S-变换时频分析技术及其在地震勘探中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
傅立叶变换及其反变换建立了信号时域与频域的映射关系。虽然傅立叶变换可以分别从时域或频域的角度分析信号,但却无法直接将两者有机结合起来。对于非平稳的地震信号,了解不同时刻附近的频域特征是至关重要的,因此采用时间一频率联合表示描述时变信号,将一维时域信号映像到二维的时频平面,全面反映地震信号的时频联合特征。由于传统时频分析方法具有方法本身的缺陷(短时窗傅立叶变换的窗函数是固定的,而小波变换不是一种真正的时频谱),本文引进了一种较新的时频分析方法—S-变换。
     本文综述了传统的时频分析方法。对S-变换的定义、推导、特性进行了详细阐述,并介绍了二维S-变换和广义S-变换。S-变换可以分别由短时窗傅立叶变换和连续小波变换导出,它综合了两种变换的优点,而避免了它们的不足:它与傅立叶变换有着直接的联系,具有无损可逆性;与短时窗傅立叶变换和小波变换一样,是一种线性时频表示,因此不存在交义项的干扰;S-变换具有多种分辩率,克服了短时窗傅立叶变换固定分辩率的不足:另外,S-变换中含有相位因子,这是小波变换所不具备的特性。为了进一步理解S-变换的特性,我们设计一些理论模型,将S-变换与短时窗傅立叶变换和wigner-Ville分布进行比较分析。
     基于上述基本理论,本文首次将S-变换应用到地震勘探的某些处理和解释中。
     在地震处理方面:由于S-变换具有高时频分辩率,首先将S-变换应用于地震波的初至拾取,设置不同信噪比的理论地震记录,检测S-变换识别初至的容噪能力,并应用于信噪比低的山地资料层析静校正的初至拾取;其次,地震面波频率低,在时频面上具有区域性,并且S-变换具有无损可逆性,将S-变换压制面波技术应用于设置的理论记录和实际资料中。
     在地震解释方面:首先将S-变换应用于地质旋回体识别。由于构造运动具有周期性,
Fourier transform and inverse Fourier transform build up mapping for signal between time domain and frequency domain. Although Fourier transform can analyze signals in terms of time-domain or frequency-domain respectively, can not integrate with both directly. For non-stationary seismic signal, it is very important to understand frequency characteristic of different time around, so time-variant signals can be described using time-frequency joint denotation, then 1D time-domain signals can be mapped into 2D time-frequency profile, time-frequency joint characteristic of seismic signals can be expressed entirely. Because of the limitation of traditional time-frequency analysis methods, a newer time-frequency analysis method, S-transform is introduced into this paper.
    Traditional time-frequency analysis methods are summarized firstly in the paper, the definition, derivation and characteristic of S-transform are expatiated, 2D S-transform and generalized S-transform are introduced. S-tranform can be deduced from short-window Fourier transform or continuum wavelet transform and combine two kinds of time-frquency analysis methods advantage overcoming their disadvantage: S-transform has a direct relation with Fourier transform, the characteristics such as lossless invertibility, linearity, multi-resolution of wavelet. S-transform is a kind of linear time-frequency represent as short-time fourier transform and wavelet transform, so it has not cross-term ; S-transform has muti-resolution overcoming single resolution of short-time fourier transform. Otherwise, S-transform contains phase factor which wavelet transform has not. In order to understand the character of S-transform, theory models are designed, S-transform, short-time fouier transform and Wigner-Ville distributing are compared and analysised.
    Based on above theory, S-transform is firstly applied to some processing and interpretation of seismic prospecting.
    On the seismic processing, first-break picking is its first application due to high time-frequency resolution. different S/N ratios are added in theory seismic data, first-breaks are detected using S-transform, then which is applied to first-break picking of tomographic static in hilly data with lower S/N ratios; second, seismic surface wave has low frequency and regional property in time-frequency surface and S-transform has lossless invertibility. surface wave suppression technology based on S-transform is applied to theory data and practical data.
