单分类支持向量机的学习方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支持向量机(Support Vector Machine, SVM)是在统计学习理论基础上发展起来的新型机器学习算法。SVM采用结构风险最小化原则,同时最小化经验风险和置信范围,具有拟合精度高、选择参数少、推广能力强和全局最优等优势。SVM为解决小样本、高维数及非线性等问题提供了有效工具,已成为机器学习领域中研究热点之一并得到了广泛应用。
     SVM是针对二分类问题提出的,需要两种类别的样本作为训练样本。在实际应用中,有些领域几乎无法获取两类的样本或者代价极高,如敌我识别、攻击样本、卫星故障等,只能获取一个类别的样本,故只能利用这一类样本进行学习,形成数据描述从而实现分类,故出现了单分类算法。
     支持向量数据描述(Support Vector Data Description, SVDD)和一类支持向量机(one-class support vector machine, OCSVM)是SVM算法扩展成的单分类算法。在相同的高斯核函数作用下,两种算法完全等价,合称之为单分类支持向量机(1-SVM).“工欲善其事,必先利其器”。要使1-SVM能更好地应用于实际工程问题,首先需要解决1-SVM的训练或学习问题,其过程实际上是求解一个二次规划(OP)问题。本文以提高1-SVM的学习能力为目标,分别对1-SVM的粒子群优化学习、快速学习以及增量学习三个方面进行了研究,并提出了相应的解决方案,主要工作如下:
     提出将粒子群优化算法(PSO)的一种扩展算法——线性粒子群优化算法(LPSO)应用到1-SVM的学习上。为了解决粒子飞行到群体最优位置容易陷入停滞状态而过早收敛的问题,采用改变群体最优粒子飞行方式的策略,使群体最优粒子与其他粒子按照不同的方式飞行,改善了LPSO算法的收敛性能,并将此方法应用到LPSO学习1-SVM的过程中。LPSO为解决1-SVM的学习问题提供了新思路。
     针对1-SVM的大规模样本集的学习问题,受启发于随机取样算法在凸二次规划问题的成功应用,提出了一种基于随机取样算法的快速学习方法。随机选取大规模样本集的两个样本子,依据随机取样引理和推导出的随机结合定理,对两个子集自身的支持向量(极值点,extreme)和相互间违背KKT条件的样本(外点,violator)进行融合,最后学习出两个子集共同的新决策边界。以此类推,直到全部样本抽取和融合完毕。此方法将大规模样本分批抽取为小样本集并对每一个小样本集进行1-SVM学习,降低了1-SVM学习的内存空间和计算时间,是一种有效的快速学习方法。
     为了实现1-SVM的增量学习过程,分析了一类支持向量机(OCSVM)的几何表示特性,提出了一种基于德尔塔函数的增量学习方法。因为OCSVM的几何结构仅仅有一个分类超平面,在其分类超平面的决策函数上添加一个德尔塔函数能够形成新的决策函数,即一个新的分类超平面。根据新增样本求解德尔塔函数就是OCSVM的增量学习过程。受OCSVM二次规划问题的启发,分析得到德尔塔函数的优化问题同样是二次规划问题,并提出利用修正的序贯最小优化(SMO)算法进行求解。
     简要介绍了车牌识别系统的组成部分;分析了高清车牌识别的特点,并为车牌定位、字符分割和字符识别等核心技术提出了相应方案;将一对多的1-SVM多分类方法应用到字符识别,并利用提出的增量学习方法提高1-SVM的识别能力。最后,通过C++编程环境实现了识别过程,结果表明成功实现了高清车牌识别系统。
Support Vector Machine (SVM) is a novel machine learning method based on the framework of Statistical Learning Theory. SVM minimizes the empirical risk and confidence interval simultaneously by using Structural Risk Minimization, which holds the advantages of high fitting accuracy, few parameters, good generalization and convergence to global optimum. SVM provides a valid tool in dealing with small-sample, high-dimensional and nonlinear problems, so it has become one of the hotpots of machine learning reseach and been widely applied in many areas.
     SVM is proposed for binary classification problems, and two categories of samples are necessary for classifier training; however, in some fields of practical applications, obtaining two categories of samples is almost impossible or extremely cost, for example, enemy-friend recognition, attack samples, satellite fault diagnosis, etc. Only one class of samples can be acquired, so the data description has to be learned from this type of samples for classification. The classification problem is named as single-class classification.
