V波段低噪声放大器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了应用于V波段星间链路的V波段低噪声放大器。在国内的工艺基础上,选取HEMT管芯,用微带电路进行匹配,采用微波混合集成电路(HMIC)技术实现低噪声放大器。
     由于毫米波段寄生效应非常明显,选取频带宽、工艺加工一致性好的拓扑结构,尽量减小由尺寸的细微变化引起的性能偏差,并且充分考虑了放大器的稳定性。针对毫米波放大器易出现的自激现象,在电路结构中采取多种抑制的途径。采用等功率指示法测量放大器的噪声系数,从而提高了噪声系数测量的精度和准确性。
     本文采用了先进的微波电路设计软件Ansoft对电路进行设计、优化和仿真,制成的放大器在59.4~60.6GHz的频段内噪声系数小于4.5dB、增益大于30dB、带内波动小于2.0dB,电压驻波比小于等于2,接口采用了WR-15标准波导法兰。国外设计V波段低噪声放大器一般采用MMIC技术,很少用HMIC来实现,并且增益比较低,而国内对V波段放大器的研究未见报道。
This thesis presents the study of a V-band Low Noise Amplifier (LNA) witch is used in the project named "Millimeter wave ISL technology". Basing on internal technology level, the HMIC amplifier was composed of HEMT devices and microstrip.
    Because the parasitical phenomenon is serious in millimeter-wave band, the wide-band topology with good process coincidence was adopted to suppress the deterioration of performance caused by size error. And the stability was considered carefully. Several methods were taken to avoid the self-excitation which is frequent in millimeter-wave band. The technique of equal power indication was adopted to measure this amplifier accurately.
    Ansoft was used to design, optimize and simulate the circuits. The amplifier was developed with the Noise figure of 4.5dBmax and the gain of 30dBmin over the 59.4~60.6GHz range. Its other major features include the ripple in band. 1.0dB, the VSWR. 2 and the ports of standard waveguide WR-15.
引文
1 中国人民解放军总装备部军事训练教材编辑工作委员会编.卫星通信技术.国防工业出版社,2000
    2 吴诗其等.国外移动卫星通信技术的研究进展.通信技术与发展,1995,(1):20
    3 Kerri L. Kusza, Michael A. Paluszek. Intersatellite Links: Lower Layer Protocols for Autonomous Constellations. November 11, 2000
    4 徐继泽,申志福,魏绍康.一种“同步卫星—平流层中继站—地面站”光学卫星通信系统概念.1997通信学术交流论文集.pp.263~268
    5 唐辉.卫星通信.北京:科学出版社,1983
    6 刘吉盛,聂风珍.卫星通信新技术与新系统.微波与卫星通信.1994,3(1):1
    7 Williamson J. Jane's Military Communications 92—93.13th edttion. UK: Jane's Information Group Limited, 1993
    8 宫宪一等.钱忠浩,陈思铬译.卫星通信技术.北京:人民邮电出版社,1985
    9 YasakaaT, Hatsuda T. Geostationary tether satellite system and its application to communication systems. IEEE Transaction on Aerospace and Electronic systems, 1988, 24(1): 48
    10 Hatsuda T. Optical Fiber Geosationary Tether Satellite (F-GTS) system and its application to efficient utilization of the GSO. IN: GSCS' 91. 71
    11 [美]凯米洛·费赫.数字通信——卫星和地球站工程.
    12 倪雨生主编.卫星通信.北京:人民交通出版社,1997
    13 雷震洲.移动卫星通信.北京:人民邮电出版社,1996
    14 吕洪生,杨新德.实用卫星通信工程.北京:人民邮电出版社,1998
    15 阮成礼.毫米波理论与技术.电子科技大学出版社,2001.
    16 习育才,左凤琴等.毫米波技术及其军事应用.北京兵器工业出版社,1991年4月.
    17 林为干.微波与光通信进展.电子学报,Vol.19,No.1,Jan.1991,pp.105-108.
    18 薛良金.毫米波工程基础.北京:国防工业出版社,1998
    19 Behzad Razavi. RF MICROELECTRONICS. PRENTICE HALL PTR, 1998
    20 Lawrence E. Larson. RF AND MICROWAVE CIRCUIT DESIGN GOR WIRELESS COMMUNICATIONS. Boston London: ARTECH HOUSE Inc., 2000
    21 赵国湘,高葆新.微波有源电路.北京:国防工业出版社,1990
    22 王蕴仪.毫米波理论与技术的重大进展.东南大学学报,Vol.22,N0.3,1992,
    
