新型熔融拉锥型全光纤波长交错滤波器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速铁路的迅速发展,建成覆盖全国范围的铁路骨干全光网络,保证未来高速铁路大容量、高可靠和高质量信息传输,对铁路的发展具有重要的战略意义。DWDM光网络的每个节点又包含着大量的光电子器件和各种功能模块,光学滤波器是DWDM光网中一类重要的光子器件。本文以全光纤波长交错滤波器为研究对象具有现实意义。
     本文以FMZI为基础构建了全光纤波长交错滤波器,建立理论模型,采用光耦合矩阵理论在导出解析表达式的基础上,通过对其传输特性进行特性仿真和理论分析及实验验证等手段,归纳出一些有参考价值的结果和结论,对器件进一步的实用化和相关技术探索具有指导意义。基于FMZI型平顶全光纤波长交错滤波器和不等带宽全光纤波长交错滤波器,以及FMZI型三信道全光纤波长交错滤波器的研究是本文主要组成部分。具体研究内容包括:
     传统2×2FMZI型全光纤波长交错滤波器的结构建模和理论分析。以光耦合矩阵理论分析了2×2FMZI的传输特性;采用级联2×2FMZI的方法实现平顶全光纤波长交错滤波器和不等带宽全光纤波长交错滤波器的结构模型,得到理论模型的输出表达式,并进行了较为详细的特性仿真和分析,并对器件结构参量的变化如何影响其功能的变化规律进行了探索,结果表明:在适当的结构参数下,器件产生了平顶,高隔离度的通带频响特性。
     新型3×2FMZI型全光纤波长交错滤波器的结构建模和理论分析。用3×3光纤耦合器作为一个基本单元对传统FMZI结构加以改进,提出了一种新型3×2FMZI结构,验证了利用新型3×2FMZI可以实现全光纤波长交错滤波器的可行性。采用级联新型3×2FMZI的方式构建出平顶全光纤波长交错滤波器和不等带宽全光纤波长交错滤波器,给出了理论模型的结构,在研究理论模型的基础上,对其传输特性进行了较为详细的数值研究。结果表明:当结构参量取值适当时,等带宽器件产生了平顶的通带频响特性,且具有高的信道隔离度;不等带宽器件不仅实现了不等带宽的输出特性,且具有高的信道隔离度。在研究器件结构参量的变化对器件功能的影响基础上,发现器件对各个耦合器的耦合系数不敏感。
     新型3×3FMZI型多信道全光纤波长交错滤波器的结构建模和理论分析。用两个3×3光纤耦合器作为基本单元代替传统FMZI结构的两个2×2光纤耦合器实现了新型3×3FMZI结构。给出了新型3×3FMZI型三信道全光纤波长交错滤波器结构模型,并给出了传输函数,对其传输函数进行了理论分析和特性仿真,结果表明:在取适当的结构参数时,器件三个输出端口的波形谱型,具有相同性和对称性,信道间的功率旁瓣峰值低,隔离度高,稳定性良好,实现了三波分复用。在器件结构参量偏离最佳值时,也能得到比较理想的输出谱。
With the rapid development of high speed railway, a nationwide rail all optical communication network will be built, which can ensure large capacity and high reliability and high quality information transmission in the future high-speed railway, which has important strategic significance for the development of railway. In Each main node in the DWDM network involves a lot of optoelectronic components and various function modules. Optical filter represents a big class of key photonic components. Thus, it is practical and meaningful to select Interleaver as the title of this dissertation.
     In the paper, some theoretical models of Interleaver based on FMZI were put forward, the transmission expression on Interleaver were achieved by using the optical coupling matrix theory, then the characteristic simulation and theoretical analysis and experimental verification were done, and some valuable results and conclusions were summed up, which was meaningful for the device further practical design and related technical exploration. The main research topics in this paper were flat-top FMZI Interleaver and unequal passband FMZI Interleaver and three channel FMZI Interleaver. The research contents were stated indetail as follows:
     Design and theoretical analysis based on the traditional2x2FMZI Interleaver. The transmission characteristics of2x2FMZI was studied, then cascaded2×2FMZI flat-top Interleaver and unequal passband FMZI Interleaver were proposed and the transmission expressions on the two Interleaves were achieved, and the characteristic simulation and theoretical analysis were done, the results showed when parameters were some value, devices had flat-top passband and high isolation spectrum.
     Design and theoretical analysis based on the novel3×2FMZI Interleaver. The traditional2x2FMZI was improved through a introduced3×3fiber coupler, then a novel3×2FMZI was achieved. The feasibility of the novel3x2FMZI was verificated by using the optical coupling matrix theory, then cascaded novel3×2FMZI flat-top FMZI Interleaver and unequal passband FMZI Interleaver were proposed, The transmission expressions on the two Interleaves were achieved, and the characteristic simulation and theoretical analysis were done, the results showed that when parameters were some value, the equal passband device had flat-top passband and high isolation spectrum, and the unequal passband device had unequal passband and high isolation spectrum, and these devices were not sensitive to the coupling coefficient of the couplers.
