家蚕微孢子虫孢子母细胞的分离及孢子吞噬作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孢子虫(Protozoan:Microsporidia)是一类专性细胞内寄生的单细胞真核微生物,其种类繁多,寄主广泛,目前已发现的微孢子虫有近150属超过1200个种。自1959年首次发现微孢子虫可以感染免疫缺陷型病人以来,相继发现8个属14个种的微孢子虫可以感染人类,引起了医学和科学上的广泛关注。微孢子虫具有独特的侵染方式,且进化地位极其特殊,同时还是具有良好前景的潜在生防制剂,因此近年来关于微孢子虫的研究越来越广泛和深入。家蚕微孢子虫是Nosema属的典型种,可通过胚胎向下代垂直传播,引发家蚕微粒子病导致毁灭性病害。但目前国内外家蚕微孢子虫分子生物学基础研究还处于起步阶段,技术手段相对薄弱,基础数据积累严重不足。本研究基于实验室已有试验结果,在孢子母细胞的分离纯化、家蚕微孢子虫蛋白质组学研究平台的构建、昆虫体外培养细胞对家蚕微孢子虫吞噬作用的机制,及位于孢子壁结构上的孢壁蛋白在感染寄生宿主的过程中可能扮演的角色作了深入地探讨。主要研究结果如下:
     1、本研究初步建立了从重度感染Nb的家蚕中肠中分离空孢子、早期孢子母细胞、晚期孢子母细胞和成熟孢子的方法。利用Percoll-蔗糖密度梯度离心法,通过两次超速离心获得高纯度的孢子生殖期的孢子,为对家蚕微孢子虫进一步的生物生化研究和分子生物学研究提供了良好材料。
     2、构建了家蚕微孢子虫蛋白质组学研究技术,并使用该技术初步分析了成熟孢子和晚期孢子母细胞的蛋白表达差异。以玻璃珠破碎法为基础的蛋白提取方法可有效避免蛋白被降解或污染,获得的孢子总蛋白质量较高,可直接用于双向电泳;使用非线性大凝胶可将蛋白很好地分离,获得高分辨率的蛋白图谱。从成熟孢子蛋白凝胶中挖取100个高丰度蛋白点(包括与晚期孢子母细胞的差异蛋白)进行MALDI-TOF/TOF MS分析,其中87个蛋白点获得良好质谱图谱,搜索数据库,获得15条可信蛋白结果,其中成熟孢子中高丰度表达而晚期孢子母细胞中未表达的蛋白点1为NbSWP5。
     3、运用在线软件分析NbSWP5序列,发现其等电点约为4.54,分子量约为20300Da,N末端有一段长度为22个氨基酸的信号肽,有7个“O位”糖基化位点。在GenBank数据库中,使用BLASTP程序比对序列,未发现其它同源性蛋白,表明NbSWP5为家蚕微孢子虫特有蛋白。进一步利用大肠杆菌表达系统大量表达NbSWP5蛋白,并以纯化的NbSWP5蛋白为抗原制备anti NbSWP5兔多抗。免疫电镜结果显示NbSWP5蛋白大量分布于成熟孢子外壁。
     4、深入研究了昆虫体外培养细胞对家蚕微孢子虫吞噬作用的机制。鳞翅目昆虫培养细胞BmN、Sf9和Tn均可吞噬孢子壁受损的冷冻孢子、氢氧化钾长时间处理的孢子及孢子壁未发育完全的晚期孢子母细胞,被吞噬的孢子既没有被消化也没有进一步感染细胞。而孢子壁完整的新鲜孢子则对这种吞噬作用有一定的抵抗力。由此推测,孢子壁不完整的孢子,其病原相关分子模式裸露,被宿主细胞的识别受体识别,引发基于细胞肌动蛋白聚合作用的吞噬作用。
     5、利用重组NbSWP5蛋白包被孢子壁不完整的冷冻孢子、氢氧化钾长时间处理的孢子及晚期孢子母细胞,可以显著降低孢子的吞噬率。证明NbSWP5起到屏蔽病原分子相关模式,使孢子免于被宿主细胞识别,避免类似抗原呈递过程的发生。由于NbSWP5蛋白与RodAp等已鉴定的保护性蛋白没有同源性,其功能还有待进一步验证。
Microsporidia are spore-forming fungal eukaryotes which develop as obligate intracellular parasites. They can infect an extremely wide range of hosts in the animal kingdom. So far, more than1200microsporidia species belonging to150genera have been discovered. Since the first report of microsporidia infecting human beings in1959, fourteen microsporidia species has been reported as the cause of chronic and life-threatening diseases in human, which drew great medical and scientific attentions. Microsporidia possess a highly specialized infection mechanism thus having a potential use as biocontrol agents. N. bombycis, the first described microsporidium, is the pathogen causing silkworm pebrine which prevailed in Europe, America and Asia during the mid19th century and is still epidemic and causes heavy economic losses in silk producing countries such as China. However, molecular biology research of N. bombycis is still in its infancy due to a serious shortage of basic data accumulation. In the present study, we purified the sporogonial stages of N. bombycis, built a platform for N. bombycis proteomics studies, spore phagocytosis mechanism, and the possible role of spore wall protein during the infection stage. Main results are as follows:
     (1) This study established a Percoll-gradient based procedure to separate the stages of N. bombycis life-cycle from its natural host. Utilization of continuous gradient consisting of a Percoll-sucrose mixture provides each spore fraction with satisfying degrees of purity. Four cell fractions representative of different life stages of N. bombycis were successfully isolated and purified:empty germinated spore husks, early sporoblasts, late sporoblasts, mature spores. High-purity sporogony phase of spores can be good materials for further biochemical and molecular biology research.