     Support Vector Data Description (SVDD) and One-class Support Vector Machine (OCSVM) are two algorithms of single-class classification extended by SVM. The two algorithms are completely equivalent if using the same Gaussian kernel function, and be together called as Single-class Support Vector Machine (1-SVM)."A workman must first sharpen his tools if he is to do his work well." To make1-SVM more effective in practical engineering problems, first of all, its training or learning problems should be solved, which is actually the process of solving a quadratic programming (OP) problem. In this paper, the goal is to enhance the1-SVM's learning ability. Three aspects of particle swarm optimization learning, fast learning and incremental learning on1-SVM are respectively studied, and corresponding solutions are put forward. The main work is as follows:
     Linear Particle Swarm Optimization algorithm (LPSO), which is an extension of Particle Swarm Optimization (PSO) algorithm, is proposed to apply to1-SVM learning. Because the particles flying to the group optimal position are easy fall into stagnation, PSO and LPSO have the problem of premature convergence. In order to solve this, the strategy of changing the flight mode of group optimal particle is adopt, and group optimal particle flies in different ways with other particles. The algorithm improves the LPSO's convergence, and is applied to the process of LPSO learing1-SVM. LPSO provides a new idea to solve1-SVM learning.
     For1-SVM's learning problem of large-scale sample set, inspired by the successful application of Random Sampling Lemma (RSL) in convex quadratic programming problem, a Fast Learning (FL) method is proposed based on RSL. Two sample subsets are randomly selected from large-scale sample set. Based on RSL a and deduced Combining Lemma, the support vectors (extreme) and samples violating the KKT (violator) of each other are fused, then the common decision boundary of two subsets are produced. And so on, until the extraction and integration of all samples are completed. This method breaks the large-scale dataset into subsets at random and learns1-SVM to each subset. It reduces the memory space and computing time of1-SVM learning, so is an effective method of fast learning.
     In order to achieve incremental learning process of1-SVM, the geometry characteristics of OCSVM are analyzed, and an Incremental Learning (IL) method based on Delta Function is proposed. Because OCSVM has only one hyper-plane in its geometric structure, a new decision function (that is a new classification hyper-plane) will be formed when a Delta Function is added to the decision function of its classification hyper-plane. Solving the Delta Function according to the new sample is the process of Incremental Learning of OCSVM. Inspired by the quadratic programming problem of OCSVM, analyzing the optimization problem of the Delta Function is a quadratic programming problem too, and the modified sequential minimal optimization (SMO) algorithm proposed to solve this problem.
     The components of license plate recognition system are introduced in brief. The characters of high-definition license plate recognition are analyzed, and the corresponding solutions to core technologies of plate localization, segmentation and character recognition are proposed. One-against-all multi-classification based on1-SVM is applied to character recognition. Recognition ability of1-SVM is improved by the proposed incremental learning method. Finally, the system achieved through C++programming shows that it is successful.
引文
1. C.M. Bishop and SpringerLink. Pattern recognition and machine learning. New York:springer,2006.
    2. V.N. Vapnik. The nature of statistical learning theory. New York: Springer-Verlag Inc.,2000.
    3. V. Vapnik. Statistical learning theory. New York:Wiley,1998.
    4. B. Scholkopf, C. Burges, and V. Vapnik. Extracting support data for a given task, in the 1st International Conference on Know ledge Discovery and Data Mining. Menlo Park, CA:AAAI Press,1995.
    5. D.M.J. Tax, and R.P.W Duin. Support vector domain description. Pattern recognition letters,1999.20(11):p.1191-1199.
    6. B.E. Boser, I.M. Guyon and V.N. Vapnik. A training algorithm for optimal margin classifiers. in the 5th Annual Workshop on Computational Learning Theory. Pittsburgh:ACM Press,1992.
    7. Z.H. Zhou and M. Li. Tri-training:Exploiting unlabeled data using three classifiers. Knowledge and Data Engineering, IEEE Transactions on,2005. 17(11):p.1529-1541.
    8. B. Scholkopf, A. Smola, R.Williamson, et al. New support vector algorithms. Neural computation,2000.12(5):p.1207-1245.
    9. J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural processing letters,1999.9(3):p.293-300.
    10. O.L. Mangasarian and D.R. Musicant. Lagrangian support vector machines. The Journal of Machine Learning Research,2001.1:p.161-177.
    11. Y.J. Lee and S.Y. Huang. Reduced support vector machines:A statistical theory. Neural Networks, IEEE Transactions on,2007.18(1):p.1-13.
    12. G. Fung and O.L. Mangasarian. Proximal support vector machine classifiers, in Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Press,2001.
    13. D. Roobaert. DirectSVM:A fast and simple support vector machine perceptron. in Proceedings of the 2000 IEEE Signal Processing Society Workshop Neural Networks for Signal Processing X, IEEE,2000.