     Design and theoretical analysis based on the novel3×3FMZI Interleaver. The traditional2x2FMZI was improved through two introduced3×3fiber couplers, then a novel3x3FMZI was achieved. then novel3x3FMZI and cascaded novel3x3FMZI three channel Interleaver were proposed, The transmission expressions on the two Interleaver were achieved, and the characteristic simulation and theoretical analysis were done, the results showed:when parameters were some value, the three output ports spectrum of the devices were same and symmetry, and which had low sidelobe peak channel power, and high isolation, good stability, and when structure parameter of the device deviated from the optimal value, the output spectrum of the device was also ideal.
引文
[1]D.Betz, M.N.Trutzel. Fiber-optic Smart Sensing of Aviation Structures[C].3rd International Workshop on Structural Health Monitoring, Stanford, California, September,2001,12-14.
    [2]Ben jamin B.Dingel, Masayuki Izutsu. Multifunction Optical Filter with A Michelson-Gires-Tournois Interferometer For Wavelength-Division-Multiplexed Network System Applications[J]. opt.lett., 1998,23:1099-1101.
    [3]ZHU B, CHEN J. Fiber-optic chemical sensor and its application in the field of pharmacy[J]. Foreign Med Sci(Sect Pharm),1992,19(4):209-213.
    [4]Tam H, Liu S, Guan B et al. Fiber Bragg grating sensors for structural and railway applicationsfC]. Proc.SPIE,2004,5634:85-97.
    [5]Wang G, Pran K, Sagvolden G et al. Ship hull structure monitoring using fiber optic sensors[J]. Smart Materials and Structures,2001,10:472-478.
    [6]Valery M.Petuchov. Fiber optic sensors for NDE on-line inspection of buried under the mains and offshore pipings, SPIE,1998,3398:209-216.
    [7]林瑜筠.光纤在铁路信号中的应用[J].上海铁道科技,1996,12:42.
    [8]Kira Kastell. Improvements in Railway communication via GSM-R[J]. IEEE Trans.on Vehicular Technology,2006,8:3026-3030.
    [9]徐建,王志功,江汉等GSM-R光纤直放站中射频光收发模块设计[J].东南大学学报,2011,41(4):687-690.
    [10]Maaskant R, Alavie A T, Measures R M et al. Fiber optic Bragg grating sensors for bridge monitoring[J]. Cement&Concrete Composites,1997,19(1):21-33.
    [11]Li Sun, Hong-Nan Li, Liang Ren et al. Dynamic response measurement of offshore plateform model by FBG sensors[J]. Sensors Actuators A,2007,136:572-579.
    [12]Hwa-yaw Tam. Application of fiber Bragg grating sensors in railways[C]. Opto-Electronics and Communications Conference,2008:1-4.
    [13]Sarika Singh, R. K. Verma, B D Gupta. LED based fiber optic surface plasmon resonance sensor[J]. Optical and Quantum Electronics,2010,42(1):15-28.
    [14]Harun S.W, Yang H.Z, Ahmad H. Theoretical and experimental studies on liquid refractive index sensor based on bundle fiber [J]. Sensor Review,2011,31(2):173-177.
    [15]Gao Zhan-feng, Du Yan-liang, Sun Bao-chen et al. Strain Dlonitoring of railway bridges using optic fiber sensors[J]. Journal of Quality in Maintenance Engineering,2007,13(2):186-197.
    [16]Harold D Harrison, Li Cheng, William Gemeiner. Managing the Gross Weight on Rail[C]. Proceeding of Joint Rail Confer-ence, Atlanta:[s.n.],2006:169-179.
    [17]刘胜春,张顶立,张成平.高速铁路路基与边坡结构安全光纤传感监测试验[J].北京交通大学学报,2011,35(4):1-6.
    [18]穆海冰.铁路光因特网设计探讨[J].北方交通大学学报,2001,25(4):5-8.
    [19]Makoto Shibutani. Optical Fiber Feeder for Microcellular Mobile Communication System[C]. IEEE Vehi. Tech. Conf,1993,1118-1126.
    [20]刘云.铁路信息化基础通信网络的发展建设及关键技术研究[J].北方交通大学学报,2001,25(4):1-4.
    [21]刘德森,高应俊.变折射率介质的物理基础.北京:国防工业出版社,1991.
    [22]徐森禄,凌世德.光波导及其应用[M].浙江:浙江大学出版社,1990.
    [23]Neal S, Berfano.640Gb/s Transmission of sixty-four lOGb/s WDM channels over 7200km with 0.33(bit/s)/Hz spectral Efficiency[C]. OFC'99,1999:2-1.
    [24]Bruce Nyman. Technology trends in dense WDM demultiplexers[J]. Optical fiber technology, 2001 (7):255-257.