     (2) We built a platform for N. bombycis proteomics studies and used this platform to analyze protein expression differences between mature spores and late sporoblasts. Total protein extracted by acid-washed glass beads treatment avoiding protein degradation or pollution can be directly used for two-dimensional electrophoresis. Non-linear large protein gels guaranteed high resolution protein profile. One hundred high abundance protein spots (including spots which are different with late sporoblasts) were dug for MALDI-TOF/TOF MS analysis. Eighty-seven protein spots got good mass spectra, and15proteins were identified with high credibility by database research. Protein spot1, the most abundant protein expressed in mature spores but lack in late sporoblasts, matched a186-amino acid protein which was previously described as NbSWP5
     (3) NbSWP5possesses a20-amino-acid signal peptides and is predicted to be an extracellular (e.g., cell wall) protein. No N-glycosylation sites are predicted in NbSWP5, however, eight O-glycosylation sites are predicted. Neither protein homologies nor protein domains are predicted by using the BLAST program and the Pfam database. To further characterize NbSWP5, we produced a recombinant protein in E. coli NbSWP5-specific polyclonal antibody generated by immunizing rabbit with purified protein was used in Western blot analysis. A single-20kDa band was detected from the N. bombycis spore protein lysate. Immunoelectron microscopy study confirmed NbSWP5to be a high expressed exosporal protein.
     (4) KOH-treated spores and cold-storaged spores with spore wall defected can be more easily internalized by host cells than freshly recovered intact spores. Indeed, freshly recovered spores seemed to be resistant in host cell phagocytosis. Moreover spore precursor cells lacking NbSWP5is more likely to be phagocytized by host cells than mature spores.
     (5) Exogenous recombinant NbSWP5can reduce the rate of phagocytosis of spores in a dose-dependent manner. We therefore infer that NbSWP5is a candidate protective protein like RodAp to avoid spore pathogen-associated molecular patterns being recognized by responsive cells. As NbSWP5protein shares no homology with RodAp or any other identified protective proteins, its function remains to be further verified.
