哈族肥胖儿童环境因素、FTO基因和肠道菌群的关联性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探寻生活环境因素、体脂量和肥胖症相关基因(FTO)多态性、影响能量吸收的肠道共生菌与哈萨克族学龄儿童发生肥胖之间的关联性,初步探讨FTO基因与肠道菌群间的关联,完善我国不同民族肥胖数据库信息,为公共卫生部门采取一级病因防控提供依据。方法:本研究运用病例-对照研究策略:①以哈萨克族主要居住地伊犁哈萨克自治州为调查地点,按照随机整群抽样的方法,分别从城市、县城、乡村共抽取14所学校,由培训过的调查员对全部小学生进行体格测量(身高、体重、腰围、臀围、血压)、填写调查表(包括年龄、性别、家族史、个人史、饮食习惯、活动时间等),按照“中国学龄儿童青少年超重、肥胖筛查体重指数值分类标准”筛选出超重肥胖儿童作为病例组及正常体重儿童作为对照组,签署知情同意书后留取血样,检测肥胖相关代谢表型(采用全生化自动仪检测血糖、血脂,放射免疫法检测胰岛素浓度,血浆超敏C反应蛋白用免疫比浊法测定,采用稳态模型法评估胰岛素抵抗程度);②按经典酚-氯仿-异戊醇法提取基因组DNA,用聚合酶链反应-限制性片段长度多态性技术检测FTO基因rs9939609、rs9930506多态位点,采用软件SHEsis进行配对连锁不平衡分析及单体型分析;③病例组及对照组儿童中符合大便采样要求的留取大便,提取肠道细菌总DNA,建立肠道主要菌群硬壁菌门、拟杆菌门的标准曲线,通过实时荧光PCR方法检测研究对象的肠道硬壁菌门/拟杆菌门比例。结果:①流行病学调查结果显示:7岁-13岁学龄儿童5360名(男2716名,女2644名),共检出超重儿童489名,肥胖儿童238名。肥胖的总检出率为4.40%(95%可信区间3.85%-4.95%),超重儿童总检出率为9.10%(95%可信区间8.71%-9.49%)。超重检出率男童(9.90%)与女童(8.30%)差异有统计学意义(X2=4.635,P=0.031),肥胖检出率男童(5.00%)与女童(3.90%)差异有统计学意义(X2=4.470,P=0.035)。各年龄组肥胖检出率(X2=46.121,P=0.000)、超重检出率(X2=47.106,P=0.000)差异均有统计学意义,并呈现随着年龄增长检出率下降趋势。超重及肥胖检出率从高到低分别是城市、县城、乡村,差异具有统计学意义(X2=116.075,P=0.000;X2=195.814,P=0.000)。哈萨克族7岁-13岁儿童肥胖组儿童腰围、臀围和腰臀比值明显高于超重、正常体重组儿童,按性别分层后差异仍有统计学意义。进一步做Pearson线性相关分析,腰围(rs=0.811,P=0.000)、臀围(rs=0.783,P=0.000)与BMI呈线性相关。BMI与收缩压(rs=0.468,P=0.000)、舒张压相关(rs=0.371,P=0.000)。运用Spearman线性相关分析腰臀比与血压(正常高值、高血压、正常血压)水平的关系,结果发现腰臀比与血压水平相关。BMI (rs=0.387, P=0.000)、腰围(r-=0.353,P=0.000)均与HOMA-IR呈正相关。有肥胖家族史的儿童发生超重或肥胖的风险是没有家族史的2.699倍;②FTO基因rs9939609、rs9930506的基因型频率和等位基因频率在哈萨克族学龄儿童群体中分布符合Hardy-Weinberg平衡;rs9939609多态位点基因型频率和等位基因频率的分布在哈萨克族学龄儿童超重/肥胖组和对照组中差异有统计学意义(X212.78,P=0.002);rs9930506位点多态的基因型频率和等位基因频率在哈萨克族学龄儿童两组中的分布差异没有统计学意义(x2=1.781,P=0.410)。rs9939609中携带AA等位基因的人群SBP、BMI、腰围、臀围、HDL、FIN、HMOA-IR与TT、AT基因型人群相比,差异有统计学意义;控制性别、年龄的影响后,这种差异仍存在;而每增加1个危险等位基因可引起BMI增加0.490(kg/m2),腰围增加0.530cm, HDL减少0.09mmol/L。rs9930506中携带GG等位基因的人群控制协变量性别、年龄的影响后仅与FPG, FIN、HMOA-IR相关。rs9930506每增加1个危险等位基因所引起血糖增加0.134mol/L。Logistic回归分析显示FTO基因rs9939609位点A等位基因(OR=0.546,95%CI0.397-0.752)、rs9930506位点G等位基因(OR=0.450,95%CI0.236-0.858)与哈萨克族学龄儿童超重肥胖有关联。FTO基因2个SNPs处于不完全连锁平衡,可形成4种单体型:AG、AA、TA和TG,单体型组合的估计频率在哈萨克族学龄儿童超重肥胖组和对照组中差异均有统计学意义;③Bacteroidetes数量在肥胖组、超重组和正常体重组三组间分别是(0.33±0.47)×107拷贝/ul、(1.37±1.76)×107拷贝/ul、(1.50±2.20)×107拷贝/ul,差异有统计学意义(F=5.836,P=0.004);Firmicutes数量在肥胖组、超重组和对照组分别是(4.70±7.01)×107拷贝/ul、(2.05±3.01)×107拷贝/u1、(2.43±4.5)×107拷贝/ul,差异没有统计学意义(F=0.232,P=0.793)。肠道Bact/Firm比值在肥胖组、超重组和对照组三组分别是0.48±0.52、1.03±0.82、1.06±0.62,肥胖组的两大菌门比例(Bact/Firm)低于超重组、正常对照组,差异有统计学意义(F=6.483, P=0.002)。Bacteroidetes、Firmicutes、Bact/Firm比例在rs9939609、rs9930506不同基因型时差异没有统计学意义(P>0.05)。结论:①超重肥胖检出率与经济发展水平不匹配;超重及肥胖检出率存在男高女低特点,并随着年龄增长检出率下降;超重肥胖检出率从高到低仍然是城市>县城>乡村;哈萨克族学龄儿童BMI、腰围与HOMA-IR正相关;有肥胖家族史的儿童更易发生超重或肥胖;哈萨克族学龄儿童BMI、腰臀比均与其血压水平相关;②FTO基因rs9939609位点A等位基因、rs9930506位点G等位基因与哈萨克族学龄儿童超重肥胖有关联,很可能在该民族群体中有民族特异性肥胖易感单体型存在;③肠道菌群中的Bacteroidetes减少及Bact/Firm降低与哈萨克族学龄儿童超重/肥胖的发生有关系,FTO基因SNPs与肠道菌群间暂未发现关联。
Objective:In order to explore the risk factors relevant with obesity in children from both gene level and environmental factor including microflora in intestinal, our group carried out case-control strategy to study all above factors in large Hazakh children sample in Xinjiang region. The results of the study will be helpful to reveal pathogenesis of obesity and supplement database information of obesity in different ethnics in China. And it can also be helpful to supply theory basis for causal prophylaxis and control obesity in childhood by public health branch. Methods:A three-step stratified sampling method was used. The northern region of the Tianshan mountains is the main living area of Kazakh ethnic populations in Xinjiang. At the initial stage, different counties of Kazakh residential areas were randomly selected from the region of Yili and Altay (NW Xinjiang). During the second stage of randomized sampling, several townships or districts were randomly selected from each of the counties and cities. At the final stage, children were randomly chosen from the primary schools which belonged to the townships or districts. A set of questionnaires, including demographic information, family history of obesity, outdoor activities, cultural levels of parents, eating speed, birth weight, hours of sleep and hours of watching TV, were collected from the participants. Three independent blood pressure measurements and anthropometric measuremenst, including height, weight, waist circumference and hip circumference, were obtained by trained and certified staff members using tstandard protocols. The method to determine overweight and obesity in this study was defined by the Group of China Obesity Task Force. With the purpose of exploring risk factors associated with overweight and obesity, blood glucose, total cholesterol, high density lipoprotein, low density lipoprotein and triglycerides were determined after overnight fasting using a modified hexokinase enzymatic method (Hitachi automatic clinical analyzer, Model 7060, Japan). High sensitity C-Reactive Protein (hs-CRP) and insulin also were determined by hs-CRP ELISA Kit and Radioimmunoassay Kit respectively assayed with kits from USCNLIFE and Peking north biotechnology research institute. To assessment the degree of insulin resistance, a homeostasis model (HOM) was calculated using the formula, HOMA-IR= (FPG×FIN)/22.5. Written informed consents were obtained from all study participants prior to data collection and measurements. The pattern of pairwise LD between the common (minor allele frequency> 5%) SNPs was measured by D'and r2, and all SNPs of FTO gene were futher genotyped in all subjects by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Real-time fluorescence quantitative PCR (Q-PCR) was used to detecte Bacteroidetes, Firmicutes, and Bact/Firm ratio of DNA from stool of Hazakh children. Results:In total,5,360 Kazak subjects (male 2716 and femal 2644) were randomly enrolled from 14 schools which were predominantly Kazak. The detection rate of obesity and overweight was 4.40%(95%C73.85%~4.95%) and 9.10% (95%CI 8.71%~9.49%), respectively. The detection rate of obesity was difference in different age groups (x2=46.121, P=0.000) and