    14. P. Lingras and C. Butz. Rough set based 1-v-1 and 1-vr approaches to support vector machine multi-classification. Information Sciences,2007.177(18):p. 3782-3798.
    15. J.C. Platt. N. Cristianini and J. Shawe-Taylor. Large margin DAGs for multiclass classification. Advances in Neural Information Processing Systems,2000.12(3): p.547-553.
    16. C. Cortes and V. Vapnik. Support-vector networks. Machine learning,1995. 20(3):p.273-297.
    17. C.J. Lin. On the convergence of the decomposition method for support vector machines. Neural Networks, IEEE Transactions on,2001.12(6):p.1288-1298.
    18. J.C. Platt. Fast Training of Support Vector Machines using Sequential Minimal Optimization, Advances in Kernel Methods:Support Vector Learning, Cambridge, M A:MIT Press,1998.
    19. L.J. Cao, S. S. Keerthi, C. J. Ong, et al. Parallel sequential minimal optimization for the training of support vector machines. Neural Networks, IEEE Transactions on,2006.17(4):p.1039-1049.
    20.张国云.支持向量机算法及其应用研究.湖南大学博士学位论文,2006.
    21. G. Valentini, M. Muselli and F. Ruffino. Bagged ensembles of support vector machines for gene expression data analysis. in IEEE International Joint Conference on Neural Networks. Portland:IEEE,2003.
    22. E. Osuna, R. Freund and F. Girosi. An improved training algorithm for support vector machines, in Proceedings of the 1997 IEEE workshop on Neural Networks for signal processing. New York:IEEE,1997.
    23. T. Joachims. Making large scale SVM learning practical. Advances in Kernel Methods-Support Vector Learning, ed. B. Scholkopf, C. Burges, A.J. Smola.MIT Press:Cambridge, MA.,1999.
    24. P. Laskov. Feasible direction decomposition algorithms for training support vector machines. Machine learning,2002.46(1):p.315-349.
    25. C.J. Lin. Asymptotic convergence of an SMO algorithm without any assumptions. Neural Networks, IEEE Transactions on,2002.13(1):p.248-250.
    26.李建民,张钹,林福宗.序贯最小优化的改进算法.软件学报,2003.14(5):p.918-924.
    27. S.S. Keerthi and E.G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design. Machine learning,2002.46(1):p.351-360.
    28. G.W. Flake and S. Lawrence. Efficient SVM regression training with SMO. Machine learning,2002.46(1):p.271-290.
    29. B. Scholkopf. J. C. Platt, J. Shawe-Taylor, et al. Estimating the support of a high-dimensional distribution. Neural computation,2001.13(7):p.1443-1471.
    30. N.A. Syed, H. Liu and K.K. Sung. Handling concept drifts in incremental learning with support vector machines. in Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM,1999.
    31. C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery,1998.2(2):p.121-167.
    32. Y.H. Liu and Y.T. Chen. Face recognition using total margin-based adaptive fuzzy support vector machines. Neural Networks, IEEE Transactions on,2007. 18(1):p.178-192.
    33. P. Wang, Y. F. Ma, H. J. Zhang, et al. A people similarity based approach to video indexing, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Hong Kong:IEEE,2003.
    34. K.I. Kim, K. Jung, S. H. Park, et al. Support vector machines for texture classification. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002.24(11):p.1542-1550.
    35.孙晋文,肖建国.基于SVM的中文文本分类反馈学习技术的研究.控制与决策,2004.19(8):p.927-930.
    36. A. David and B. Lerner. Support vector machine-based image classification for genetic syndrome diagnosis. Pattern recognition letters,2005.26(8):p. 1029-1038.
    37.张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究.西安交通大学学报,2002.36(012):p.1303-1306.
    38. P.M.L. Drezet and R.F. Harrison. Support vector machines for system identification, in UKACC International Conference on Control. IET,1998.
    39. A.H. Khandoker, M. Palaniswami and C.K. Karmakar. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. Information Technology in Biomedicine, IEEE Transactions on, 2009.13(1):p.37-48.
    40. B. Samanta. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical Systems and Signal Processing.2004.18(3):p.625-644.
    41. F.E. Tay and L. Cao. Application of support vector machines in financial time series forecasting. Omega-Oxford-Pergamon Press-,2001.29:p.309-317.
    42.李昆仑,黄厚宽,田盛丰,等.模糊多类支持向量机及其在入侵检测中的应用.计算机学报,2005.28(002):p.274-280.
    43. L. Tarassenko, P. Hayton, N. Cerneaz, et al. Novelty detection for the identification of masses in mammograms. IET,1995.