引文
Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annual Review of Immunology,1999,17:593-623
    Aimanianda V, Bayry J, Bozza S et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature,2009,460,1117-1121
    Akiyoshi DE, Morrison HG, Lei S et al. Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi. PLoS Pathogens,2009,5(1):e1000261
    Atwood JA,Weatherly DB, Minning TA et al. The Trypanosoma cruzi Proteome. Science,2005, 309-473
    Antunez K, Martin-Hernandez R, Prieto L et al. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology,2009,11(9):2284-90
    Becnel JJ, Andreadis TG. Microsporidia in insect. In:Wittner M, Weiss LM, ed, The Microsporidia and Microsporidiosis. ASM Press, Washington, D. C.1999, pp.447-501
    Bigliardi E, Sacchi L. Cell biology and invasion of the microsporidia. Microbes and Infection, 2001,3:373-379
    Biron DG, Agnew P, Marche L et al. Proteome of Aedes aegypti larvae in response to infection by the intracellular parasite Vavraia culicis. International Journal for Parasitology,2005,35: 1385-1397
    Bohne W, Ferguson DJP, Kohler K et al. Developmental expression of a tandemly repeated glycine-and serine-rich spore wall protein in the microsporidian pathogen Encephalitozoon cuniculi. Infection and Immunity.2000,68(4):2268-2275
    Brosson D, Kuhn L, Delbac F et al. Proteomic analysis of the eukaryotic parasite Encephalitozoon cuniculi (microsporidia):a reference map for proteins expressed in late sporogonial stages. Proteomics,2006,6,3625-3635
    Brosson D. Kuhn L. Prensier G et al. The putative chitin deacetylase of Encephalitozoon cuniculi: a surface protein implicated in microsporidian spore-wall formation. FEMS Microbiology Letter.2005,247(1):81-90
    Cali A, Takvorian PM. Developmental morphology and life cycles of the microsporidia. In: Wittner M, Weiss LM, ed. The Microsporidia and Microsporidiosis. ASM Press, Washington, D. C.1999. pp.85-128
    Canning EU. Hollister WS. In vitro and in vivo investigations of human microsporidia. Journal of Protozoology,1991,38:631-635
    Chavant P, Taupin V. Alaoui HE et al. Proteolytic activity in Encephalitozoon cuniculi sporogonial stages:Predominance of metallopeptidases including an aminopeptidase-P-like enzyme. International Journal for Parasitology,2005,35:1425-1433
    Cornman RS, Chen YP, Schatz MC et al. Genomic analyses of the Microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathogens.2009,5(6):e1000466
    Corradi N, Haag KL, Pombert JF et al. Draft genome sequence of the Daphnia pathogen Octosporea bayeri:insights into the gene content of a large microsporidian genome and a model for host-parasite interactions. Genome Biology,2009,10(10):R106
    Corradi N, Pombert JF, Farinelli L et al. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intesiinalis. Nature Communications, 2010,21,1:77
    Costa SF, Weiss LM, Drug treatment of microsporidiosis. Drug Resistance Updates,2000, 3(6):384-399
    Couzinet S, Cejas E, Schittny J et al. Phagocytic uptake of Encephalitozoon cuniculi by nonprofessional phagocytes. Infection and Immunity,2000,68:6939-6945
    Coyle C, Kent M, Tanowitz HB et al. TNP-470 is an effective antimicrosporidial agent. The Journal of infectious diseases.1998,177(2):515-518
    Coyle C, Weiss LM, Rhodes LV 3rd et al. Fatal myositis due to the microsporidian Brachiola algerae, a mosquito pathogen. New England Journal of Medicine.2004,351(1):42-47
    Cristina B, Mariano H, Raquel MH et al. How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental Microbiology,2008,10,2659-2669
    Dall DJ. A theory for the mechanism of polar filament extrusion in the microspora. Journal of Theoretical Biology.1983.105,647-659
    Desser SS, Hong H, Yang YJ. Ultrastructure of the development of a species of Encephalitozoon cultured from the eye of an AIDS patient. Parasitology Research,1992,78:677-683
    Delbac F, Peuvel I, Metenier G et al. Microsporidian invasion apparatus:identification of a novel polar tube protein and evidence for clustering of ptp1 and ptp2 genes in three Encephalitozoon species. Infection and Immunity,2001,69:1016-1024