    On the seismic interpretation, the geological cyclothem bodies identification is its first
引文
[1] Gabor, D. Theory of Communication. Journal of the IEEE. 1946, Vol 93: 429-497.
    [2] Cohen L. Generalized phase-space distribution functions. Jour. Math. Phys., 1966,7: 781-786
    [3] Morlet J, Arens G, Fourgeau E, Giard D. Wave progagation and sampling theory-Part Ⅰ: Complex signal and scattering in multilayered media. Geophysics, 1982,47: 203-221.
    [4] Metier J, Arens G, Fourgeau E, Giard D. Wave propagation and sampling theory-Part Ⅱ: Sampling theory and complex waves. Geophysics, 1982,47(2): 222-236.
    [5] 张玉芬等,时频分析方法在储集层横向预测中的应用.地质科技情报,1995,14(1):83-88.
    [6] 刘传虎,刘福贵,李卫忠.时频分析方法及在储层预测中的应用.石油地球物理勘探,1996,31(增1):11-20.
    [7] 高军等,时频域球面发散和吸收补偿.石油地球物理勘探,1996,31(6):856-866、905
    [8] 白桦,李鳗鹏.基于时频分析的地层吸收补偿.石油地球物理勘探.1999,34(6):642-648.
    [9] 章珂等.二进小波变换方法的地震信号分时.分频去噪处理.地球物理学报.1996.39(2):265-270.
    [10] Satish K.Sinha, Partha S.Routh, Phil D.Anno et al. Time-Frequency attribute of seismic data using continuous wavelet transform. In: Proc.73th SEG Annual Meeting, Houston, Texas, USA,2003: 1481-1484.
    [11] 吴国忱,三维时频分析方法在地震层序分析中的应用,石油大学学报(自然科学版),2000,24(1):81-84.
    [12] 董臣强等,时频分析技术在三角洲层序分析中的应用,断块油气田.2002,9(2):18-20.
    [13] 崔凤林,管叶君.时频分析-薄互层结构研究的新途径.石油物探,1992,31(2):1-15.
    [14] Hirokazu Modya and Hiroaki Niitsuma. Precise detection of a P-wave in low S/N signal by using Time-Frequency representations of a triaxial hodogram. Geophysics, 1996, 61(5): 1453-1466.
    [15] Theophanis, S., and Queen, J., Color display of the localized spectrum: Geophysics. 2000, 65: 1330-1340.
    [16] Strockwell R G, Mansinha L, Lowe R P. Localization of the Complex Spectrum: The S-Transform. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001.
    [17] Livanos G, Ranganathan N, Jiang J.Heart sound analysis using the S Transform.Computers in Cardiology, 2000,27: 587-590.
    [18] Robert Pinnegar. C and lalu Mansinha. The S-transform with windows of arbitrary and varying shape.Geophysis, 2003, 68(1): 381-385.
    [19] Mansinha, L., R.G. Stockwell, R.P. Lowe, M. Eramian, and R.A. Schincariol.Local-spectrum analysis of 1-D and 2-D data. Physics of the Earth and Planetary Interiors 1997, 103: 29-336.
    [20] 张贤达,保铮.《非平稳信号的分析与处理》.国防工业出版社.1998.
    [21] 沈民奋,孙莉萨.《现代随机信号与系统分析》.科学出版社1998.
    [22] Portnoff MR. Time-frequency representation of digital signals and systems based on short-time fourier analysis. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980, ASSP-28(1).
    [23] Morlet J, Arens G, Fourgeau E, Giard D. Wave progagation and sampling theory-Part Ⅰ: Complex signal and scattering in multilayered media. Geophysics, 1982, 47: 203-221.
    [24] Morlet J, Arens G, Fourgeau E, Giard D. Wave propagation and sampling theory-Part Ⅱ: Sampling theory and complex waves. Geophysics,, 1982, 47(2): 222-236.