    44. S. Zanero and G. Serazzi. Unsupervised learning algorithms for intrusion detection, in IEEE Network Operations and Management Symposium. Osaka: IEEE,2008.
    45. C.M. Bishop. Novelty detection and neural network validation, in IEE Proceedings-Vision, Image and Signal Processing, London:IEEE,1994.
    46. D.Y. Yeung and C. Chow. Parzen-window network intrusion detectors, in Proceedings of the Sixteenth International Conference on Pattern Recognition. London:IEEE,2002.
    47. V. Barnett and T. Lewis. Outliers in statistical data. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics, Chichester: Wiley,2nd ed.,1984.1.
    48. R.O. Duda, P.E. Hart and D.G. Stork. Pattern Classification and Scene Analysis 2nd ed.1995.
    49. E. Parzen. On estimation of a probability density function and mode. The annals of mathematical statistics,1962.33(3):p.1065-1076.
    50. C.M. Bishop. Neural networks for pattern recognition.1995.
    51. G.A. Carpenter, S. Grossberg and D.B. Rosen. ART 2-A:An adaptive resonance algorithm for rapid category learning and recognition. Neural Networks.1991. 4(4):p.493-504.
    52. T. Kohonen. The self-organizing map. Proceedings of the IEEE,1990.78(9):p. 1464-1480.
    53. M.E. Tipping and C.M. Bishop. Mixtures of probabilistic principal component analyzers. Neural computation,1999.11(2):p.443-482.
    54. 陶卿.统计学习理论及其在非监督学习问题中的应用.机器学习及其应用,主编:王珏,周志华,周傲英.北京:清华大学出版社,2006.
    55.陶卿,齐红威,吴高巍,等.η-one-class问题和η-outlier及其LP学习算法. 计算机学报,2004.27(008):p.1102-1108.
    56. I.W. Tsang, J.T. Kwok and S. Li. Learning the kernel in Mahalanobis one-class support vector machines, in International Joint Conference on Neural Networks. Vancouver:IEEE,2006.
    57. D. Tax and P. Juszczak. Kernel whitening for one-class classification. Pattern Recognition with Support Vector Machines,2002:p.855-873.
    58. G. Ratsch, B. Scholkopf, S. Mika, et al. SVM and boosting:One class. Berlin: GMD FIRST,2000.
    59. K.Y. Lee, D. W. Kim, K. H. Lee, et al. Density-induced support vector data description. Neural Networks, IEEE Transactions on,2007.18(1):p.284-289.
    60. Gornitz, N., M. Kloft, and U. Brefeld, Active and semi-supervised data domain description. Machine Learning and Knowledge Discovery in Databases,2009:p. 407-422.
    61.谢磊,刘雪芹,张建明,等.基于NGPP-SVDD的非高斯过程监控及其应用研究.自动化学报,2009.35(1):p.107-112.
    62. H. Dogan and C. Guzelis. Robust and Fuzzy Spherical Clustering by a Penalty Parameter Approach. Circuits and Systems Ⅱ:Express Briefs, IEEE Transactions on,2006.53(8):p.637-641.
    63. N. Cristianini and J. Shawe-Taylor. An introduction to support Vector Machines: and other kernel-based learning methods. Cambridge Univ Pr.,2000.
    64.梁锦锦,刘三阳,吴德.一种约减支持向量域描述算法RSVDD.西安电子科技大学学报,2008.35(5):p.927-931.
    65.徐磊,赵光宙,顾弘.基于作用集的一类支持向量机递推式训练算法.浙江大学学报:工学版,2009.43(001):p.42-46.
    66. A. Rakotomamonjy and M. Davy. One-class SVM regularization path and comparison with alpha seeding. in proceedings of 15th European symposium on artificial neural networks. Bruges:Citeseer,2007.
    67. P. Kim, H. Chang, D. Song, et al. Fast support vector data description using k-means clustering. Advances in Neural Networks-ISNN 2007,2007:p. 506-514.
    68. H. Lin, J. Zhao, Q. Chen, et al. Eggshell crack detection based on acoustic response and support vector data description algorithm. European Food Research and Technology,2009.230(1):p.95-100.
    69. Y. Wang, J. Wong and A. Miner. Anomaly intrusion detection using one class SVM. in the 5th Annual IEEE SMC Information Assurance Workshop. IEEE. 2004.
    70. Y. Chen, X.S. Zhou and T.S. Huang. One-class SVM for learning in image retrieval. in the IEEE International Conference on Image Processing. IEEE, 2001.
    71. V. Vilaplana and F. Marques. Support vector data description based on PCA features for face detection. the 13th European signal processing conference: Bogazici University.2008.