in different gender (x2=4.470, P= 0.035). The detection rate of overweight was difference in different age groups (X2= 47.106, P= 0.000) and in different gender (X2=4.635, P=0.031). The tendency of detection rate of obesity was decrease along with age growing. Waist circumference, hip circumference and waist-to-hip ratio in obesity group were higher than overweight group and normal weight group.There was statistical significance among three groups in waist circumference, hip circumference and waist-to-hip ratio. Our data revealed that there existed a linear correlation between waist circumference, hip circumference and body mass index (BMI). And the similar correlation existed among BMI, SBP and DBP. Individuals with a greater waist-to-hip ratio were more prone to development of hypertension. The genotype distributions of the FTO gene variants were found to be in Hardy-Weinberg equilibrium in control group and case group. There was significant difference in frequencies of AA, AT and TT genotypes between controls and cases (X2=12.78, P=0.002), but the frequencies of AA, AG and GG genotypes between controls and cases was no significant difference (X2=1.781, P=0.410). In the case and control groups, SBP, BMI, waist circumference, HDL, FIN, HMOA-IR and hip circumference of the persons with AA genotype of rs9939609 were differences from those of TT or AT genotypes and the statistical significance was also observed (P<0.05). A allele of rs9939609 was associated with increased BMI with per-allele change of 0.490 kg/m2, increased waist circumference with per-allele change of 0.53cm and decreased HDL with per-allele change of 0.09mmol/L when compared with those not inheriting a risk allele. FPG, FIN and HMOA-IR of the persons with GG genotype of rs9930506 were differences from those of AA or AG genotypes elimination the influence of gender and age and the statistical significance was observed (P<0.05). FPG was increased 0.134mol/L in children who are homozygous for the risk allele(GG) comparing with those were not inherited risk allele. Logistic regression analysis showed that both the A allele of rs9939609 (OR=0.546,95%C70.397-0.752) and G allele of rs9930506 (OR=0.450, 95%C70.236~0.858) were an independent risk factor for overweight or obesity. Pairwise LD was carried out for SNPs respectively, rs9939609 and rs9930506 polymorphisms were in LD and most of the pairwise LD values of the polymorphisms were incomplete linkage equilibrium. Hyplotype based association study indicate that 4 haplotypes was reconsreucted by 2 SNPs and haplotype frequency in case group is different from control group in Kazakh population. The number of Bacteroidetes among obese group, overweight group and control group were (0.33±0.47)X 107copy/ul, (1.37±1.76)X107 copy/ul, (1.50±2.20) X107copy/ul and the difference was statistically significant (F=5.836, P=0.004).The amount of Firmicutes among above groups were (4.70+7.01) X107copy/ul, (2.05+3.01) X107copy/ul, (2.43+4.5) X107copy/ul and there were no difference among three groups (F=0.232, P=0.793).The ratio of Bact/Firm among three groups were (0.48±0.52), (1.03±0.82), (1.06±0.62) and the difference was statistically significant (F=6.483, P=0.002). There were no correlation between genetype of rs9930506 and rs9939609 with the number of Bacteroidetes, Firmicutes and ratio of Bact/Firm (P>0.05). Conclusions:The detection rate of overweight or obesity is mismatched with local economical level. The detection rate of overweight or obesity in boys is higher than girls and the tendency is decreasing along with children growing. And the rate of obesity or overweight from high to low is urban, rural counties and countryside. There is positive correlation between BMI and HOMA-IR. The same result exist between waist circumference and HOMA-IR.The results suggest that BMI, the ratio of waist-to-hip is correlated with blood pressure in Kazak children. Both genetype of AA in rs9939609 and GG in rs9930506 are correlate with overweight or obesity in Kazak children. And haplotype that are reconstructed by SNPs of FTO gene might be associated with obesity in Kazak populations. Both number of Bacteroidetes and ratio of Bact/Firm are correlation with overweight or obesity.Besides, there is no correlation between SNPs of FTO with intestinal micro flora.
引文
[1]LaRowe TL, Adams AK, Jobe JB, et al. Dietary Intakes and Physical Activity among Preschool Aged Children living in Rural American Indian Communities Prior to a Family-based Healthy Lifestyle Intervention[J]. J Am Diet Assoc,2010, 110(7):1049-1057.
    [2]Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of Overweight and Obesity in the United States,1999-2004[J]. JAMA,2006,295(13):1549-1555.
    [3]王文媛,傅平,汪之顼.儿童肥胖的流行趋势及影响因素研究进展[J].中国妇幼健康研究,2008,19(6):591-594.
    [4]Knecht S, Ellger T, Levine J A. Obesity in neurobiology[J]. Prog Neurobiol, 2008,84(1):85-103.
    [5]Baker JL, Olsen LW, S(?)rensen TI. Childhood body-mass index and the risk of coronary heart disease in adulthood[J]. N Engl J Med,2007,357(23):2329-2337.
    [6]Bibbins-Domingo K, Coxson P, Pletcher MJ, et al. Adolescent overweight and future adult coronary heart disease[J]. N Engl J Med,2007,357(23):2371-2379.
    [7]徐佩茹.新疆地区不同民族学龄儿童肥胖患病率及其相关因素分析[J].中华现代医学杂志,2003,3(1):2.
    [8]Lander ES, Schork NJ. Genetic dissection of complex traits[J]. Science,1994, 265(5181):2037-2048
    [9]Lifton RP. Molecular genetics of human blood pressure variation[J]. Science,1996, 272(5262):676-680.
    [10]Rankinen T, Zuberi A, Chagnon YC, et al. The human obesity gene map:the 2005 update[J]. Obesity(Silver Spring),2006,14(4):529-644.
    [11]Pomp D, Mohlke KL. Obesity genes:so close and yet so far...[J]. J Biol,2008, 7(9):36.
    [12]Loos RJ, Bouchard C. FTO:the first gene contributing to common forms of human obesity[J]. Obes Rev,2008,9(3):246-250.
    [13]Yang L, Wu Y, Li H, et al. Potential association of INSIG2 rs7566605 polymorphism with body weight in a Chinese subpopulation[J]. Eur J Hum Genet,2008, 16(6):759-761.