    [25]Louay Eldada. Adances in telecom and datacom optical components[J]. Opt.Eng,2001,40(7): 1165-1178.
    [26]张劲松,陶智勇,韵湘.光波分复用技术[M].北京:北京邮电出版社,2002.
    [27]Jeong Hwan Song, Kyung Shik Lee, Yunkyung Oh. Triple Wavelength Demultiplexers for Low-Cost Optical Triplexer Transceivers [J]. Journal of Lightwave Technology,2007,25(1):350-358.
    [28]Robert B Sargent, Nada A OBrien. Dielectric Materials for Thin Film Based Optical Communicati-ons Filters [J]. MRS Bulletin,2003,28(5):372-376.
    [29]Fang Li, Yongchang Lin. Design of optical interference filter for DWDM[J].2001, SPIE 4581:384-389.
    [30]P Munoz, D Pastor, J Capmany. Modeling and design of arrayed waveguide gratings[J]. Lightwave Technol,2002,20(4):661-67.
    [31]Hiroshi Takahashi, Yoshinori, Hibino et al. Polarization-insensitive arrayed-waveguide gating wavelength multiplexer on silicon[J]. Optic Letters,1992,17(7):500-502.
    [32]M K Smit, C V Dam. PHASAR-based WDM devices:principles, design and applications[J]. IEEE J. Sel. Top. Quantum Electron,1996,2(2):236-250.
    [33]R Kashyap. Fiber Bragg gratings. Academic Press,1999.
    [34]Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fiber by a transverse holographic method[J]. Opt Lett,1989,14(1):82-85.
    [35]M.Kuznetsov. Cascaded coupler Mach-Zehnder channel dropping filters for wavelength division multiplexed optical systems[J]. Lightwave Technol,1994,12(2):226-230.
    [36]Francois Gonthier. Fused couplers increase system design options[J]. Laser Fous World,1998,34(6) :83-88.
    [37]Haus H A, lai Y. Narrow-Band channel dropping filters[J]. Lightwave Technol,1992,10:57-62.
    [38]Kuznetsov M. Caseded coupler Mach-Zehnder channel dropping filters for Wavelength Division Multiplexed optical system[J]. Ligthwave Technol,1994,12:226-230.
    [39]Gong-Ru Lin, Hai-Lin Wang, Gong-Cheng Lin et al. Comparison on Injection-Locked Fabry-Perot Laser Diode With Front-Facet Reflectivity of 1% and 30% for Optical Data Transmission in WDM-PON System [J]. Journal of Lightwave Technology,2009,27(14):2779-2785.
    [40]赵浩.光纤光栅及波分复用单元技术研究[D]:(博士学位论文).上海:上海交通大学,1999.
    [41]Zhang K, Wang J, Schwondeman E et al. Group delayand chromatic dispersion of narrow bandpass filters used in DWDM systems[J]. Optcal Interference Coatings, Technical Digest, Benf, Canada, 2001,6:1-3.
    [42]S Cao, J Chen, J N Damask et al. Interleaver technology:comparisons and applications requirements [J]. Lightwave Technol,2004,22(1):281-289.
    [43]刘铮.中国光纤在线.新一代全光网络中的器件和系统:DWDM系统中的滤波器技术htep// ww w. c-fol. netl.2000.
    [44]Ding-wei Huang, Tsung-hsuan Chiu, Yin-chieh Lai. Arrayed waveguide grating DWDM interleaver [C]. Optical Fiber Comumication Conference,2001,80:1-3.
    [45]C K Madsen. General IIR optical filter design for WDM applications using all-pass filters [J]. Lightwave Technol,2000,18(6):860-868.
    [46]Huishi Li. The application and technical approaches of interleaver. SPIE 2001,4581:79-87.
    [47]B. Shine, J. Bautista. Interleavers make high-channel-count systems economical[J]. Lightwave, 2000,1:56-59.
    [48]Neal S Berfano.640 Gb/s transmission of sixty-four 10 Gb/s WDM channels over 7200 km with 0.33 (bit/s)/Hz spectral efficiency[C]. OFC,1999,2:1.
    [49]Z J Wan, F G Luo, Z X Luo. Crosstalk comparison of lattice-form optical interleaver with different coupler structures[J]. Opt Comm,2009,282(10):2032-2035.
    [50]Dong X, Yang X, Shum P et al. Tunable M-Z filter with 0.8nm channel spacing using a pair of long period fiber gratings[J]. IEEE Photonics Technology Letters,2005,17(4):795-797.
    [51]W Y Chan, K X Chen, H P Chan et al. A flattop PLC polymer waveguide interleaver based on folded two-stage-cascaded-Y-junction Mach-Zehnder interferometers [J]. Opt Comm,2009,282(5):883-886.
    [52]Tzong-Yow Tsa, Zhi-Cheng Lee, Chi-Shiun Gau et al. A novel wavelength-division multiplexer using grating-assisted two-mode interference[J]. IEEE Photon Technol Lett,2004,16(10): 2251-2253.