    72. Y. Zhang, X. D. Liu, F. D. Xie, et al. Fault classifier of rotating machinery based on weighted support vector data description. Expert Systems with Applications, 2009.36(4):p.7928-7932.
    73. Z. Ge and Z. Song. Process structure change detection by eigenvalue-based method. Computers & chemical engineering,2011.35(2):p.284-295.
    74. Y. Tang, X. Luo and Z. Yang. Ocean clutter suppression using one-class SVM. in the IEEE Workshop on Machine Learning for Signal Processing. IEEE,2004.
    75.张学工.关于统计学习理论与支持向量机.自动化学报,2000.26(1):p.32-42.
    76. S.B. Mokhtar and C.M. Shetty. Nonlinear programming:theory and algorithms. New York:Wiley,1979.
    77. J. Nocedal and S.J. Wright. Numerical optimization. New York:Springer verlag, 1999.
    78. M. Girolami. Mercer kernel-based clustering in feature space. Neural Networks, IEEE Transactions on,2002.13(3):p.780-784.
    79. S. Saitoh. Theory of reproducing kernels and its applications.1988, London: Longman Scientific & Technical England.
    80.厉小润.模式识别的核方法研究.浙江大学博士学位论文,2007.
    81.赵辽英,厉小润,赵光宙.基于径向基函数网络估计密度函数的数据分类.浙江大学学报:工学版,2007.41(7):p.1088-1092.
    82.厉小润,赵光宙,赵辽英.改进的核直接Fisher描述分析与人脸识别.浙江大学学报:工学版,2008.42(004):p.583-589.
    83. O.L. Mangasarian. Generalized support vector machines. Advances in Large Margin Classifiers, ed. A.J. Smola, P. Bartlett, B. Scholkopf. the MIT Press, 2000.
    84. C.F. Lin and S.D. Wang. Fuzzy support vector machines. Neural Networks, IEEE Transactions on,2002.13(2):p.464-471.
    85. D.M.J. Tax and R.P.W. Duin. Support vector data description. Machine learning, 2004.54(1):p.45-66.
    86. B. Scholkopf, R. C. Williamson, A. J. Smola, et al. Support vector method for novelty detection. Advances in Neural Information Processing Systems,2000. 12(3):p.582-588.
    87.徐磊.基于1-SVM的多球体分类器理论及其应用研究.浙江大学博士学位论文,2008.
    88.王凌,刘波.微粒群优化与调度算法.北京:清华大学出版社,2008.
    89. C.R. Reeves. Modern heuristic techniques for combinatorial problems. Oxford: John Wiley & Sons, Inc.,1993.
    90. J. Kennedy and R. Eberhart. Particle swarm optimization, in IEEE International Conference on Neural Networks, IEEE,1995.
    91. A. Colorni, M. Dorigo and V. Maniezzo. Distributed optimization by ant colonies, in Proceedings of the 1st European Conference on Artificial Life.1991.
    92. M. Dorigo. Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico di Milano, Italy,1992.
    93.李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践,2002.22(11):p.32-38.
    94. D. Karaboga. An idea based on honey bee swarm for numerical optimization. Techn. Rep. TR06, Erciyes Univ. Press, Erciyes,2005.
    95.周永华,毛宗源.一种新的全局优化搜索算法—人口迁移算法.华南理工大学学报(自然科学版),2003.31(003):p.1-5.
    96. Y. Shi and R. Eberhart. A modified particle swarm optimizer, in Proceedings of the IEEE international conference on evolutionary computation. IEEE,1998.
    97. E. Ozcan and C.K. Mohan. Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems Through Artificial Neural Networks, 1998.8:p.253-258.
    98. E. Ozcan and C.K. Mohan. Particle swarm optimization:surfing the waves, in Proceedings of the Congress on Evolutionary Computation. IEEE,1999.
    99. M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. Evolutionary Computation, IEEE Transactions on,2002.6(1):p.58-73.
    100. F. Van Den Bergh. An analysis of particle swarm optimizers, in Department of OComputer Science. University of Pretoria:South Africa,2006.
    101. Y. Shi and R. Eberhart. Parameter selection in particle swarm optimization. in Proceedings of the 7th Annual Conference on Evolutionary Programming. New York, USA:Springer,1998.
    102. Y. Shi and R.C. Eberhart. Fuzzy adaptive particle swarm optimization, in In Proceedings of the Congress on Evolutionary Computation. IEEE,2001.
    103. R.C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in particle swarm optimization, in In Proceedings of the IEEE International Congress on Evolutionary Computation. IEEE,2000.
    104. P.N. Suganthan. Particle swarm optimiser with neighbourhood operator, in Proc of the Congress on Evolutionary Computation. Washington D C:IEEE,1999.