    [14]Tabara Y, Kawamoto R, Osawa H, et al. No association between INSIG2 Gene rs7566605 polymorphism and being overweight in Japanese population[J]. Obesity(Silver Spring),2008,16(1):211-215.
    [15]Oki K, Yamane K, Kamei N, et al. The single nucleotide polymorphism upstream of insulin-induced gene 2(INSIG2)is associated with the prevalence of hypercholesterolaemia, but not with obesity, in Japanese American women[J]. Br J Nutr,2009,101 (3):322-327.
    [16]Takaishi K, Duplomb L, Wang MY, et al. Hepatic insig-1 or-2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats[J]. Proc Natl Acad Sci USA,2004,101(18):7106-7111.
    [17]Yabe D, Komuro R, Liang G, et al. Liver specific mRNA for Insig-2 down-regulated by insulin:implications for fatty acid synthesis[J]. Proc Natl Acad Sci USA,2003, 100(6):3155-3160.
    [18]Herbert A, Gerry NP, McQueen MB, et al. A common genetic variant is associated with adult and childhood obesity[J]. Science,2006,312(5771):279-283.
    [19]Hall DH, Rahman T, Avery PJ, et al. INSIG-2 promoter polymorphism and obesity related phenotypes:association study in 1428 members of 248 families[J]. BMC Med Genet,2006,7:83.
    [20]Liu YJ, Liu XG, Wang L, et al. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity[J]. Hum Mol Genet,2008,17(12):1803-13.
    [21]Lyon HN, Emilsson V, Hinney A, et al. The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts[J], PLoS Genet,2007,3(4):e61.
    [22]Franks PW, Jablonski KA, Delahanty LM, et al. Assessing gene-treatment interactions at the FTO and INSIG2 loci on obesity-related traits in the Diabetes Prevention Program[J]. Diabetologia,2008,51(12):2214-23.
    [23]Andreasen CH, Mogensen MS, Borch-Johnsen K, et al. Non-replication of genome-wide based associations between common variants in INSIG2 and PFKP and obesity in studies of 18,014 Danes[J]. PLoS ONE,2008,3(8):e2872.
    [24]Yang L, Wu Y, Li H, et al. Potential association of INSIG2 rs7566605 polymorphism with body weight in a Chinese subpopulation[J]. Eur J Hum Genet,2008, 16(6):759-761.
    [25]Tabara Y, Kawamoto R, Osawa H, et al. No association between INSIG2 Gene rs7566605 polymorphism and being overweight in Japanese population[J]. Obesity(Silver Spring),2008,16(1):211-215.
    [26]Hotta K, Nakamura M, Nakata Y, et al. INSIG2 gene rs7566605 polymorphism is associated with severe obesity in Japanese[J]. J Hum Genet,2008,53(9):857-862.
    [27]Loos RJ, Lindgrencm, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity[J]. Nat Genet,2008,40(6):768-775.
    [28]Chambers JC, Elliott P, Zabaneh D, et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance [J]. Nat Genet,2008, 40(6):716-8.
    [29]Li S, Zhao JH, Luan J, et al. Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies [J]. Am J Clin Nutr,2010,91(1):184-90.
    [30]Stratigopoulos G, Padilla S, LeDuc CA, et al. Regulation of Fto/Ftm gene expression in mice and humans[J]. Am J Physiol Regul Integr Comp Physiol,2008, 294(4):1185-1196.
    [31]Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase[J]. Science, 2007,318(5855):1469-1472.
    [32]Tung YC, Ayuso E, Shan XY, et al. Hypothalamic-Specific Manipulation of Fto, the Ortholog of the Human Obesity Gene FTO, Affects Food Intake in Rats[J]. PLoS One,2010,5(1):e8771.
    [33]Fredriksson R, Hagglund M, Olszewski PK, et al. The Obesity Gene, FTO, Is of Ancient Origin, Up-Regulated during Food Deprivation and Expressed in Neurons of Feeding-Related Nuclei of the Brain[J]. Endocrinology,2008,149(5):2062-2071.
    [34]Cecil JE, Tavendale R, Watt P, et al. An obesity-associated FTO gene variant and increased energy intake in children[J]. N Engl J Med,2008,359(24):2558-2566.
    [35]Timpson NJ, Emmett PM, Frayling TM, et al. The fat mass-and obesity-associated locus and dietary intake in children[J]. Am J Clin Nutr,2008,88(4):971-978.
    [36]Speakman JR, Rance KA, Johnstone AM. Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure [J]. Obesity(Silver Spring),2008,16(8):1961-1965.
    [37]Wahlen K, Sjolin E, Hoffstedt J. The common rs9939609 gene variant of the fat mass-and obesity-associated gene FTO is related to fat cell lipolysis[J]. J Lipid Res, 2008,49(3):607-611.
    [38]Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity [J]. Science,2007,316(5826):889-894.
    [39]Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity[J]. Nat Genet,2007,39(6):724-726.
    [40]Hinney A, Nguyen TT, Scherag A, et al. Genome wide association(GWA)study for eariy onset extreme obesity supports the role of fat mass and obesity associated gene(FTO)variants[J]. PLoS ONE,2007,2(12):e1361.
    [41]Andreasen CH, Stender-Petersen KL, Mogensen MS, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fataccumulation[J]. Diabetes,2008,57(1):95-101.
    [42]Peeters A, Beckers S, Verrijken A, et al. Variants in the FTO gene are associated with common obesity in the Belgian population[J]. Mol Genet Metab,2008, 93(4):481-484.
    [43]Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits[J]. PLoS Genet, 2007,3(7):e115.
    [44]Luan J, Kerner B, Zhao JH, et al. A multilevel linear mixed model of the association between candidate genes and weight and body mass index using the Framingham longitudinal family data[J]. BMC Proceedings,2009,3(Suppl 7):S115.
    [45]Omori S, Tanaka Y, Takahashi A, et al. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population[J]. Diabetes,2008,57(3):791-795.
    [46]Tan JT, Dorajoo R, Seielstad M, et al. FTO variants are associated with obesity in the Chinese and Malay populations in Singapore[J]. Diabetes,2008,57(10):2851-2857.
    [47]Li H, Wu Y, Loos RJ, et al. Variants in the fat mass-and obesity-associated(FTO)gene are not associated with obesity in a Chinese Han population [J]. Diabetes,2008, 57(l):264-268.
    [48]Rhodes ET, Ludwig DS. Childhood obesity as a chronic disease:keeping the weight off[J]. JAMA,2007,298(14):1695.
    [49]Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci USA,2004,101(44):15718-15723.
    [50]Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology[J]. Proc Natl Acad Sci USA,2005,102(31):11070-11075.
    [51]Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiomewith increased capacity for energy harvest[J]. Nature,2006,444(7122): 1027-1031.
    [52]Backhed F, Manchester JK, Semenkovic CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad Sci USA, 2007,104(3):979-984.
    [53]Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology:human gut microbes associated with obesity[J]. Nature,2006,444(7122):1022-1023.
    [54]Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. host-bacterial mutualism in the human intestine[J]. Science,2005,307(5717):1915-1920.
    [55]Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes[J]. Proc Natl Acad Sci U S A,2008,105(6):2117-2122.
    [56]Duncan SH, Belenguer A, Holtrop G, et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces[J]. Appl Environ Microbiol,2007,73(4):1073-1078.
    [57]Turnbaugh PJ, Backhed F, Fulton L, et al. Diet-induced obesity in linked to marked but reversible alterations in the mouse distal gut microbiome[J]. Cell Host Microbe, 2008,3(4):213-223.
    [58]Zimmet P, Alberti G, Kaufman F, et al. The metabolic syndrome in children and adolescents[J]. Lancet,2007,369(9579):2059-2061.