    [53]N Kumar, MRSBP Pal. Flattop all-fiber wavelength interleaver for DWDM transmission:Design analysis, parameter optimization, fabrication and characterization recipe[J]. Opt Comm,2008, 281(20):5156-5164.
    [54]鲁怀伟,褚衍东,罗冠炜.一种新型级联M-Z波长交错器的设计与实验[J].光电子·激光,2007,18(12):1426-1429.
    [55]Gang Junliu, Qu Li, Guo Liangjinet al. Transfer matrix method analysis of apodized grating couplers [J]. Opt Commun,2004,235:319-324.
    [56]Noriaki Onodera, Kenichiro Tsuji, Masatoshi Saruwatari. Up to 8-GHz Ultrafast Multi-Wavelength Routing Operation of Active Birefringent Fiber Loop Filter/Interleaver Using a Traveling Wave Type Phase Modulator[J]. Optical Review,2005,12(5):359-362.
    [57]K L Lee, M P Fok, S M Wan et al. Optical Control of Birefringence forr Loop Mirror Comb Filter Tuning using a Semiconductor Optical Amplifier[C]. Lasers and Electro-Optics Society,2004,1: 398-399.
    [58]C R Doerr, L L Buhl, Cappuzzo MA et al. Interleaver Using an Arrayed-Waveguide Grating Lens Grating Configuration for Spectrally Efficient Systems[J]. IEEE Photon Technol. Lett,2010,22 (1): 6-8.
    [59]A C Jacob-Poulin, R Vallee. S La Rochelle et al. Channel-dropping filter based on a grating-frustrated two-core fiber [J]. Lightwave Technol,2000,18(5):715-720.
    [60]Li Lin, Fang Zujie, Cai Haiwen et al. The Pacific Rim Conference[A],2001,1:1404-1405.
    [61]Pan J J, Shi Y. Dense WDM multiplexer and demultiplexer with 0.4nm channel spacing[J]. Electron. Lett,1998,34(1):74-75.
    [62]Haiwen Cai, Zujie Fang. Interleaving filter using Mach-Zehnder-Based sampled fiber gratings[A].. SPIE,2001,4581:334-339.
    [63]Z Wan, Y Wu, J Yuan et al. Design and fabrication of an optical interleaver with cascaded multimode interference couplers[J]. Applied Optics,2007,46(31):7587-7589.
    [64]Takashashi H. Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition. Appl. Opt,1995,34(4):667-675.
    [65]Dingel B. Properties of a novel noncascaded type easy-to-design ripple-free optical bandpass filter[J]. Opt. Lett,1998,17(8):1461-1469.
    [66]邵永红.光学梳状滤波器技术研究[D]:(博士学位论文).北京:中国科学院,2003.
    [67]Smit M.K. New focusing and dispersive planar component based on an optical phased amay [J]. Electron.Lett,1988,24(7):385-386.
    [68]K O Hill, Y Fuji, D C Jonson et al. Appl.Phys.Lett,1978,32:647.
    [69]G.Meltz, W.W.Morey, H.Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Opt.Lett,1989,14:823.
    [70]Benjamin B.Dingel, Tadashi Aruga. Properties of a novel noncascaded type, easy-to-design, ripple-free optical bandpass filter[J]. Lightwave Technology,1999,17(8):1461-1469.
    [71]Li Weizhong, Guo Qingdong, Gu Shijie et al. Interleaver technology review[J]. Proc. SPIE,2002, 4906:73-80.
    [72]秦子雄.光纤布拉格光栅色散补偿·波长分插复用器和信道交错器.南开大学博士后研究工作报告,2001,146-172.
    [73]Carlson W J, Buhrer C F. Flat passband birefrigent wavelength-division multiplexers[J]. Electron Lett,1987,23(3):106-107.
    [74]Li Huishi, Huang River. The application and technical approaches of interleaver[A]. Proc. SPIE, 2001,4581:79-87.
    [75]R.M.Sova, C.S.Kim, J.U.Kang. Tunable all-fiber birefringence comb filters[C]. Optical Fiber Communication Conference and Exhibit,2002,698-699.
    [76]张娟,刘立人,周煌等.双折射滤波器光谱透射率函数平顶化优化计算[J].光学学报,2003,23(4):426-430.
    [77]张波,黄德修.双折射Gires-Tournois型交叉复用器的性能研究[J].光学学报,2003,23(9):1068-1070.
    [78]S Hu, L Zhan, Y J Song. Switchable multiwavelength erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror[J]. IEEE Photon. Technol Lett,2005, (17):1387-1389.
    [79]Alexeyev CN, Galamaga HG, Volyar AV.Filter of optical vortices:highly twisted high-birefringence optical fibers [J]. Optics Letters,2006,31(1):8-10.
    [80]Liu X. M.Enhanced Efficiency of Multiple Four-Wave Mixing Induced by Modulation Instability in Low-Birefringence Fibers[J]. Journal of Lightwave Technology,2011,29(2):179-185.