    105. J. Kennedy. The particle swarm:social adaptation of knowledge, in IEEE International Conference on Evolutinary Computation. Indianapolis, Indiana: IEEE,1997.
    106. A. Ratnaweera, S.K. Halgamuge and H.C. Watson. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. Evolutionary Computation, IEEE Transactions on,2004.8(3):p.240-255.
    107. J. Kennedy. Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance. in Proceedings of the 1999 Congress of Evolutionary Computation. New York:IEEE,1999.
    108. F. Van den Bergh and A.P. Engelbrecht. A cooperative approach to particle swarm optimization. Evolutionary Computation, IEEE Transactions on,2004. 8(3):p.225-239.
    109. A. El-Gallad, M. El-Hawary, A. Sallam, et al. Enhancing the particle swarm optimizer via proper parameters selection. in IEEE CCECE02 Proceedings. Canadian:IEEE,2002.
    110. Y.T. Kao and E. Zahara. A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft Computing,2008.8(2):p. 849-857.
    111. P.S. Shelokar, P. Siarry, V. K. Jayaraman, et al. Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Applied mathematics and computation,2007.188(1):p.129-142.
    112.高鹰,谢胜利.基于模拟退火的粒子群优化算法.计算机工程与应用,2004.40(1):p.47-50.
    113. S.F. Shu-kai, Y. Liang and E. Zahara. Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions. Engineering Optimization,2004.36(4):p.401-418.
    114. A. Elgammal, R. Duraiswami and L.S. Davis. Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2003.25(11): p.1499-1504.
    115. R. Brits, A.P. Engelbrecht and F. Van den Bergh. A niching particle swarm optimizer. in In Proeeedings of the Conference on Simulated Evolution and Learning. SingaPore:Orchid Country Club,2002.
    116.庞巍,王康平,周春光,等.模糊离散粒子群优化算法求解旅行商问题小型微型计算机系统,2005.26(8):p.1331-1004.
    117.周雅兰,王甲海,印鉴.一种基于分布估计的离散粒子群优化算法.电子学报,2008.36(6):p.1242-1248.
    118.高鹰,谢胜利.混沌粒子群优化算法.计算机科学,2004.31(8):p.13-15.
    119. G.T. Pulido and C.A.C. Coello. A constraint-handling mechanism for particleswarm optimization.in Proceedings of the IEEECongress on Evolutionary Computation (CEC 2004). IEEE,2004.
    120. J. Wei and Y. Wang. A novel multi-objective PSO algorithm for constrained optimization problems. Simulated Evolution and Learning,2006:p.174-180.
    121. Q. He and L. Wang. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence,2007.20(1):p.89-99.
    122. C.A.C. Coello, G.T. Pulido and M.S. Lechuga. Handling multiple objectives with particle swarm optimization. Evolutionary Computation, IEEE Transactions on,2004.8(3):p.256-279.
    123. S. Janson and D. Merkle. A new multi-objective particle swarm optimization algorithm using clustering applied to automated docking. Hybrid Metaheuristics, 2005:p.902-902.
    124. M. Reyes-Sierra and C.A.C. Coello. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research,2006.2(3):p.287-308.
    125. P.K. Tripathi, S. Bandyopadhyay and S.K. Pal. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Information Sciences,2007.177(22):p.5033-5049.
    126. Y. Wang and Y. Yang. Particle swarm optimization with preference order ranking for multi-objective optimization. Information Sciences,2009.179(12):p. 1944-1959.
    127. F. van den Bergh and A.P. Engelbrecht. Cooperative learning in neural networks using particle swarm optimizers. South African Computer Journal,2000.26:p. 84-90.
    128. F. Van Den Bergh and A.P. Engelbrecht. Training product unit networks using cooperative particle swarm optimisers. in In Proceedings of the International Joint Conferene on Neural Networks (IJCNN). Washington DC, USA:IEEE, 2001.
    129.高海兵,高亮,周驰,等.基于粒子群优化的神经网络训练算法研究.电子学报,2004.32(9):p.1572-1574.
    130. L. Bo and P. Hongxia. A hybrid PSO-DV based intelligent method for fault diagnosis of gear-box. in 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation. IEEE,2009.
    131. B. Liu and H. Pan. Fault diagnosis of bearing using wavelet packet transform and PSO-DV based neural network. in The 6th International Conference on Natural Computation. IEEE,2010.
    132. W. Xiuye, P. Hongxia and M. Qingfeng. Application of Particle-Swarm-Optimization-Based Neural Network to Fault Diagnosis. Journal of Vibration, Measurement & Diagnosis,2006.26:p.133-137.