    [59]Ferreira AP, Oliveira CE, Franca NM. Metabolic syndrome and risk factors for cardiovascular disease in obese children:the relationship with insulin resistance (HOMA-IR)[J]. J Pediatr(Rio J),2007,83(1):21-26.
    [60]Freedman DS. Clustering of coronary heart disease risk factors among obese children[J]. J Pediatr Endocrinol Metab,2002,15:1099-1108.
    [61]Tao YC, Mao XM, Xie ZJ, et al. The prevalence of type 2 Diabetes and hypertension in Uygur and Kazak populations[J]. Cardiovasc Toxicol,2008,8:155-159.
    [62]Yan WL, Zheng YJ, Wu J, et al. Ethnic differences in body mass index and prevalence of obesity in school children of Urumqi City, Xinjiang, China[J]. Biomed Environ Sci,2006,19(6):469-473.
    [63]赵地,张明明,米杰,等.儿童期至成年期血压变化对成年期心肾功能的影响[J].中华儿科杂志,2008,46(10):763-768.
    [64]中国肥胖问题工作组.中国学龄儿童青少年超重、肥胖筛查体重指数值分类标准[J].中华流行病学杂志,2004,25(2):97-102.
    [65]Haffner SM, Kennedy E, Gonzalez C, et al. A prospective analysis of the HOMA model[J]. The Mexico City Diabetes Study. Diabetes Care.1996,19(10):1138-1141.
    [66]Flegal KM, Carrol MD, Kuczmarski RJ, et al. Overweight and obesity in the United States:prevalence and trends,1960-1994[J]. Int J Obes Relat Metab Disord, 1998,22(1):39-47.
    [67]Mokdad AH, Serdula MK, Dietz WH, et al. The spread of the obesity epidemic in the United States,1991-1998[J]. JAMA,1999,282(16):1519-1522.
    [68]马冠生,李艳平,武阳丰,等.1992至2002年间中国居民超重率和肥胖率的变化[J].中华预防医学杂志,2005,39(5):311-315.
    [69]Yan W, Yang X, Zheng Y, et al. The metabolic syndrome in Uygur and Kazak populations[J]. Diabetes Care.2005,28(10):2554-2555.
    [70]鲜木斯娅·肉孜,刘庆军,王建疆,等.新疆哈萨克族肥胖、胰岛素抵抗与心血管危险因素的关系[J].中国组织工程研究与临床康复,2009,13(41):8166-8169.
    [71]夏晓利,路航,别革兰,等.哈萨克族体脂分布特征与心血管病危险因素相关性[J].中国慢性病预防与控制,2002,10(5):232-233.
    [72]张月明,徐臻荣,贝仁礼.新疆不同民族膳食特点与高血压的关系[J].营养学报,1982,4(4):315-321.
    [73]季成叶,孙军玲,陈天娇.中国学龄儿童青少年1985-2000年超重肥胖流行趋势动态分析[J].中华流行病学杂志,2004,25(2):103-108.
    [74]中国学生体质与健康研究组.2000年中国学生体质与健康调研报告[M].北京:高等教育出版社,2002,142-159.
    [75]罗飞宏,沈水仙,屠月珍,等.上海市6-18岁少儿肥胖患病率调查[J].中华糖尿病杂志,2004,12(6):427-429.
    [76]席波,米杰,段佳丽,等.北京市儿童肥胖的生活行为因素和家庭聚集性[J].中华预防医学杂志,2009,43(2):122-127.
    [77]陆强,刘博伟,尹福在,等.秦皇岛市12-18岁青少年肥胖与代谢综合征现状调查[J].国际内分泌代谢杂志,2008,28(2):135-138.
    [78]李希,曹若湘,吕若然,等.北京市1985-2005年中小学生肥胖的变化趋势[J].中华流行病学杂志,2008,29(5):469-472.
    [79]米杰,程红,侯冬青,等.北京市2004年2-18岁儿童青少年超重和肥胖流行现状[J].中华流行病学杂志,2006,27(6):469-474.
    [80]张亚果,冉域辰,张琚,等.成都市城区6-12岁儿童超重和肥胖的流行现状[J].四川医学,2008,29(3):352-353.
    [81]World Health Organization. Obesity preventing and managing the global epidemic. Report on a WHO consultation. World Health Organ Tech Rep Ser,2000,894:i-xii, 1-253.
    [82]LIY, YangX, ZhangF, et al. The disease risks Of childhood obesity in China[J]. Biomed Environ sci,2005,18(6):401-410.
    [83]朱卫平,何学华.150例肥胖儿童中代谢综合征的患病情况及初步分析[J].中国医师杂志,2007,9(12):1716-1717.
    [84]I'Allemand D, Wiegand S, Reinehr T, et al. Cardiovascular risk in 26,008 European overweight children as established by a multicenter database[J]. Obesity(S ilver Spring),2008,16(7):1672-9.
    [85]Daniels SR, ArnettDK, Eckel RH, et al. Overweight in children and adolescents: Pathophysiology, consequences, prevention, and treatment[J]. Circulation,2005, 111(15):1999-2012.
    [86]金红芳,米杰,杨晓征,等.北京地区肥胖儿童青少年血脂状况调查[J].实用儿科临床杂志,2008,23(13):997-999.
    [87]万乃君,米杰,王天有,等.北京市超重和肥胖学龄儿童中代谢综合征的流行特征[J].中华儿科杂志,2007,45(6):417-421.
    [88]Colditz GA, Willett WC, Rotnitzky A, et al. Weight gain as arisk factor for clinical diabetes mellitus in women[J]. Ann Intern Med,1995,122(7):481-486.
    [89]Field AE, Coakley EH, Must A, et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period[J]. Arch Intern Med,2001,161 (13):1581-1586.
    [90]Hart CL, Hole DJ, Lawlor DA, et al. How many cases of Type 2 diabetes mellitus are due to being overweight in middle age?Evidence from the Midspan prospective cohort studies using mention of diabetes mellitus on hospital discharge or death records[J]. Diabet Med,2007,24(1):73-80.
    [91]Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world-a growing challenge[J]. N Engl J Med,2007,356(3):213-215.
    [92]Narayan KM, Boyle JP, Thompson TJ, et al. Effect of BMI on lifetime risk for diabetes in the U. S.[J]. Diabetes Care,2007,30(6):1562-1566.
    [93]Wannamethee SG, Shaper AG, Walker M. Overweight and obesity and weight change in middle aged men:impact on cardiovascular disease and diabetes[J]. J Epidemiol Community Health,2005,59(2):134-139.
    [94]Young A. Inhibition of glucagon secretion[J]. Adv Pharmacol,2005,52:151-171.
    [95]王洪光,王立.超重或肥胖2型糖尿病患者空腹血浆胰岛素及游离脂肪酸水平变化分析[J].中国综合临床,2008,24(8):792-794.
    [96]Moreno LA, Pineda I, Rodrguez G, et al. Waist circumference for the scre eningof the metabolic syndorme in children[J]. Acta P aediatr,2002,91 (12):1307-1312.
    [97]Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment:insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man[J]. Diabetologia,1985,28(7):412-419.
    [98]Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling[J]. Diabetes Care,2004,27:1487-1495.
    [99]Martin BC, Warram JH, Rosner B, et al. Familial clustering of insulin sensitivity[J]. Diabetes,1992,41:850-854.
    [100]Perseghin G, Ghosh S, Gerow K, et al. Metabolic defects in lean nondiabetic offspring of NIDDM parents[J]. Diabetes,1997,46:1001-1009.
    [101]Nielsen HB, Henriksen JE, Alford F, et al. In vivo glucose metabolism, insulin secretion and insulin action in Europids with non-insulin-dependent diabetes mellitus(NIDDM)and their first-degree relatives [J]. Diabetes Med Clin,1996,13(9 Suppl 6):s78-84.