    pp.20-26.
    23 李大志.低温低噪声放大器的发展概况及其结构设计综述.《低温与超导》第29卷,第1期,pp55-61,2001年2月
    24 言华.微波固态电路.北京:北京理工大学出版社,1995
    25 促剑云译,官知节校.低噪声放大器技术的进展.
    26 顾其诤,项加桢,袁孝康.微波集成电路设计.北京:人民邮电出版社,1978
    27 《中国集成电路大全》编委会编.微波集成电路.北京:国防工业出版社,1995
    28 杨祥林,张兆镗,张祖舜.微波器件原理.北京:电子工业出版社,1994
    29 曾学刚.微波非线性电路理论研究的新进展.电子学报.Vol.24,NO.6,June 1996,pp.92.
    30 清华大学《微带电路》编写组.微带电路.北京:人民邮电出版社,1976
    31 吴兴源,吴飞.低噪声晶体管放大器的设计.西南师范大学学报(自然科学版).第19卷,第2期.1994年4月
    32 王丛香,刘刚,杨中华.薄膜微波电路制造新工艺.混合微电子技术.Vol.12,No2,pp50-53.
    33 李效白.砷化镓微波功率场效应晶体管及其集成电路.北京:科学出版社,1998.2
    34 Tri T.Ha.著,廖承恩译.固体微波放大器设计.国防工业出版社.1988
    35 吴万春.集成固体微波电路.国防工业出版社.1981
    36 陈天麒.微波低噪声晶体管放大器.人民邮电出版社.1983
    37 樊景渤,崔淑芳.微波放大器.人民邮电出版社.1988
    38 K.H. George DUH, Pane-Chane Chao, etc. High-Performance Ka-Band and V-band HEMT Low-Noise Amplifiers. IEEE Trans-MTT. Vol. 36, December 1988, pp. 1598-1603
    39 Michael Schlechtweg, Werner Reinert, etc. Design and Characterization of High Performance 60GHz Pseudomorphic MODFET LNAs in CPW-Technology Based on Accurate S-Parameter and Noise models. IEEE Trans-MTT. Vol. 40, December 1992, pp. 2445-2451
    40 Loi Nguyen, Minh Le, etc. Manufacturability of 0.1μm Millimeter-Wave Low-Noise InP HEMTs. IEEE MTT-s Digest. 1993
    41 N. Yoshida, T. Kitano, etc. A Super Low-Noise V-Band AlInAs/InGaAs HEMT Processed by Selective Wet Gate Recess Etching. IEEE MTT-s Digest. 1994
    42 Ming-Yih Hao, K.H. George Duh, etc. An Extremely Low-Noise InP-Based HEMT with Silicon Nitride Passivation. IEDM. 1994, pp. 907-910
    43 Yasushi Itoh, Yoshie Horiie, etc. AV-Band, High Gain, Low-Noise, Monolithic PHEMT Amplifier Mounted on a Small Hermetically Sealed Metal Package. IEEE
    
    Microwave and Guided Wave Letters. VOL. 5, February 1995, pp. 48-49
    44 M. Schefer, B.U. Klepser. Comparison of Coplanar Matching Networks for V-Band Amplifiers. IEEE Electronics Letters. Vol. 31, No. 16, 3rd August 1995, pp. 1351-1353
    45 Richard T. Webster, Andrew J. Slobodnik, etc. Determination of InP HEMT Noise Parameters and S-Parameters to 60GHz. IEEE Trans-MTT. Vol. 43, June 1995, pp. 1216-1225
    46 Long Tran, Russ Isobe, etc. High performance, high yield millimeter-wave MMIC LNAs using InP HEMTs. IEEE 1996 Microwave and Millimeter-Wave Monolithic Circuits Symposium. pp. 133-136
    47 Mark D. DuFalt, Arvind K. Sharma. Millimeter-Wave HEMT Noise Models verified Thru V-Band. IEEE MTT-s Digest. 1996, pp. 1321-1324
    48 Yasushi Itoh. A Family of Millimeter-Wave MMIC Amplifiers and Modules. IEEE. 1998, pp. 15-18
    49 J.M. Tanskanen, P. Kangaslahti, etc. Cryogenic Indium-Phosphide HEMT Low-Noise Amplifiers at V-Band. IEEE Trans-MTT. VOL. 48, NO. 7, JULY 2000, pp. 1283-1286
    50 Anthony E. Parker, James Grantley Rathmell. Measurement and Characterization of HEMT Dynamics. IEEE Trans-MTT. VOL. 49, NOVEMBER 2001, pp. 2105-2111
    51 John W. Archer, Richard Lai, etc. Ultra-Low-Noise Indium-Phosphide MMIC Amplifiers for 85-115 GHz. IEEE Trans-MTT. VOL. 49, NOVEMBER 2001, pp. 2080-2085
    52 Byung-Jun Jang, In-Bok Yom, etc. V-bandMMIC low-noise amplifier design based on distributed active device model. IEEE Proceeding. 2001, pp. 25-28
    53 W. Lu, V. Kumar, etc. DC, RF, and Microwave Noise Performances of AlGaN/GaN HEMTs on Sapphire Substrates. IEEE Trans-MTT. VOL. 50, NOVEMBER 2002, pp. 2499-2504
    54 J.A. Reynoso-Hernandez, L. Escotte, etc. Microwave noise figure in MESFETs and HEMTs with kink-effect and (or) parallel conduction. IEEE MTT-s Digest. 1992, pp. 289-291
    55 Dennis C.W. Lo, Richard Lai, etc. A high-performance monolithicQ-band InP-based HEMT low-noise amplifier. IEEE Microwave and Guided Wave Letters. VOL. 3, September 1993, pp. 299-301
    56 O.-P. Lunden, etc. A 60-GHz LNA using commercially available PM HEMTs for intersatellite and mobile communications. IEEE MTT-s Digest. 1994, pp. 1341-1344
    57 K. Maruhashi, etc. A 60 GHz-band low noise HJFET amplifier module for wireless LAN applications. IEEE 1996 Microwave and Millimeter-Wave Monolithic Circuits
    
    Symposium. pp. 137-140
    58 Xiaojian Chen, Xuejun Chen, etc. MMIC modeling technique and its application. IEEE 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings. pp. 5-9
    59 A. Fujihara, etc. V-band MMIC LNA using superlattice-inserted InP heterojunction FETs. IEEE 2001 International Conference on Indium Phosphide and Related Materials Conference Proceedings. pp. 622-625
    60 金德宣,张晓梅.微电子焊接与封装.电子科技大学出版社.1996
    61 T.Q. HO and YI-CHI SHIH. "Spectral-domain analysis of e-plane waveguide to microstrip transition". IEEE Trans. Microwave Theory Tech..vol. MTT-37, pp. 388-392, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700