] EFSA. A quantitative microbiological risk assessment of Campylobacter in the broiler meatchain.[2011]. http://www.efsa.europa.eu/en/supporting/pub/132e.htm
    [151] Ross, T., Rasmussen, S.R., Fazil, A., et al. Quantitative risk assessment of Listeriamonocytogenes in ready-to-eat meats in Australia. In t J Food Microbiol,2009,131(2):128-137
    [152] Ross, T,Rasmussen, S,Sumner, JL. Using a quantitative risk assessment to mitigate risk ofListeria monocytogenes in ready-to-eat meats in Australia, Food Control,2009,20(11):1058-1062.
    [153] Mokhtari, A.,Jaykus, L. A. Quantitative exposure model for the transmission of norovirus inretail food preparation. In t J Food Microbiol,2009,(133):38-47
    [154] Yamamoto A, Iwahori J, Vuddhakul V, et al.Quantitative modeling for risk assessment ofVibrio parahaemolyticus in bloody clams in southern Thailand. In t J Food Microbiol,2009,124(1):70-8.
    [155]刘秀梅,陈艳,王晓英,等.1992-2001年食源性疾病暴发的资料分析-国家食源性疾病监测网.卫生研究,2004,33(6):725-727.
    [156]刘秀梅,陈艳,樊永祥,等.2003年中国食源性疾病暴发的监测资料分析.卫生研究,2006,35(2):201-204.
    [157]宁芊,李寿崧,陈守平.文蛤中副溶血性弧菌的风险评估.现代食品科技,2010,26(11):1259-1263.
    [158]陈艳,刘秀梅,王明,等.温暖月份零售带壳牡蛎中副溶血性弧菌的定量研究.中国食品卫生杂志,2004,16(3):207-209.
    [159]邹婉红.福建省牡蛎食用中感染副溶血性弧菌的风险评估.中国水产,2003,(1):70-71.
    [160]陈艳,刘秀梅.福建省零售生食牡蛎中副溶血性弧菌的定量危险性评估.中国食品卫生杂志,2006,18(2):103-109.
    [161]邵玉芳,汪雯,章荣华,等.浙江省生食牡蛎中副溶血性弧菌的风险评估.中国食品学报,2010,10(3):193-198.
    [162]赵志晶,刘秀梅.中国带壳鸡蛋中沙门氏菌定量危险性评估的初步研究—Ⅰ.危害识别与暴露评估.中国食品卫生杂志,2004,16(3):204-206.
    [163]田静,刘秀梅.熟肉制品和蔬菜沙拉中单核细胞增生李斯特菌的风险分级评估.中华预防医学杂志,2009,43(9):781-784.
    [164]麻丽丹,金东权,王殿夫,等.丹东口岸进口冷冻水产品中携带单核细胞增生性李斯特菌定量危险性评估的初步研究.中国国境卫生检疫杂志,2007,30:236-240.
    [165]骆璇,郭红卫,王颖,等.上海市猪肉中金黄色葡萄球菌定量风险评估.中国食品卫生杂志,2010,23(3):244-249.
    [166]毕金峰,魏益民,潘家荣.微生物风险评估的原则与应用.农产品加工,2004,(11):19-24.
    [167]胡洁云,欧杰,李柏林.预报微生物学在食品安全风险评估中的应用.微生物学通报,2009,36(9):1397-1403.
    [168]王峥,邓小玲.食源性致病菌微生物风险评估的概况及进展.国外医学卫生学分册,2009,36(5):276-280
    [169] Gentry J,Vinje J,Erin K,et al.A rapid and efficient method for quantitation of genogroupsI and II norovirus from oysters and application in other complex environmental samples.Journal of Virological Methods,2009,156:59-65.
    [170] Tomoko N, Hirokazu K, Mika S, et al. Detection,quantitation,and phylogenetic analysis ofnoroviruses in Japanese Oysters. Applied and Environmental Microbiology,2003,69(10):5782-5786.
    [171] Ingeborg LA, Jeroen JHC, Nathalie AJM, et al. Detection of noroviruses in shellfish in theNetherlands. International Journal of Food Microbiology,2006,108:391-96.
    [172] Tian P, Engelbrektson A L, Jiang X, et al. Norovirus recognizes histo-blood group antigens ongastrointestinal cells of clams, mussels, and oysters: a possible mechanism ofbioaccumulation[J]. J Food Prot,2007,70(9):2140-2147.
    [173] Jothikumar, N., Lowther, J.A., Henshilwood, K., Lees, D.N., Hill, V.R. and Vinje, J., Rapidand sensitive detection of noroviruses by using TaqMan-based one-step reversetranscription-PCR assays and application to naturally contaminated shellfsh samples.Applied and Environmental Microbiology,2005,71:1870-1875.
    [174] Beuret, C., Baumgartner, A. and Schluep, J. Virus-contaminated oysters: a three-monthmonitoring of oysters imported to Switzerland. Applied and Environmental Microbiology,2003,69:2292-2297.
    [175] Myrmel, M., Berg, E.M., Rimstad, E.&Grinde, B. Detection of enteric viruses in shellfishfrom the Norwegian coast. Applied and Environmental Microbiology,2004,70(5),2678-2684.
    [176] Bidawid, S., Malik, N., Adegbunrin, O., Sattar, S.A.&Farber, J.M. Norovirus crosscontamination during food handling and interruption of virus transfer by hand antisepsis:experiments with feline calicivirus as a surrogate. Journal of Food Protection,2004,67,103-109.
    [177] Clay, S., Maherchandani, S., Malik, Y.S.&Goyal, S.M. Survival on uncommon fomites offeline calicivirus, a surrogate of noroviruses. American Journal of Infection Control,2006,34,41-43.