    [81]Oda K, Takato N, Toba H et al. A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems[J]. Lightwave Technol,1988,6(6):1016-1023.
    [82]ChibaT, Arai H, Ohira K e al. Wavelength interleaving filter with fourier transform based MZIs[J].OFC,2001, WB5.
    [83]Jen-Fa Huang, Yao-Tang Changa, Che-Chih Hsua. Hybrid WDM and optical CDMA implemented over waveguide-grating-based fiber-to-the-home networks, Optical Fiber Technology,2007,13(3): 215-225.
    [84]Sasaki K, Ohno F, Motegi A et al. Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides[J]. Electr. Lett,2005.
    [85]Christopher R Doerr, Larry L Buhl, Mark A. Cappuzzo et al. Interleaver Using an Arrayed Wavegui-de Grating-Lens-Grating Configuration for Spectrally Efficient Systems[J]. IEEE PHOTONICS TECHNOLOGY LETTERS,2010,22(1):6-8.
    [86]Doerr, C. R.;Zhang, L.;Winzer, P. J.Monolithic InP Multiwavelength Coherent Receiver Using a Chirped Arrayed Waveguide Grating [J]. Lightwave Technology,,2011,29(4):536-541.
    [87]Magne J, Giaccari P, LaRochelle S. all-fiber comb filter with tunable free spectral range[J]. Optics Letters,2005,30(16):2062-2064.
    [88]Hsu-Chih Chenga, Jen-Fa Huanga, Yu-Lung Lob. simultaneous strain and temperature distribution sensing using two fiber Bragg grating pairs and a genetic algorithm[J]. Optical Fiber Technology,2006,12(4):340-349.
    [89]Pan S, Yao J. Tunable Subterahertz Wave Generation Based on Photonic Frequency Sextupling Using a Polarization Modulator and a Wavelength-Fixed Notch Filter[J]. IEEE Transactions on Microwave Theory and Techniques,2010,58(7):1967-1975.
    [90]Xiang-fei Chen, Chong-cheng Fan, Luo Y et al. Novel flat multichannel filter based on strongly chirped fiber Bragg grating[J]. IEEE Photon. Technol. Lett,2000,12(11):1501-1503.
    [91]Ou Xu, Shaohua Lu, Suchun Feng et al. Proposal and analysis of two-cavity Fabry-Perot structures based on fiber Bragg gratings[J]. Opt. Soc. Am. A,2009,26(3):639-649.
    [92]X.Zou, F.Wang, W.Pan. Flat-top and ultra-narrow bandpass filter designed by sampled fiber Bragg grating with multiple equivalent phase shifts[J]. Appl.Opt.2009,48(4):691-694.
    [93]J.Bures. All-fiber dense wavelength division multiplexer[C]. Proc.SPIE,1994,2321:455-457.
    [94]Jinguji K.. Synthesis of coherent two-port lattice-form optical delay line circuit[J]. Lightwave Technol.,1995,13(1):73-82.
    [95]Jinguji K.. Synthesis of coherent two-port optical delay-line circuit with ring waveguids[J]. Lightwave Technol.,1996,14(8):1882-1898.
    [96]Jinguji K.. Optical half-band filters[J]. Lightwave Technol.,2000,18(2):252-259.
    [97]Oguma M, Jinguli K, Kitoh T et al. Flat-passband interleaver filter with 200 GHz channel spacing based on planar lightwave circuit-type lattice structure[J]. Electron. Lett.,2000,36(15):1299-1300.
    [98]Otto Schwclb. Characteristics of lattice networks and spectral filters built with 2×2 couplers[J]. Light-wave Technol,1999,19(8):1470-1480.
    [99]Otto Schwelb. All-optical tunable filters built with discontinuity-assisted ring resonators[J]. Lightwa-ve Technol,2001,19(3):380-386.
    [100]黄勇林,李杰,开桂云High extinction ratio multiplexer/demultiplexer with Mach-Zehnder interferometer and a fiber loop a mirror[J]. Chinese Optics Letters,2003,1(2):63-64.
    [101]H W Lu, B G Zhang, M Z Li et al. A Novel All-Fiber Optical Interleaver with Flat-Top Passband[J]. IEEE Photon Technol,2006,18(13):1469-1471.
    [102]Nilsson L E, Claesson A. Integrated fiber Mach Zehnder interferometer for electrooptic switching [J]. Opt Lett,2002,27(18):1643-1645.
    [103]Kolesik M, Matus M. All-optical Mach-Zehnder inter-ferometer-based demultiplexer-a computer simulation study[J]. IEEE Photo Tech Lett,2003,15(1):78-80.
    [104]S Cao, J Chen, J N Damask et al. Interleaver technology comparisons and applications requirements [J]. Lightwave Technol,2004,22(1):281-289.