    [102]Schmitz O, Porksen N, Nyholm B, et al. Disorderly and nonstationary insulin secretion in relatives of patients with NIDDM[J]. Am J Physiol,1997,272(2 Pt 1):E218-226.
    [103]Kahn SE. The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus[J]. Am J Med,2000,108(suppl6a):2-8.
    [104]Matsumoto K, Miyake S, Yano M, et al. Glucose tolerance, insulin secretion, and insulin sensitivity in nonobese and obese Japanese subjects[J]. Diabetes Care,1997, 20(10):1562-1568.
    [105]Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study [J]. Diabetes Care,1997,20(7):1087-1092.
    [106]Bonora E, Kiechl S, Willeit J, et al. Population-based incidence rates and risk factors for type 2 diabetes in white individuals:the Bruneck study[J]. Diabetes,2004, 53(7):1782-1789.
    [107]Haffner SM, Kennedy E, Gonzalez C, et al. A prospective analysis of the HOMA model:the Mexico City Diabetes Study [J]. Diabetes Care,1996,19(10):1138-1141.
    [108]Hanley AJ, Williams K, Gonzalez C, et al. Prediction of type 2 diabetes using simple measures of insulin resistance:combined results from the San Antonio Heart Study, the Mexico City Diabetes Study, and the Insulin Resistance Atherosclerosis Study[J]. Diabetes,2003,52(2):463-469.
    [109]Hayashi T, Boyko EJ, Leonetti DL, et al. Visceral adiposity and the risk of impaired glucose tolerance:a prospective study among Japanese Americans[J]. Diabetes Care, 2003,26(3):650-655.
    [110]Li CL, Tsai ST, Chou P. Relative role of insulin resistance and beta-cell dysfunction in the progression to type 2 diabetes:the Kinmen Study[J]. Diabetes Res Clin Pract, 2003,59(3):225-232.
    [111]Osei K, Rhinesmith S, Gaillard T, et al. Impaired insulin sensitivity, insulin secretion, and glucose effectiveness predict future development of impaired glucose tolerance and type 2 diabetes in pre-diabetic African Americans:implications for primary diabetes prevention[J]. Diabetes Care,2004,27(6):1439-1446.
    [112]Song Y, Manson JE, Tinker L, et al. Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women:the Women's Health Initiative Observational Study[J]. Diabetes Care,2007,30(7):1747-52.
    [113]Bock G, Dalla Man C, Campioni M, et al. Pathogenesis of pre-diabetes:mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance[J]. Diabetes,2006,55(12):3536-3549.
    [114]Eriksson J, Franssila-Kallunki A, Ekstrand A, et al. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus[J]. N Engl J Med,1989,321 (6):337-343.
    [115]DeFronzo RA. Pathogenesis of type 2 diabetes mellitus[J]. Med Clin North Am, 2004,88(4):787-835.
    [116]Holman RR. Assessing the potential for alpha-glucosidase inhibitors in prediabetic states[J]. Diabetes Res Clin Pract,1998,40(suppl):S21-S25.
    [117]Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell defi cit and increased beta-cell apoptosis in humans with type 2 diabetes[J]. Diabetes,2003,52(l):102-110.
    [118]叶军,韩连书,邱文娟,等.儿童、青少年肥胖者2型糖尿病和高危者筛查[J].中华内分泌代谢杂志,2004,20(2):132-135.
    [119]祝之明,主编.代谢综合征.病因探索与临床实践[M].北京:人民军医出版社,2005,308-23.
    [120]Muphy NF, Maclntyre K, Stewart S, et al. Long-term cardiovascular consequences of obesity:20-year follow-up of more than 15000 middle-aged men and women(the Renfrew-Paisley study)[J]. Eur Herart J,2006,27(1):96-106.
    [121]Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease[J]. Nature,2006,444(7121):875-80.
    [122]Maffeis C, Pietrobelli A, Grezzani A, et al. Waist circumference and cardiovascular risk factors in prepubertal children[J]. Obes Res,2001,9(3):179-87.
    [123]Freedman DS, Fulton JE, Dietz WH, et al. The identification of children with adverse risk factor levels by body mass index cutoffs from 2 classification systems:the Bogalusa Heart Study[J]. Am J Clin Nutr,2010,92(6):1298-1305.
    [124]Freedman DS, Katzmarzyk PT, Dietz WH, et al. Relation of body mass index and skinfold thicknesses to cardiovascular disease risk factors in children:the Bogalusa Heart Study [J]. Pediatrics,2010,126(2):266-273.
    [125]Camhi SM, Bray GA, Bouchard C, et al. The Relationship of Waist Circumference and BMI to Visceral, Subcutaneous, and Total Body Fat:Sex and Race Differences[J]. Obesity(Silver Spring),2011,19(2):402-408.
    [126]Cook S, Weitzman M, Auinger P, e tal. Prevalence of a metabolic syndrome phenotype in adolescents:finding from theThird National Health and Nutrition Examination Survey,1988-1994[J]. Arch Pediatr AlolescMed,2003,157(8):821-827.
    [127]Duncan GE, LI SM, Zhou XH. Prevalence and trends of a metabolic syndorme Phenotype among US. adolescents,1999-2000[J]. Diabetes Care,2004,27(10): 2438-2443.
    [128]王硕,安雅丽,王金平,等.大庆市学龄儿童血压分布、影响因素及其变化趋势研究[J].中华流行病学杂志,2007,28(11):1055-1059.
    [129]张文,熊丰.儿童代谢综合征的危险因素及临床筛查[J].国际儿科学杂志,2008,35(3):272-274.
    [130]Walker SP, Gaskin P, Powell CA, et al. The effects of birth weight and postnatal linear growth retardation on blood pressure at age 11-12 years [J]. J Epidemiol Community Health,2001,55(6):394-398.
    [131]Sorof J, Daniels S. Obesity hypertension in children:a problem of epidemic proportions [J]. Hypertension,2002,40(4):441-447.
    [132]Gaha R, Ghannem H, Harrabi I, et al. Study of overweight and obesity in a population of urban school children in Sousse, Tunisia[J]. Arch Pediatr,2002, 9(6):566-571.
    [133]Chu NF. Prevalence and trends of obesity among school children in Taiwan-the Taipei children heart study [J]. Int J Obes Relat Metab Disord,2001,25(2):170-176.
    [134]Chu NF, Wang DJ, Shieh SM. Obesity, leptin and blood pressure among children in Taiwan:the Taipei children's heart study[J]. Am J Hypertens,2001,14(2):135-140.
    [135]He Q, Ding ZY, Fong DY, et al. Blood Pressure Is Associated With Body Mass Index in Both Normal and Obese ChildrenfJ]. Hypertension.2000,36(2):165-170.
    [136]Jafar TH, Islam M, Poulter N, et al. Children in South Asia have higher body mass-adjusted blood pressure levels than white children in the United States:a comparative study[J]. Circulation,2005,111(10):1291-7.
    [137]Morrison JA, Sprecher DL, Barton BA, et al. Overweight, fat patterning, and cardiovascular disease risk factors in black and white girls:the national heart, lung, and blood institute growth and health study [J]. J Pediatr,1999,135(4):458-464.
    [138]全国儿童期单纯肥胖症研究协作组,中国疾病预防控制中心妇幼保健中心.全国0-6岁儿童单纯性肥胖流行病学研究[J].中华儿科杂志,2008,46(3):179-184.
    [139]王天有,梁璐,米杰,等.北京地区儿童及青少年血压分布特征[J].中华儿科杂志,2007,45(5):378-381.
    [140]Hansenml, Gunn PW, Kaelber DC. Under diagnosis of hypertension in children and adolescents[J]. JAMA,2007,298(8):874-879.