    133. B.O. Liu and H. Pan. Fault diagnosis of bearing using PSO with differential operator and neural network. The 9th International Conference on Foundations and Applications of Computational Intelligence.2010:p.467-473.
    134. Q. Guo, H. Yu and A. Xu. A hybrid PSO-GD based intelligent method for machine diagnosis. Digital Signal Processing,2006.16(4):p.402-418.
    135.沈显君,王伟武,郑波尽,等.基于改进的微粒群优化算法的0-1背包问题求解.计算机工程与应用,2006.32(18):p.23-24.
    136. F. Hembecker, H. Lopes and W. Godoy. Particle swarm optimization for the multidimensional knapsack problem. Adaptive and Natural Computing Algorithms,2007:p.358-365.
    137. Z. Lian, X. Gu and B. Jiao. A similar particle swarm optimization algorithm for permutation flowshop scheduling to minimize makespan. Applied mathematics and computation,2006.175(1):p.773-785.
    138. M. Tasgetiren, M. Sevkli, Y. C. Liang, et al. Particle swarm optimization algorithm for permutation flowshop sequencing problem. Ant Colony Optimization and Swarm Intelligence,2004.3172:p.366-385.
    139. C.J. Liao, C.T. Tseng and P. Luarn. A discrete version of particle swarm optimization for flowshop scheduling problems. Computers & Operations Research,2007.34(10):p.3099-3111.
    140.韩恺,赵均,钱积新.电力系统机组组合问题的闭环粒子群算法.电力系统及自动化,2009.33(1):p.36-40.
    141. S. Paterlini and T. Krink. Differential evolution and particle swarm optimisation in partitional clustering. Computational Statistics & Data Analysis,2006.50(5): p.1220-1247.
    142. B. Jarboui, M. Cheikh, P. Siarry, et al. Combinatorial particle swarm optimization (CPSO) for partitional clustering problem. Applied mathematics and computation,2007.192(2):p.337-345.
    143. T. Sousa, A. Silva and A. Neves.233 Particle swarm based data mining algorithms for classification tasks. Parallel Computing,2004.30(5):p.767-783.
    144.王肠,刘晓东,徐小慧,等.基于粒子群优化的数据分类算法.系统仿真学报,2008.20(22):p.6158-6162.
    145. I. De Falco, A. Della Cioppa and E. Tarantino. Facing classification problems with particle swarm optimization. Applied Soft Computing,2007.7(3):p. 652-658.
    146.李呈林,陈水利.基于PSO的加权关联规则挖掘算法.集美大学学报(自然科学版),2007.12(1):p.52-58.
    147.王晓敏,刘希玉,戴芬.基于PSO的关联规则挖掘方法及应用.信息技术与信息化,2009(003):p.85-87.
    148. R.J. Kuo, C.M. Chao and Y.T. Chiu. Application of particle swarm optimization to association rule mining. Applied Soft Computing,2011.11(1):p.326-336.
    149. A. El-Gallad, M. El-Hawary, A. Sallam, et al. Particle swarm optimizer for constrained economic dispatch with prohibited operating zones. in Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). Winnipeg, Manitoba, Canada:IEEE,2002.
    150. B. Zhao, C.X. Guo and Y.J. Cao. An improved particle swarm optimization algorithm for optimal reactive power dispatch. in Proceedings of IEEE Power Engineering Society General Meeting. IEEE,2005.
    151. B. Liu, P. Ren, L. Gao, et al. A New Combinatorial Meta-heuristic Algorithm for Stochastic Electric Power System Production Costing and Operations Planning. in Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA2006). Dalian:IEEE,2006.
    152.汪定伟,王俊伟,王洪峰,等.智能优化方法.北京:高等教育出版社,2007.
    153.车林仙,何兵,易建,等.对称结构Stewart机构位置正解的改进粒子群算法.农业机械学报,2008.39(10):p.158-163.
    154.曾议,竺长安,沈连嬉,等.基于群智能算法的设备布局离散优化研究.计算机集成制造系统,2007.13(3):p.541-547.
    155.薛英花,田国会,李国栋.利用改进的粒子群算法的机器人全局路径规划.华中科技大学学报(自然科学版),2009.36(S1):p.167-170.
    156.邓高峰,张雪萍,刘彦萍.一种障碍环境下机器人路径规划的蚁群粒子群算法.控制理论与应用,2009.26(8):p.879-883.
    157. U. Paquet and A.P. Engelbrecht. A new particle swarm optimiser for linearly constrained optimisation. in The 2003 congress on evolutionary computation. IEEE,2003.