    Didier ES. Effects of Albendazole, Fumagillin, and TNP-470 on Microsporidial replication in vitro. Antimicrobial Agents and Chemotherapy,1997,1541-1546
    Didier ES, Didier PJ, Snowden KF et al. Microsporidiosis in mammals. Microbes Infection.2000, 2:709-720
    Didier ES, Weiss LM. Microsporidiosis:current status. Current Opinion in Infectious Diseases, 2006,19:485-492
    Dunn AM, Smith JE. Microsporidian life cycles and diversity:the relationship between virulence and transmission. Microbes and Infection,2001,3:381-388
    Ebert D. Host-parasite coevolution:Insights from the Daphnia-parasite model system. Current Opinion in Microbiology,2008,11:290-301
    Florens L, Washburn MP, Raine JD et al. A proteomic view of the Plasmodium falciparum life cycle. Nature,2002,419:520-526
    Foucault C, Drancourt M. Actin mediates Encephalitozoon intestinalis entry into the human enterocyte-like cell line, Caco-2. Microbiology pathology,2000,28,51-58
    Franzen C. Microsporidia:how can they invade other cells? Trends in Parasitology,2004,20: 275-279
    Franzen C, Hosl M, Salzberger B et al. Uptake of Encephalitozoon spp. and Vittaforma corneae (Microsporidia) by different cells. The Journal of Parasitology,2005,91(4):745-749
    Franzen C, Muller A, Hartmann P et al. Cell invasion and intracellular fate of Encephalitozoon cuniculi (microsporidia). Parasitology,2005,130:285-292
    Goldberg AV, Molik S, Tsaousis AD, Neumann K et al. Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature,2008,452:624-628
    Green LC, Didier PJ, Didier ES. Fractionation of sporogonial stages of the microsporidian Encephalitozoon cuniculi by Percoll gradients. Journal of Eukaryotic Microbiology,1999, 46(4):434-8
    Hayman JR, Hayes SF, Amon J et al. Developmental expression of two spore wall proteins during maturation of the microsporidian Encephalitozoon intestinalis.Infection and Immunity,2001, 69(11):7057-7066
    Hirt RP. Healy B, Vossbrinck CR et al. A mitochondrial Hsp70 orthologue in Vairimorpha necatrix:molecular evidence that microsporidia once contained mitochondria. Current Biology,1997,7:995-998
    Hirt RP. Logsdon JM Jr. Healy B et al. Microsporidia are related to Fungi:evidence from the largest subunit of RNA polymerase II and other proteins. Proceedings of the National Academy of Sciences USA,1999,96:580-585
    Hoffmann, JA. The immune response of Drosophila. Nature,2003,426:33-38
    Huang SK, Lu XM. Comparative Study on the Infectivity and Spore Surface Protein of Nosema bombycis and its morphological variant strain. Agricultural Sciences in China.2005, 4:475-480
    Iwano H, Ishihara R. Intracellular germination of spores of a Nosema sp. immediately after their formation in cultured cell. Journal of Invertebrate Pathology.1989,54:125-127
    Iwano H, Ishihara R. Dimorphism of Nosema spp. in cultured cell. Journal of Invertebrate Pathology.1991,57:211-219
    Jaronski. ST. Microsporidia in cell culture. Advances in Cell Culture.1984.8:183-229
    Katinka MD, Duprat S, Cornillot E et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature,2001,414:450-453
    Kawarabata T. Ishihara R. Infection and development of Nosema bombycis (Microsporidia: Protozoa) in cell line of Antheraea eucalypti. Journal of Invertebrate Pathology,1984.44: 52-62
    Keeling PJ, McFadden GI. Origins of microsporidia. Trends in Microbiology,1998,6(1):19-23.
    Keeling PJ, Fast NM. Microsporidia:Biology and evolution of highly reduced intracellular parasites. Annual review of Microbiology,2002,56:93-116
    Keeling PJ. Congruent evidence from alpha-tubulin and beta-tubulin gene phylogenies for a zygomycete origin of Microsporidia. Fungal Genetics and Biology,2003,38:298-309
    Kima PE. Dunn W. Exploiting calnexin expression on phagosomes to isolate Leishmania parasitophorous vacuoles. Microbial Pathogenesis,2005,38:139-145
    Kopp EB, Medzhitov R. The Toll-receptor family and control of innate immunity. Current Opinion in Immunology,1999,11:13-18
    Kucerova Z, Moura H, Leitch G J et al. Purification of Enterocytozoon bieneusi Spores from Stool Specimens by Gradient and Cell Sorting Techniques. Journal of Clinical Microbiology,2004, 42(7):3256-3261