    [178] Malik, Y.S., Maherchandani, S.&Goyal, S.M. Comparative efficacy of ethanol andisopropanol against feline calicivirus, a norovirus surrogate. American Journal of InfectionControl,2006,34,31–35.
    [179] Mattison, K., Karthikeyan, K., Abebe, M., Malik, N., Sattar, S.A., Farber, J.M.&Bidawid, S.Survival of calicivirus in foods and on surfaces: experiments with feline calicivirus as a surrogatefor norovirus. Journal of Food Protection,2007,70,500–503.
    [180] Zheng, D.P., Ando, T., Fankhauser, R.L., Beard, R.S., Glass, R.I.&Monroe, S.S. Norovirusclassification and proposed strain nomenclature. Virology,2006,346,312–323.
    [181] Loisy, F., Atmarb, R.L., Guillon, P., Le Canna, P., Pommepuy, M. and Le Guyadera, F.S.Real-time RT-PCR for norovirus screening in shellfish. Journal of Virological Methods,2005,123,1–7.
    [182] Baert, L., Mattison, K., Loisy-Hamon, F., Harlow, J., Martyres A, Lebeau B, et al. Review:Norovirus prevalence in Belgian, Canadian and French fresh produce: A threat to human health?International Journal of Food Microbiology,2011,151,261–269.
    [183] Croci, L., Losio, M.N., Suffredini, E., Pavoni, E., Di Pasquale, S., Fallacara, F.&Arcangeli, G.Assessment of human enteric viruses in shellfish from the northern Adriatic sea. InternationalJournal of Food Microbiology,2007,114(2),252-257.
    [184] Terio, V., Martella, V., Moschidou, P., Di Pinto, P., Tantillo, G.&Buonavoglia, C. Norovirusin retail shellfish. Food Microbiology,2010,27,29-32.
    [185] Jiang, X., Huang, P.W., Zhong, W.M., Farkas, T., Cubitt, D.W.&Matson, D.O..Design andevaluation of a primer pair that detects both Norwalk-and Sapporo-like Calicivirus by RT-PCR.Journal of Virological Methods,1999,83,145–154.
    [186] Kingsley, D.H., Meade, G.K.&Richards, G.P.. Detectionof both hepatitis A virus andNorwalk-like virus in imported clams associated with food-borne illness. Applied andEnvironmental Microbiology,2002,68,3914-3918.
    [187] McDonnell, S., Kirkland, K.B., Hlady, W.G., Aristeguieta, C., Hopkins, R.S., Monroe, S.S.&Glass, R.I.. Failure of co Seamer oking to prevent shellfish-associated viral gastroenteritis.Archives of Internal Medicine,1997,157(1),111-116.
    [188] Lodder, W.J.&de Roda Husman, A.M. Presence of noroviruses and other enteric viruses insewage and surface waters in The Netherlands. Applied and Environmental Microbiology,2005,71(3),1453-1461.
    [189] Hansman, G.S., Oka, T., Li, T.C., Nishio, O., Noda, M.&Takeda, N. Detection of humanenteric viruses in Japanese clams. Journal of Food Protection,2008,71(8),1689-1695.
    [190] Kou, X.X., Wu, Q.P., Zhang, J.M.&Fan, H.Y. Rapid Detection of Noroviruses in FecalSamples and Shellfish by Nucleic Acid Sequence-based Amplification. The Journal ofMicrobiology,2006,44,403-408.
    [191] Kou, X.X., Wu, Q.P., Wang, D.P.&Zhang, J.M. Simultaneous detection of norovirus androtavirus in oysters by multiplex RT–PCR. Food Control,2008,19,722-726.
    [192] Hewitt J, Greening GE. Effect of heat treatment on hepatitis A virus and norovirus inNew Zealand greenshell mussels (Perna canaliculus) by quantitative real-time reversetranscription PCR and cell culture. Journal of Food Protection,2006,69(9):2217-23.
    [193] Hewitt J, Greening GE. Survival and persistence of norovirus, hepatitis A virus, andfeline calicivirus in marinated mussels. Journal of Food Protection,2004,67(8):1743-50.
    [194] Hewitt J, Greening G. Norovirus detection and standardisation in shellfish2008-9. Areport for the New Zealand Food Safety Authority. Institute of Environmental Scienceand Research Ltd, Christchurch. ESR Client Report FW09067.2009. Keneperu: ESR.
    [195] Marks PJ, Vipond IB, Carlisle D et al. Evidence for airborne transmission ofNorwalk-like virus (NLV) in a hotel restaurant. Epidemiology and Infection,2000,124(3):481-7.
    [196] D’Souza DH, Moe CL, Jaykus LA. Foodborne viral pathogens. In: MP Doyle; LRBeuchat (eds). Food Microbiology: Fundamentals and Frontiers,3rd Edition.2007.Washington DC:ASM Press.
    [197] Harris JP, Edmunds WJ, Pebody R et al. Deaths from norovirus among the elderly,England and Wales. Emerging Infectious Diseases,2008,14(10):1546-52.
    [198] Teunis PF, Moe CL, Liu P et al. Norwalk virus: how infectious is it? Journal ofMedical Virology,2008,80(8):1468-76.
    [199]汪俊,薛长湖,李兆杰,等.太平洋牡蛎中诺瓦克样病毒的RT-PCR法检测和病毒聚合酶区部分序列的分析.中国水产科学,2004,11(6):525-529
    [200]李振.青岛地区贝类中诺瓦克样病毒污染状况调查与风险评估初探:[硕士学位论文].青岛:中国海洋大学,2006:25-29
    [201]方肇寅,温乐英,晋圣瑾,赵章华.在我国腹泻患儿中发现诺瓦克样病霉感染[J].病毒学报,1995,(第3期):215-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700