    [141]da Silva MA, Rivera IR, de Sotm big, et at. Blood pressure measurement in children and adolescents:guidelines of high blood pressure recommendations and currant clinical practice[J]. Arq Bras Cardiol,2007,88(4):491-495.
    [142]Luma GB, Spiotta RT. Hypertension in children and adolescents[J]. Am Fern Phys, 2006,73(9):1558-1668.
    [143]Dasgupta K, O'Loughlin J, Chen S, et al. Emergence of sex differences in prevalence of high systolic blood pressure analysis of a longitudinal adolescent cohort[J]. Circulation,2006,114(24):2663-2670.
    [144]中国肥胖问题工作组.中国成人超重与肥胖症预防与控制指南(节录)[J].营养学报,2004,26(1):1-4.
    [145]Reilly JJ, Armstrong J, Dorosty AR, et al. Early life risk factors for obesity in childhood:cohort study [J]. BMJ,2005,330(7504):1357.
    [146]O'Callaghan MJ, Williams GM, Andersen MJ, et al. Prediction of obesity in children at 5 years:a cohort study[J]. J Paediatr Child Health,1997,33(4):311-6.
    [147]李辉,于洋,夏秀兰,等.出生体重与儿童期肥胖[J].中国儿童保健杂志,2002,10(3):145-146.
    [148]九市儿童体格发育调查协作组,首都儿科研究所.2006年中国九城市七岁以下儿童单纯性肥胖流行病学调查[J].中华儿科杂志,2008,46(3):174-178.
    [149]Francis LA, Lee Y, Birch LL. Parental weight status and girls'television viewing, snacking, and body mass indexes[J]. Obes Res,2003,11(1):143-51.
    [150]于洋,李辉,夏秀兰,等.父母肥胖对儿童期肥胖的影响[J].中国公共卫生,2002,18(12):1463-1464.
    [151]Brown R, Ogden J. Children's eating attitudes and behaviour:a study of the modelling and control theories of parental influence[J]. Health Educ Res,2004, 19(3):261-271.
    [152]Polley DC, Spicer MT, Knight AP, et al. Intrafamilial correlates of overweight and obesity in African-American and Native-American grandparents, parents, and children in rural Oklahoma[J]. J Am Diet Assoc,2005,105(2):262-265.
    [153]Davison KK, Birch LL. Child and parent characteristics as predictors of change in girls'body mass index[J]. Int J Obes Relat Metab Disord,2001,25(12):1834-1842.
    [154]Van der Homt K, Oenema A, Ferreira I, et al. A systematic review of Environmental correlates of obesity-related dietary behaviors in youth[J]. Health Educ Res,2007, 22(2):203-226.
    [155]Salmon J, Timperio A, Telford A, et al. Associntion of family environment with children's television viewing and with low level of physical activity [J]. Obes Res, 2005,13(11):1939-1951.
    [156]Lobstein T, Baur L, Uauy R. IASO International Obesity Task Force. Obesity in children and young people:a crisis in public health[J]. Obes Rev,2004,5 suppl 1:4-104.
    [157]Burgert TS. Glucose and insulin metabolism in obese youth[J]. Pediatr Endocrinol Rev,2006, Suppl 4:555-559.
    [158]Wiegand S, Dannemann A, Krude H, et al. Impaired glucose tolerance and type 2 diabetes mellitus:a new field for pediatrics in Europe[J]. Int J Obes(Lond),2005, 29(Suppl2):S136-S142.
    [159]Zimmet P, Alberti G, Kaufman F, et al. The metabolic syndrome in children and adolescents[J]. Lancet,2007,369(9579):2059-2061.
    [160]Ferreira AP, Oliveira CE, Franca NM. Metabolic syndrome and risk factors for cardiovascular disease in obese children:the relationship with insulin resistance(HOMA-IR)[J]. J Pediatr(Rio J),2007,83(1):21-26.
    [161]Freedman DS. Clustering of coronary heart disease risk factors among obese children[J]. J Pediatr Endocrinol Metab,2002,15(8):1099-1108.
    [162]徐佩茹,张卫平,阿依古丽,等.新疆维、哈、回、汉族学龄儿童肥胖因素分析调查[J].新疆医学,2003,33(2):87-88.
    [163]Mazen I, E1-Gammal M, Abdel-Hamid M, et al. Homozygosity for a novel missense mutation in the leptin receptor gene(P316T)in two Egyptian cousins with severe early onset obesity[J]. Mol Genet Metab,2011,102(4):461-464.
    [164]Gorska E, Popko K, Stelmaszczyk-Emmel A, et al. Leptin receptors. Eur J Med Res, 2010,15 Suppl 2:50-54.
    [165]Krude H, Biebermann H, Luck W, et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans[J]. Nat Genet,1998,19(12):155-157.
    [166]Krude H, Gruters A. Implications of proopiomelanocortin(POMC)mutations in human:the POMC deficiency syndrome[J]. Trends Endocrinol Metab,2000, 11(1):15-22.
    [167]Miraglia del Giudice E, Cirillo G, Santoro N, et al. Molecular screening of the proopiomelanocortin(POMC)gene in Italian obese children:report of three new mutations[J]. Int J Obes Relat Metab Disorb,2001,25(1):61-67.
    [168]Jackson RS, Creemers JW, Ohagi S, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene[J]. Nat Genet,1997,16(3):303-306.
    [169]蔡姝冰,贾伟平,方启晨,等.F261S-肥胖患者中黑皮素4受体基因的新突变[J].中华内分泌代谢杂志,2004,20(4):372-375.
    [170]邵新宇,贾伟平,蔡姝冰,等.人黑皮素4受体F261S突变基因的克隆和功能验证[J].中华医学杂志,2005,85(6):366-369.
    [171]Qi L, Cho YA. Gene-environment interaction and obesity[J]. Nutr Rev,2008, 66(12):684-694.
    [172]Comuzzie AG, Allison DB. The search for human obesity genes[J]. Science,1998, 280(5368):1374-1377.
    [173]Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease[J]. Nat Genet,2003,33(2):177-182.
    [174]Yang W, Kelly T, He J. Genetic epidemiology of obesity[J]. Epidemiol Rev,2007, 29:49-61.
    [175]Razquin C, Marti A, Martinez JA. Evidences on three relevant obesogenes:MC4R, FTO and PPARc. Approaches for personalized nutrition[J]. Mol Nutr Food Res, 2011,55(1):136-149.
    [176]Sanchez-Pulido L, Andrade-Navarro MA. The FTO(fat mass and obesity associated)gene codes for a novel member of the non-heme dioxygenase superfamily[J]. BMC Biochem,2007,8:23.
    [177]Yi C, Jia G, Hou G, et al. Iron-catalysed oxidation intermediates captured in a DNA repair dioxygenase[J]. Nature,2010,468(7321):330-3.
    [178]Han Z, Niu T, Chang J, et al. Crystal structure of the FTO protein reveals basis for its substrate specificity [J]. Nature,2010,464(7292):1205-1209.
    [179]International Hapmap Project. http://www. hapmap. org/downloads/index. html. en.
    [180]Zhang F, Xu L, Jin L, et al. A common variant in the FTO gene is associated with obesity in the Uyghur population [J]. J Endocrinol Invest,2008,31(11):1043.
    [181]Mangge H, Renner W, Aimer G, et al. Rs9939609 Variant of the Fat Mass and Obesity-Associated Gene and Trunk Obesity in Adolescents [J]. J Obes,2011, 186368. Epub 2011 Jan 13.
    [182]Xi B, Shen Y, Zhang M, et al. The common rs9939609 variant of the fat mass and obesity-associated gene is associated with obesity risk in children and adolescents of Beijing, China[J], BMC Med Genet,2010,11:107.
    [183]Fang H, Li Y, Du S, et al. Variant rs9939609 in the FTO gene is associated with body mass index among Chinese children[J]. BMC Med Genet,2010,11:136.