    Latge JP. Tasting the fungal cell wall. Cellular Microbiology,2010,12(7):863-872
    Leitch GJ, Ward TL, Shaw AP et al. Apical spore phagocytosis is not a significant route of infection of differentiated enterocytes by Encephalitozoon intestinalis. Infection and Immunity,2005,73:7697-7704
    Li YH, Wu ZL, Pan GQ et al. Identification of a novel spore wall protein (SWP26) from microsporidia Nosema bombycis. International Journal for Parasitology,2009,39:391-398
    Lom J, Nilsen F. Fish microsporidia:fine structural diversity and phylogeny. International Journal for Parasitology,2003,33:107-127
    Magaud A, Achbarou A, Desportes-Livagte I. Cell invasion by the microsporidium Encephalitozoon intestinalis. Journal of Eukaryotic Microbiology,1997,44:81S
    Mathews A, Hotard A, Hale-Donze H. Innate immune responses to Encephalitazoon species infections. Microbes and Infection,2009,11:905-911
    McKenzie CGJ, Koser U, Lewis LE et al. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infection and Immunity,2010,78(4): 1650-1658
    Molina JM, Tourneur M, Sarfati C et al. Fumagillin treatment of intestinal microsporidiosis. New England Journal of Medicine.2002,346(25):1963-9
    Nassonova ES, Tokarev YS, Trammer T et al. Phagocytosis of Nosema grylli (microsporida, nosematidae) spores in vivo and in vitro. The Journal of Eukaryotic Microbiology,2001, Suppl,83S-84S
    Orlik J, Bottcher K, Gross U et al. Germination of phagocytosed E. cuniculi spores does not significantly contribute to parasitophorous vacuole formation in J774 cells. Parasitology Research,2010,106:753-755
    Pertoft H. Fractionation of cells and subcellular particles with Percoll. Journal of Biochemical and Biophysical Methods,2000,44:1-30
    Peuvel-Fanget I, Polonais V, Brosson D et al. EnP1 and EnP2, two proteins associated with the Encephalitozoon cuniculi endospore, the chitin-rich inner layer of the microsporidian spore wall. International Journal for Parasitology,2006,36:309-318
    Rabinovitch M. Professional and non-professional phagocytes:an introduction. trends in cell biology,1995,5(3):85-87
    Sacks D, Sher A. Evasion of innate immunity by parasitic protozoa. Nature Immunology,2002, 3(11):1041-1047
    Schottelius J, Schmetz C, Kock NP et al. Presentation by scanning electron microscopy of the life cycle of microsporidia of the genus Encephalitozoon. Microbes and Infection,2000, 2:1401-1406
    Seider K, Heyken A, Luttich A et al. Interaction of pathogenic yeasts with phagocytes:survival, persistence and escape. Current Opinion in Microbiology,2010,13,392-400
    Seleznev KV, Issi IV, Dolgikh VV et al. Fractionation of different life-cycle stages of microsporidia Nosema-grylli from cruckets gryllus-bimaculatus by centrifugation in percoll density gradent for biochemical-research. Journal of Eukaryotic Microbiology,1995,42, 288-292
    Shadduck JA. Nosema cuniculi:in vitro isolation. Science,1969,166:516-517
    Shadduck JA. Effect of fumagillin on in vitro multiplication of Encephalitozoon cuniculi. Journal of Protozoology,1980,27(2):202-208
    Sharma S, Das S, Joseph J et al. Microsporidial Keratitis:Need for Increased Awareness. Survey of Ophthalmology,2011,56(1):1-22
    Silverman N, ManiatisT. NF-κB signaling pathways in mammalian and insect innate immunity.Gene and Development,2001,15:2321-2342
    Southern TR, Jolly CE, Lester MEet al. EnPl, a microsporidian spore wall protein that enables spores to adhere to and infect host cells in vitro. Eukaryotic Cell,2007,6:1354-1362
    Steinert S, Levashina EA. Intracellular immune responses of dipteran insects, lmmunological Reviews,2011,240(1):129-140
    Texier C, Vidau C, Bernard V et al. Microsporidia:a model for minimal parasite-host interactions. Current Opinion in Microbiology,2010,13:1-7
    Tanaka H, Ishibashi J, Fujita K et al. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochemistry and Molecular Biology,2008,38: 1087-1110
    Taupin V, Metenier G, Vivares CP et al. An improved procedure for Percoll gradient separation of sporogonial stages in Encephalitozoon cuniculi (Microsporidia). ParasitologyReearch,2006, 99,708-714