    [105]Qijie Wang, Ying Zhang, Yeng Chai Soh. All-fiber 3x3 interIeaver design with flat-top passband[J]. IEEE Photon. Technol Lett,2004,16(1):168-170.
    [106]Yi-Chao Meng, Zhao-Ming Huang, Lu-Tang Wang et al. Hybrid optical comb filter with multi-port fiber coupler for DWDM optical network[J]. Acta Optica Sinica,2003, Supplement.
    [107]孟义朝,黄肇明,王陆唐.马赫-曾德尔干涉仪型波长交错器研究[J].光学学报,2003,23(5):575-580.
    [108]章宝歌,李碧琦,鲁彦.非对称马赫-曾德尔干涉仪型不等带宽光学梳状滤波器[J].光学精密工程,2010,18(10):2150-2155.
    [109]章宝歌,陶彩霞,鲁彦.全光纤马赫-曾德尔干涉仪型不等带宽梳状滤波器[J].光电子·激光,2010,21(11):1641-1644.
    [110]章宝歌,王天鹏,鲁怀伟.利用三个3×3耦合器串连构成干涉型三波长波分复用器[J].光电工 程,2009,36(8):147-150.
    [111]YUAN L, LIU Z, YANG J et al. Bitapered fi-ber coupling characteristics between single modesingle core fiber and single-mode multicore fiber[J]. Appl Opt,2008,47 (18):3307-3312.
    [112]范林勇,赵瑞峰,江微微等.用于应力传感的双芯光纤马赫—曾德尔干涉仪[J].光电子·激光,2010,21(10):1488-1491.
    [113]Yang Jianyi, Wang Fan, Jiang Xiaoqing. Linearization of Mach-Zehnder modulator using microring based all-pass filter[J]. Chin Opt Lett,2005,3(6):333-335.
    [114]Hong Zehua, Li Xinwan, Li Shuguang et al. On polarization characteristic in fiber Mach-Zehnder interferometer with short different length of two arms[A]. Proceedings of the 15th Asia-Pacific Conference on Communications(APCC),2009,151:630-632.
    [115]Shih-Jung Chang. Wide passband optical interleaver based on doublering assisted Mach-Zehnder interferometer[J]. Microwave Opt Technol Lett,2010,52:954-956.
    [116]C H Hsieh, C W Lee, S Y Huang et al. Flat-top and low-dispersion interleavers using Gires Tournois etalons as phase dispersive mirrors in a Michelson interferometer[J]. Opt. Commu.2004,237: 285-293.
    [117]张娟,杨小伟,于帅.任意占空比不等带宽迈克耳孙Gires-Tournois干涉型光交错复用器的设计方法[J].中国激光,2010,37(1):155-161.
    [118]Haixing Chen, Peifu Gu, Yueguang Zhang et al. Analysis on the match of the reflectivity of the multi-cavity thin film interleaver[J]. Opt. Commun.,2004,236:335-341.
    [119]Yi Jiang, Caijie Tang. High-finesse microlens optical fiber Fabry-Perot filters[J]. Microw Opt. Technol. Lett,2008,50(9):2386-2389.
    [120]Yu Kyoungsik, Solagaard Olav. MEMS optical wavelength deinterleaver with continuously variable channel spacing and center wavelength[J]. IEEE Photon.Technol. Lett,2003,15(3):425-427.
    [121]Blomberg M, Kattelus H, Miranto A. Electrically tunable surface micromachined Fabry-Perot interferometer for visible light[J]. Sensors and Actuators A,2010, (162):184-188.
    [122]Carlsen W J, Buhrer C F. Flat passband birefrigent wavelength-division multiplexers[J]. Electron Lett,1987,23(3):106-107.
    [123]S E Harris, E O Ammann, I C Chang. Optical network synthesis using birefringent crystals synthesis of lossless network of equal-length crystals[J]. Opt Soc,1964(10):1267-1279.
    [124]Carlsen W J, Buhrer C F. Flat passband birefrigent wavelength-division multiplexers[J]. Electron Lett,1987,23(3):106-107.
    [125]S Cao, J Chen, J N Damask. Interleaver technology:comparisons and applications requirements[J]. Lightwave Technol,2004,1:281-289.
    [126]C K Madsen. General IIR optical filter design for WDM applications using all-pass filters [J]. Lightwave Technol,2000,18(6):860-868.
    [127]S Cao, J Chen, J N Damask et al. Interleaver technology comparisons and applications requirements [J]. Lightwave Technol,2004,22(1):281-289.
    [128]Yonglin Huang, Jie Li, Guiyun Kai et al. High extinction ratio multiplexer/de multiplexer with a Mach-Zehnder interferometer and a fiber loop mirror[J]. Chin Opt Lett,2003,1(2):63-64.
    [129]http://www.itfoptical.com; http://www.wavesplitter.com.
    [130]吴重庆.光波导理论[M].北京:清华大学出版社,2005.
    [131]Chew Y H. Performance of single2 and Double2ring resonators using 3×3 optical fiber coupler[J]. Lightwave Technol,1993,11 (12):1998-2008.