    [184]Wardle J, Carnell S, Haworthcm, et al. Obesity associated genetic variation in FTO is associated with diminished satiety [J]. J Clin Endocrinol Metabol,2008,93(9), 3640-3643.
    [185]Wardle J, Llewellyn C, Sanderson S, et al. The FTO gene and measured food intake in children[J]. Int J Obes(Lond),2009,33(1):42-45.
    [186]Chang YC, Liu PH, Lee WJ, et al. Common variation in the fat mass and besity-associated(FTO)gene confers risk of obesity and modulates BMI in the Chinese population [J]. Diabetes,2008,57(8):2245-2252.
    [187]Grarup N, Andersen G. Gene-environment interactions in the pathogenesis of type 2 diabetes and metabolism [J]. Curr Opin Clin Nutr Metab Care,2007,10(4):420-426.
    [188]Ruiz JR, Labayen I, Ortega FB, et al. Attenuation of the effect of the FTO rs9939609 polymorphism on total and central body fat by physical activity in adolescents:the HELENA study[J]. Arch Pediatr Adolesc Med, 2010,164(4):328-333.
    [189]Jacobsson JA, Danielsson P, Svensson V, et al. Major gender difference in association of FTO gene variant among severely obese children with obesity and obesity related phenotypes[J]. Biochem Biophys Res Commun,2008,368(3):476-482.
    [190]Lappalainen TJ, Tolppanen AM, Kolehmainen M, et al. The common variant in the FTO gene did not modify the effect of lifestyle changes on body weight:the Finnish Diabetes Prevention Study[J]. Obesity(Silver Spring),2009,17(4):832-836.
    [191]Johnson L, van Jaarsveld CH, Emmett PM, et al. Dietary energy density affects fat mass in early adolescence and is not modified by FTO variants[J]. PLoS ONE,2009, 4(3):e4594.
    [192]Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes[J]. Nature,2007,445(7130):881-885.
    [193]Baier LJ, Hanson RL. Genetic studies of the etiology of type 2 diabetes in Pima Indians:hunting for pieces to a complicated puzzle[J]. Diabetes,2004,53(5):1181-1186.
    [194]Tan S, Scherag A, Janssen OJ, et al. Large effects on body mass index and insulin resistance of fat mass and obesity associated gene(FTO)variants in patients with polycystic ovary syndrome(PCOS)[J]. BMC Med Genet,2010,11:12.
    [195]Meyre D, Delplanque J, Chevre JC, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations[J]. Nat Genet,2009,41(2):157-159.
    [196]Hakanen M, Raitakari OT, Lehtimaki T, et al. FTO genotype is associated with body mass index after the age of seven years but not with energy intake or leisure-time physical activity[J]. J Clin Endocrinol Metab,2009,94(4):1281-1287.
    [197]Muller TD, Hinney A, Scherag A, et al.'Fat mass and obesity associated' gene(FTO):no significant association of variant rs9939609 with weight loss in a lifestyle intervention and lipid metabolism markers in German obese children and adolescents[J]. BMC Med Genet,2008,9:85.
    [198]Lappalainen TJ, Tolppanen AM, Kolehmainen M, et al. The common variant in the FTO gene did not modify the effect of lifestyle changes on body weight:the Finnish Diabetes Prevention Study [J]. Obesity(Silver Spring),2009,17(4):832-836.
    [199]Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora[J]. Science,2005,308(5728):1635-1638.
    [200]Wilson KH, Blitchington RB. Human colonic biota studied by ribosomal DNA sequence analysis [J]. Appl Environ Microbiol,1996,62(7):2273-2278.
    [201]Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science,2006,312(5778):1355-1359.
    [202]Mullard A. Microbiology:The inside story[J]. Nature,2008,453(7198):578-580.
    [203]Cole JR, Chai B, Farris RJ, et al. The ribosomal database project (RDP-Ⅱ): introducing my RDP space and quality controlled public data[J]. Nucleic Acids Res, 2007,35(Database issue):D169-D172.
    [204]Mariat D, Firmesse O, Levenez F, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age[J]. BMC Microbiology,2009,9:123.
    [205]Wongml, Medrano JF. Real-time PCR for mRNA quantitation[J]. Biotechniques, 2005,39(1):75-85.
    [206]张雪雁,李琳琳.一种提取肠道细菌总基因组DNA的方法[J].新疆医科大学学报,2007,30(7):722-724.
    [207]Tano K, Hakansson EG, Holm SE, et al. Bacterial interference between pathogens in otitismedia and alpha-haemolytic streptococci analysed in an invitro model[J]. Acta O tolaryngol,2002,122(1):78-85.
    [208]Dethlefsen L, Huse S, Soginml, et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing[JJ. PLoS Biol, 2008,6(11):e280.
    [209]Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine[J]. Annu Rev Nutr,2002, 22:283-307.
    [210]Simpson JM, McCracken VJ, White BA, et al. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota[J]. Microbiol Methods,1999,36(3):167-179.
    [211]Berg RD. The indigenous gastrointestinal microflora[J]. Trends Microbiol, 1996,4(11):430-435.
    [212]Aparecida de Oliveira M, Abeid Ribeiro EG, Morato Bergamini AM, et al. Quantification of Listeria monocytog-enes inminimally processed leafy vegetables using a combined method based on enrich-ment and 16SrRNA real-time PCR[J]. Food Microbiol,2010,27(1):19-23.
    [213]都立辉,刘芳16S rRNA基因在细菌菌种鉴定中的应用[J].乳业科学与技术,2006(5):207-209.
    [214]黄菁华,张荣昌,申玉军16S rRNA基因检测技术在肠道微生态研究中的应用[J].山东畜牧兽医,2007,29(2):49-51.
    [215]Khan M, Raoult D, Richet H, et al. Growth-promoting effects of single-dose intragast-rically administered probiotics in chickens[J]. Br Poult Sci,2007, 48(6):732-735.
    [216]Angelakis E, Raoult D. The Increase of Lactobacillus Species in the Gut Flora of Newborn Broiler Chicks and Ducks Is Associated with Weight Gain[J]. PLoS ONE, 2010,5(5):e10463-e10467.
    [217]Mckenna P, Hoffmann C, Minkah N, et al. The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis[J]. PLoS Pathlg,2008,4(2):e20.
    [218]Anadon A, Martinez-Larranaga MR, Aranzazu MM. Probiotics for animal nutrition in the European Union. Regulation and safety assessment[J]. Regul Toxicol Pharmacol,2006,45(1):91-95.
    [219]Hayashi H, et al. Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol,2003,47(8):557-570.
    [220]Kalliomaki M, Antoine JM, Herz U, et al. Guidance for substantiating the evidence for beneficial effects of probiotics prevention and management of allergic diseases by probiotics[J]. J Nutr,2010,140(3):713S-721S.
    [221]Spieckermann GM, Walker WA. Oral tolerance and its role in clinical disease[J]. J Pediatr Gastroenterol Nutr,2001,32(3):237-255.
    [222]Bjorksten B, Sepp E, Julge K, et al. Allergy development and the intestinal microflora during the first year of life[J]. J Allergy Clin Immunol,2001, 108(4):516-520.
    [223]熊德鑫.肠道微生态制剂与消化道疾病的防治[M].北京:科学出版社,2008,20-49.
    [224]Saulnier DM, Kolida S, Gibson GR. Microbiology of the human intestinal tract and approaches for its dietary modulation[J]. Curr Pharm Des,2009,15(13):1403-1414.
    [225]Franks, AH, et al. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes[J]. Appl Environ Microbiol,1998,64(9):3336-3345.
    [226]Wilson, KHand RB Blitchington. Human colonic biota studied by ribosomal DNA sequence analysis[J]. Appl Environ Microbiol,1996,62(7):2273-2278.