    Taupin V, Metenier G, Delbac F et al. Expression of two cell wall proteins during the intracellular development of Encephalitozoon cuniculi:an immunocytochemical and in situ hybridization study with ultrathin frozen sections. Parasitology,2006,132(6):815-825
    Trager W. The hatching of spores of Nosema bombycis Nageli and the partial development of the organism in tissue cultures. Journal of Parasitology,1935,23:226-227
    Undeen AH. A proposed mechanism for the germination of microsporidian(Protozoa:Microspora) spores. Journal of Theoretical Biology,1990,142:223-235
    Undeen AH, Vander Meer RK. Conversion of intrasporal trehalose into reducing sugars during germination of Nosema algerae(Protista:Microspora) spores:a quantitative study. Journal of Eukaryotic Microbiology,1994,41:129-132
    Visvesvara GS. In Vitro cultivation of Microsporidia of clinical importance. Clinical microbiology reviews,2002,15(3):401-413
    Vossbrinck CR, Maddox JV, Friedman, S et al. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature,1987,326:411-414
    Wang JY, Chambon C, Lu CD et al. A proteomic-based approach for the characterization of some major structural proteins involved in host-parasite relationships from the silkworm parasite Nosema bombycis (Microsporidia). Proteomics,2007,7(9):1461-72
    Weidner E, Byrd E, Scarbarapigh W et al. Microsporidian Spore Discharge and the Transfer of Polaroplast Organelle Membrane into Plasma Membrane. Journal of Eukaryotic Microbiology,1984,31(2):195-198
    Weidner E, Sibley L D. Phagocytized intracellular microsporidian blocks phagosome acidification and phagosome-lysosome fusion. Journal of Protozoology,1985,32:311-317
    Williams BA, Hirt RP, Lucocq JM et al. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature,2002,418:865-869
    Williams BA, Lee RC, Becnel JJ et al. Genome sequence surveys of Brachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities. BMC Genomics,2008, 29(9):200
    Williams BA. Unique physiology of host-parasite interactions in microsporidia infections. Cellular Microbiology,2009,11:1551-1560
    Wu ZL, Li YH, Pan GQ et al. SWP25, A Novel Protein Associated with the Nosema bomhycis Endospore. Journal of Eukaryotic Microbiology,2009,56:113-118
    Wu ZL, Li YH, Pan GQ et al. Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia). Proteomics,2008,8,2447-2461
    Xu Y, Weiss LM. The microsporidian polar tube:A highly specialised invasion organelle.2005, 35:941-953
    Xu Y, Takvorian P, Cali A et al. Identification of a new spore wall protein from Encephalitozoon cuniculi. Infection and Immunity,2006,74:239-247
    Xu J, Pan G, Fang L et al. The varying microsporidian genome:Existence of long-terminal repeat retrotransposon in domesticated silkworm parasite Nosema bombycis. International Journal for Parasitology,2006,36:1049-1056
    Zaragoza O, Rodrigues ML, De Jesus M et al. The capsule of the fungal pathogen Cryptococcus neoformans. Advances in Applied Microbiology,2009,68:133-216
    Zhang F, Lu XM, Kumar VS et al. Effects of a novel anti-exospore monoclonal antibody on microsporidial Nosema bombycis germination and reproduction in vitro. Parasitology,2007, 134:1551-1558
    崔红娟,周泽扬,万永继等.家蚕微孢子虫表面抗原蛋白对家蚕致病性的影响.蚕业科学,1999,(4):261-262
    冯真珍,曹翠平,邱海洪等.粉纹夜蛾(Trichoplusia ni)培养细胞对家蚕微孢子虫(Nosema bombycis)(?)内吞噬过程观察.蚕业科学.2009,35(2):333-338
    黄少康.两种微孢子虫的蛋白及对家蚕侵染性的比较研究.浙江大学博士学位论文,2004
    刘含登.家蚕微孢子虫(Nosema bombycis)基因组学研究—核糖体蛋白基因及rDNA序列特征分析.西南大学博士学位论文,2011
    刘加彬,潘国庆,周泽扬等.一种适用于双向电泳的家蚕微孢子虫总蛋白的制备方法.蚕学通讯,2002,22(2):8-10
    梅玲玲,金伟.家蚕微孢子虫与桑尺蠖微孢子虫的研究.蚕业科学,1989,15(3):135-138
    钱永华,金伟.家蚕微孢子虫生殖圈的研究进展.蚕业科学,1997,23(2):114-119
    钱永华,鲁兴萌,金伟等.家蚕微孢子虫(Nosema bombycis)向家蚕BmN细胞接种与增殖的观察.蚕业科学,2003,29(3):260-264
    谭小辉,潘国庆,吴正理等.家蚕微孢子虫孢壁蛋白与其发芽的相关性.动物学报,2008,54(6):1068-1074
    汪方炜,鲁兴萌,黄少康.家蚕肠球菌体外抑制微孢子发芽的动力学研究.蚕业科学,2003,29(2):157-161
    吴晓霞,冯真珍,邱海洪等.粉纹夜蛾培养细胞对家蚕微孢了虫的吞噬及与孢壁蛋白的关系.蚕业科学.2010,36(3):447-451
    向恒.家蚕微孢子虫(Nosema bombycis)基因组学研究—水平基因转移.西南大学博士学位论文,2010
    许金山.家蚕微孢子虫((?)(?)osema bombycis)全基因组结构与系统进化分析.西南大学博士学位论文,2007
    张海燕,万淼,费晨等.家蚕微孢了虫(浙江株)微管蛋白基因部分片段的克隆及系统发育分析.蚕业科学,2007,33(1):49-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700