    [25] Wigner E. On the quantum correction for thermodynamic equilibrium. Phys.Rev s., 1932, 40: 749-759.
    [26] Ville.Theorie et applications de la notion de signal analytique. Cables et Transmission, 2, 1948
    [27] Janssen A. Optimality property of the Gaussian window spectrogram. IEEE Transactions on Acoustics, Speech and Signal Processing, 1991, ASSP-39(1).
    [28] Wilson R., Calway A.D., andPearson E.R.S. A generalized wavelet transform for fourier analysis: the multiresolution fourier transform and its application to image and audio signal analysis. IEEE Trans.Info.Theory, 1992,38: 674-690.
    [29] Farge M. Wavelet transforms and their application to turbulence. Annual Review of Fluid Mechanics,1992, 24: 395-457.
    [30] Brigham E.O. The fast fourier transform. Prentics-Hall Inc., 1974.
    [31] Mansinha L, Stockwell R G, Lowe R P. Pattern analysis with two-dimensional spectral localization: Applications of two-dimensional S transforms. Physics A, 1997, 239: 286-295.
    [32] Mansinha L., Stockwell R. G., Lowe R. P., et al. Local S Spectrum Analysis of 1-D and 2-D Data,Physics of the Earth and Planetary Interiors, 1997, 103: 329-336.
    [33] Stockwell R.G, PhD. S-Transform Analysis of Gravity Wave Activity from a Small Scale Network of Airglow Imagers, 1999, The University of Western Ontario.
    [34] 高静怀等.广义S变换与薄互层地震响应分析.地球物理学报.2003,46(4)526-532.
    [35] McFadden, P.D., Cook, J.G., and Forster, L.M., .Decomposition of gear vibration signals by the generalized S-transform:Mech.Syst Signal Process, 1999, 13: 691-707.
    [36] 邹文,陈爱萍,顾汉明.联合时频分析技术在地震勘探中的应用.勘探地球物理进展,2004,27(4):246-250,259.
    [37] 蔡希玲.地震数据时频分析方法研究及应用.2000,成都理工学院.
    [38] 何樵登,等.地震勘探原理和方法.北京:地质出版社,1985.
    [39] 孙明,林君.t-p变换去除金属矿地震资料中的线性干扰.物探与化探,2001,25(6):432-436.
    [40] Turnet G. Aliasing in the tau-p transform and the removal of spatially aliased coherent noise.Geophysics, 1990, 55(11): 1496-1503.
    [41] Spitzer R, Nitsche F, Green A G. Reducing source-generated noise in shallow seismic data using linear and hyperbolicτ-p transformations. Geophysics, 2001, 66(5): 1612-1621.
    [42] 罗国安,杜世通.小波变涣及信号重建在压制面波中的应用.石油地球物理勘探,1996,31(3):337—349.
    [43] 王振国,周熙襄,钟本善.小波包对叠前地震面波的分离与信号重建.石油地球物理勘探,2002,37(5):460-462,472.
    [44] 李晶,王振国,陈裕明,等.小波包变换叠前地震资料去噪方法研究.成都理工大学学报:自然科学版,2003,30(5):541-546.
    [45] 陈爱萍,邹文.基于S-变换的面波压制技术.世界地质,2005,24(1),82-86.
    [46] 张军华,王永刚,杨国权等.地震旋回体的概念及应用.石油地球物理勘探,2003,38(3):281-284.
    [47] 王永刚,宋若微.层序地震学在地层内部结构分析中的应用.石油物探,1997,36(增刊):36-39.
    [48] 董波.时频分析在地层旋回性分析中的应用.华北地震科学,2004,22(4):16-19.
    [49] 牛毓荃等译.地震地层学(在油气勘探中的应用).石油工业出版社,1980.
    [50] Steeghs, PH.D .Local Power Spectra and Seismic Interpretation. 1997, 100-120.
    [51] 顾汉明.塔河油田南部岩溶缝洞型储层地震正演模拟及储层预测研究,中国地质大学(武汉),2005.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700