    [227]Wilson KH, JS Ikeda, RB Blitchington. Phylogenetic placement of community members of human colonic biota[J]. Clin Infect Dis,1997,25 Suppl 2:S114-116.
    [228]Backhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine[J]. Science,2005,307(5717):1915-1920.
    [229]Hooper LV, et al. Molecular analysis of commensal host-microbial relationships in the intestine[J]. Science,2001,291(5505):881-884.
    [230]Sears CL. A dynamic partnership:celebrating our gut flora[J]. Anaerobe,2005, 11(5):247-251.
    [231]Backhed F, Ruth E L, Justin LS, et al. Host-bacterial mutualism in the human intestine[J]. Science,2005,307(5717):1915-1920.
    [232]Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell,2006,124(4):837-848.
    [233]Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology:human gut microbes associated with obesity [J]. Nature,2006,44:1022-1023.
    [234]Vrieze A, Holleman F, Zoetendal EG, et al. The environment within:how gut microbiota may influence metabolism and body composition. Diabetologia,2010, 53(4):606-613.
    [235]Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins[J]. Nature,2009,457(7228):480-484.
    [236]Les D, Paul BE, Elisabeth MB, et al. Assembly of the human intestinal microbiota[J]. Trends Ecol,2006,21(9):517-523.
    [237]Larsen N, Vogensen FK, van den Berg FW, et al. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults [J]. PLoS ONE,2010, 5:e9085.
    [238]Thuny F, Richet H, Casalta JP, et al. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity [J]. PLoS ONE,2010,5:e9074.
    [239]Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesiry(Silver Spring),2010,18(1):190-5.
    [240]Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss[J]. Int J Obes(Lond),2008,32(11):1720-4.
    [241]Duncan SH, Belenguer A, Holtrop G et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces[J]. Appl Environ Microbiol,2007,73(4):1073-1078.
    [242]Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM, et al. The host genotype affects the bacterial community in the human gastrointestinal tract[J]. Microb Ecol Health Dis,2001,13(3):129-134.
    [1]Rankinen T, Zuberi A, Chagnon YC, et al. The human obesity gene map:the 2005 update[J]. Obesity(Silver Spring),2006,14(4):529-644.
    [2]Daniel Pomp, Karen L M. Obesity genes:so close and yet so far....[J]. Biol,2008, 7(9):36.
    [3]Takaishi K, Duplomb L, Wang MY, et al. Hepatic insig-1 or-2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci USA.2004,101:7106-7111.
    [4]Yabe D, Komuro R, Liang G, et al. Liver specific mRNA for Insig-2 down-regulated by insulin:implications for fatty acid synthesis. Proc Natl Acad Sci USA.2003, 100:3155-3160.
    [5]Herbert A, Gerry NP, McQueen MB, et al. A common genetic variant is associated with adult and childhood obesity[J]. Science,2006,312(5771):279-83.
    [6]Hall DH, Rahman T, Avery PJ, et al. INSIG-2 promoter polymorphism and obesity related phenotypesassociation study in 1428 members of 248 families[J]. BMC Med Genet,2006,7:83-88.
    [7]Liu YJ, Liu XG, Wang L, et al. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity [J]. Hum Mol Genet,2008,17(12):1803-13.
    [8]Lyon HN, Emilsson V, Hinney A, et al. The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts[J]. PLoS Genet, 2007,27;3(4):e61.
    [9]Franks PW, Jablonski KA, Delahanty LM, et al. Assessing gene-treatment interactions at the FTO and INSIG2 loci on obesity-related traits in the Diabetes Prevention Program[J]. Diabetologia,2008,51(12):2214-23.
    [10]Andreasen CH, Mogensen MS, Borch-Johnsen K, et al. Non-replication of genome-wide based associations between common variants in INSIG2 and PFKP and obesity in studies of 18,014 Danes[J]. PLoS ONE,2008,3(8):e2872.
    [11]Yang L, Wu Y, Li H, et al. Potential association of INSIG2 rs7566605 polymorphism with body weight in a Chinese subpopulation[J]. Eur J Hum Genet,2008, 16(6):759-61.
    [12]Tabara Y, Kawamoto R, Osawa H, et al. No association between INSIG2 Gene rs7566605 polymorphism and being overweight in Japanese population[J]. Obesity(Silver Spring),2008,16(1):211-5.
    [13]Kikuko H, Michihiro N, Yoshio N, et al. INSIG2 gene rs7566605 polymorphism is associated with severe obesity in Japanese. J Hum Genet(2008)53:857-862.
    [14]Loos RJ, Lindgrencm, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity[J]. Nat Genet,2008,40(6):768-775.
    [15]Chambers JC, Elliott P, Zabaneh D, et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance[J]. Nat Genet,2008, 40(6):716-8.
    [16]Stratigopoulos G, Padilla S, LeDuc CA, et al. Regulation of Fto/Ftm gene expression in mice and humans[J]. Am J Physiol Regul Integr Comp Physiol,2008, 294(4):1185-1196.
    [17]Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science.2007, 318(5855):1469-1472.
    [18]Cecil JE, Tavendale R, Watt P, et al. An obesity-associated FTO gene variant and increased energy intake in children[J]. N Engl J Med,2008,359(24):2558-2566.
    [19]Timpson NJ, Emmett PM, Frayling TM, et al. The fat mass-and obesity-associated locus and dietary intake in children[J]. Am J Clin Nutr,2008,88(4):971-978.
    [20]Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity [J]. Science,2007,316(5826):889-894.
    [21]Hinney A, Nguyen TT, Scherag A, et al. Genome wide association(GWA)study for early onset extreme obesity supports the role of fat mass and obesity associated gene(FTO)variants[J]. PLoS ONE,2007,2(12):e1361.
    [22]Andreasen CH, Stender-Petersen KL, Mogensen MS, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation[J]. Diabetes,2008,57(1):95-101.
    [23]Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits[J]. PLoS Genet, 2007,3(7):e115.
    [24]Omori S, Tanaka Y, Takahashi A, et al. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population[J]. Diabetes,2008,57(3):791-795.
    [25]Tan JT, Dorajoo R, Seielstad M, et al. FTO variants are associated with obesity in the Chinese and Malay populations in Singapore[J]. Diabetes,2008,57(10):2851-2857.
    [26]Li H, Wu Y, Loos RJ, et al. Variants in the fat mass-and obesity-associated(FTO)gene are not associated with obesity in a Chinese Han population[J]. Diabetes,2008, 57(1):264-268.
    [27]Meyre D, Delplanque J, Chevre JC, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations[J]. Nat Genet,2009,41(2):157-9.
    [28]Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A,2004,101(44):15718-15723.
    [29]Dethlefsen L, Huse S, Soginml, et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing[J]. PLoS Biol, 2008,6(11):e280.
    [30]Backhed F, Ruth E L, Justin LS, et al. Host-bacterial mutualism in the human intestine[J]. Science,2005,307(5717):1915-1920.
    [31]Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell,2006,124(4):837-848.
    [32]Les D, Paul BE, Elisabeth MB, et al. Assembly of the human intestinal microbiota[J]. Trends Ecol,2006,21(9):517-523.
    [33]Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. host-bacterial utualism in the human intestine[J]. Science,2005,307(5717):1915-1920.
    [34]Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology:human gut microbes associated with obesity [J]. Nature,2006,444(7122):1022-1023.
    [35]Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes[J]. Proc Natl Acad Sci U S A,2008,105(6):2117-2122.
    [36]Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora[J]. Science,2005,308(5728):1635-1638.
    [37]Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science,2006,312(5778):1355-1359.
    [38]Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM, et al. The host genotype affects the bacterial community in the human gastrointestinal tract[J]. Microb Ecol Health Dis,2001,13(3):129-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700