    158. F. van den Bergh and A.P. Engelbrecht. A new locally convergent particle swarm optimiser. in IEEE international conference on systems, man and cybernetics. IEEE,2002.
    159. U. Paquet and A.P. Engelbrecht. Particle swarms for linearly constrained optimisation. Fundamenta Informaticae,2007.76(1):p.147-170.
    160. V.N. Vapnik. Estimation of dependences based on empirical data. Springer-Verlag New York Inc.,2006.
    161. E. Osuna, R. Freund and F. Girosi. Support vector machines:Training and applications.1997.
    162. A. Tavakkoli. M. Nicolescu and G. Bebis. Efficient background modeling through incremental support vector data description. in 19th International Conference on Pattern Recognition (ICPR), IEEE,2008.
    163. K.L. Clarkson. Las Vegas algorithms for linear and integer programming when the dimension is small. Journal of the ACM (JACM),1995.42(2):p.488-499.
    164. K.L. Clarkson. A Las Vegas algorithm for linear programming when the dimension is small. IEEE,1988.
    165. I. Adler and R. Shamir. A randomized scheme for speeding up algorithms for linear and convex programming problems with high constraints-to-variables ratio. Mathematical programming,1993.61(1):p.39-52.
    166. J.L. Balcazar, Y. Dai and O. Watanabe. Provably fast training algorithms for support vector machines. IEEE,2001.
    167. Y. Lu and V. Roychowdhury. Parallel randomized support vector machine. Advances in Knowledge Discovery and Data Mining,2006:p.205-214.
    168. B. Gartner, and E. Welzl. Linear programming-randomization and abstract frameworks. STACS 96,1996.1046:p.667-687.
    169. Y. Brise and B. Gartner. Clarkson's algorithm for violator spaces. Computational Geometry,2011.44(2):p.70-81.
    170. A. Frank and A. Asuncion. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:University of California. School of Information and Computer Science,2010.
    171. G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning. Advances in Neural Information Processing Systems,2001:p. 409-415.
    172.孔锐,张冰.一种快速支持向量机增量学习算法.控制与决策,2005.20(10):p.1129-1132.
    173. D.M.J. Tax and P. Laskov. Online SVM learning:from classification to data description and back. in Proceedings of 13th Workshop on Neural Networks for Signal Processing. IEEE,2003.
    174. P.J. Kim, H.J. Chang and J.Y. Choi. Fast incremental learning for one-class support vector classifier using sample margin information. in Proceedings of 19th International Conference on Pattern Recognition (ICPR). IEEE,2008.
    175. D. Zheng, Y. Zhao and J. Wang. An efficient method of license plate location. Pattern Recognition Letters,2005.26(15):p 2431-2438.
    176. F. Kahraman, B. Kurt and M. Gokmen. License plate character segmentation based on the Gabor transform and vector quantization. Computer and Information Sciences-ISCIS 2003,2003:p 381-388.
    177.顾弘,赵光宙,齐冬莲,等.车牌识别中先验知识的嵌入及字符分割方法.中国图象图形学报,2010.15(5):p 749-756.
    178.陈听.基于纹理分析的车牌图像区域分割技术的研究.合肥:合肥工业大学,2003.
    179.宋建才.字符结构知识在车牌识别中的应用.电子技术应用.电子技术应用,2004.4:p.18-19.
    180. V. Shapiro, D. Dimov, S. Bonchev, et al. Adaptive license plate image extraction, in Proceedings of the 5th international conference on Computer systems and technologies. ACM,2004:p 1-7
    181. L. Carrera, M. Mora, J. Gonzalez, et al. License Plate Detection Using Neural Networks. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living,2009:p.1248-1255.
    182.顾弘.基于半监督聚类分析及广义距离函数学习的图像识别技术研究.浙江大学博士学位论文,2011.
    183.胡小锋,赵辉.Visual C++/MATLAB图像处理与识别实用案例精选.人民邮电出版社,2004.
    184.边肇棋,张学工.模式识别.北京:清华大学出版社,1998.
    185.叶锋.基于神经网络的综合集成车牌识别技术的研究及其应用.合肥:合肥工业大学,2002
    186.萧嵘,孙晨,王继成,等.一种具有容噪性能的SVM多值分类器.计算机研究与发展2000,37(9):p 1071.1075.
    187. X. Tian and F.Q. Deng. An improved multi-class SVM algorithm and its application to the credit scoring model, in the Fifth World Congress on Intelligent Control and Automation,2004. (WCICA 2004). IEEE,2004.
    188. C.W. Hsu and C.J. Lin. A comparison of methods for multiclass support vector machines. Neural Networks, IEEE Transactions on,2002.13(2):p.415-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700