    [132]Qijie Wang, Ying Zhang, Yeng Chai Soh. All-Fiber 3×3 Interleaver Design With Flat Top Pass-band[J]. IEEE PHOTONICS TECHNOLOGY LETTERS,2004,16(1):168-170.
    [133]J Bures. All-fiber dense wavelength division multiplexer[J]. Proc.SPIE,1994,2321:455-457.
    [134]O Parrioaux, F Bernoux, G Chartier. Wavelength selective distribution coupling between single-mode optical fibers for multiplexing[J]. Opt.Commun,1981,2(2):105-109.
    [135]Kawasaki, B.S, K.O.Hill et al. Biconical Taper Single Mode Fiber Coupler[J]. Opt.Letters,1981,6: 327-328.
    [136]帅词俊.熔锥型光纤器件的流变成形机理、规律与技术研究:(博士学位论文).长沙:中南大学,2006.
    [137]刘国祥.熔锥型全光纤声光器件的研究:(博士学位论文).成都:电子科技大学,2002.
    [138]Diez S, Schubert C, Ludwig R.160Gbit/s demultiplexer using hy-brid gain-transparent SOA Mach-Zehnder interferometer[J]. Elec-tronics Letters,2000,36(17):1484-1486.
    [139]Lacroix S, Gonthier F, Bures J. All-fiber wavelength filter from successive biconical tapers[J]. Optics Letters,1986,11 (10):671-673.
    [140]Boucouvalas A C, Georgiou G. Biconical taper coaxial coupler filter[J]. Electron.Lett,1985,21 (22):1033-1034.
    [141]Yonglin H, Jie L, Xiurong M. High extinction ratio Mach-Zehnder interferometer filter and implementation of single-channel optical switch [J]. Optics Communications,2003,222(1):191-195.
    [142]Tae Young Kim, Suh K.S, Jin Ho Nam. Acoustic monitoring of HV equipment with optical fiber se-nsors[J]. Dielectrics and Electrical Insulation,2003,10(2):266-270.
    [143]Shih-Chu Huang, Wuu-Wen Lin, Meng-Tsan Tsai;Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks[J]. Sensors and Actuators,2007,135(2):570-579.
    [144]Lung Tsai, Horng-Yith Liou, Chang-Yu Tsai. Application of Grey Relational Analysis to Influential Factors on the Optical Fiber Sensor Measurement of the Strain[J]. Journal of Grey System,2006, 18(4):343-354.
    [145]Kee HH, Lees GP, Newson TP. All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering[J]. Optics Letters,2000,25(10):695-697.
    [146]B Chiu, M C Hastings. Analysis of a polarization-maintaining optical fiber interferometer for simultaneous measurement of acoustic pressure and temperature[J]. Journal of Vibration and Acou- stics,1997,119(3):398-403.
    [147]L Mosquera, Jonas H Osorio, Juliano G Hayashi. Refractometric sensor based on all-fiber coaxial Michelson and Mach-Zehnder interferometers for ethanol detection in fuel[J]. Journal of Physics, 2011,274(1):12-20.
    [148]H W Lu, Y E Zhang, G W Luo. Study of all-fiber flat-top passband interleaver based on 2x2 and 3×3 fiber couplers[J]. Opt Comm,2007,276(1):116-121.
    [149]鲁怀伟,章宝歌,李敏芝等.基于双耦合器的平坦型全光纤波长交错滤波器[J].光学精密工程,2006,14(2):145-150.
    [150]T.Chiba, H.Arai, K.Ohira et al. Novel Architecture Of Wavelength Interleving Filter With Fourier Transform-based MZI[C]. Conference on Optical Fiber Communication,2001,54(3):1-3.
    [151]鲁怀伟,褚衍东,罗冠炜.一种新型级联M-Z波长交错器的设计与实验[J].光电子激光,2007,18(12):1426-1429.
    [152]李卫彬,孙军强.一种基于双耦合器谐振环的梳状滤波器特性分析[J].中国激光,2008,35(8):1191-1194.
    [153]章宝歌,陶彩霞,鲁彦.全光纤马赫-曾德尔干涉仪型不等带宽梳状滤波器[J].光电子·激光,21(11):1641-1644.
    [154]许鸥,鲁韶华,董小伟等.基于微环谐振器阵列与马赫-曾德尔干涉仪的反射型滤波器性能分析[J].光学学报,2007,27(8):1443-1446.
    [155]Y Zhang, W.C Huang, X.L Wang et al. Design of flat-top interleaver and tunable dispersion compensator using cascaded Sagnac loop mirrors and ring resonators[J]. Applied Optics,2009,48 (32):6213-6222.
    [156]董小伟,裴丽,简水生.集成串联环型谐振光滤波器特性的数值分析[J].光学学报,2006,26(2):207-211.
    [157]吴重庆.光波导理论[M].北京:清华大学出版社,2005.
    [158]Chew Y H, Tjhung T T, Mendis F V C. Perfomance of single-and double-resonators using 3×3 optical fiber coupler[J]. Lightwave Teehnol,1993,11(2):1998-2008.
    [159]DANDRIDGE A. Zero path-length difference in fiber-optic interferometers[J]. Journal Lightwave Technology,1983,1(3):514-516.
    [160]Wang Q, He S L. Optimal Design of Planar Wavelength Circuits Based on Mach-Zehnder Interferometers and Their Cascaded Forms[J]. Lightw. Technol,2005,23(3):1284-1290.
    [161]张娟,刘立人,周煌等.双折射滤波器光谱透射率函数平顶化优化计算[J].光学学报,2003,23(4):426-430.
    [162]Kok S W, Zhang Y, Wen C Y et al. Design of allfiber optical interleavers with a given specification on passband ripples[J]. Optics Communications,2003,226:241-248.
    [163]Kuznetsov M. Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division multiplexer optical systems[J]. Lightwave Techn,1994,12(2):226-230.
    [164]H W Lu, Y E Zhang, G W Luo. Study of all-fiber flat-top passband interleaver based on 2×2 and 3x3 fiber couplers[J]. Opt Comm,2007,276(1):116-121.
    [165]邵永红.光学梳状滤波器技术研究[D]:(博士学位论文).北京:中国科学院,2003.
    [166]Ed Hartead. It is time to deploy40G technology[J]. Telecom World,2002,8(10):46.
    [167]Ghislain L P, Sommer R, Ryall R J. Miniature solid Etalon interleaver[A]. NFOEC, Amer,2001,18 (6):208-212.
    [168]CHENG Chi-hao. Asymmetrical interleaver structure based on the modified Michelson interferometer [J]. Opt Eng,2005,44(11):1-5.
    [169]张婷,陈凯,赵帅等.双折射光纤环镜不等带宽交错复用器的研究[J].光电子·激光,2005,16(4):436-440.
    [170]D X Dai, S L He. Novel ultrasmall Si-nanowire-based arrayed-waveguide grating interleaver with spirals[J]. Opt Comm,2008,281(13):3471-3475.
    [171]N Kumar, MRSBP Pal. Flattop all-fiber wavelength interleaver for DWDM transmission:Design analysis, parameter optimization, fabrication and characterization recipe[J]. Opt Comm,2008, 281(20):5156-5164.
    [172]W. Y Chan, K X Chen, H. P Chan et al. A flattop PLC polymer waveguide interleaver based on folded two-stage-cascaded Y-junction Mach-Zehnder interferometers[J]. Opt Comm,2009,282(5): 883-886.
    [173]E E Ren, H W Lu, B G Zhang et al. Optimization design of all-fiber 3×3 multiplexer based on an asymmetrical Mach-Zehnder interferometer[J]. Opt Comm,2009,282(14):2818-2822.
    [174]R L Rao, H W Lu. Study of Comb-Filter Based on 2×2 and 3×3 Fiber Couplers[A]. Proceedings of the First International Symposium on Test Automation & Instrumentation,2006,3:640-643.
    [175]L Wei, J W Y Lit. Design optimization of flat top interleaver and its dispersion compensation[J]. Opt Express,2007,15(10):6439-6457.
    [176]张瑞峰,王书慧,葛春风等.不等带宽奇偶交错滤波器设计[J].天津大学学报,2006,39(3):365-368.
    [177]鲁怀伟,章宝歌,邬开俊等.级联马赫-曾德尔干涉仪型不等带宽交错滤波器的设计[J].光学学报,2010,30(8):2406-2411.
    [178]CHENG Chi-hao. Asymmetrical interleaver structure based on the modified Michelson interferom-eter[J]. Opt Eng,2005,44(11):1-5.
    [179]张瑞峰,王书慧,葛春风等.不等带宽奇偶交错滤波器设计[J].天津大学学报,2006,39(3):365--368.
    [180]张婷,陈凯,赵帅等.双折射光纤环镜不等带宽交错复用器的研究[J].光电子·激光,2005,16(4):436-440.
    [181]Kim T T, Lee D G, Park H Y et al. Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photoic crystals[J]. Opt. Express,2010,18(6):5384-5389.
    [182]HUANG Yong-lin, LI Jie, DONG Xiao-yi et al. High extinc-tion ratio Mach-Zehnder interferometer filter and imple-mentation of single-channel optical switch[J]. Opt Comm,2003,222:191-195.
    [183]Qing Ye, Ronghui Qu, Zujie Fang. Generation of millimeter-wave sub-carrier optical pulse by using a Fabry-Perot interferometer[J]. Chin. Opt. Lett,2007,5(1):8-10.
    [184]N Neumann, M Ebermann, K Hiller et al. Tunable infrared detector with integrated micromachined Fabry-Perot filter[C]. MOEMS and Miniaturized Systems,2007.
    [185]张娟,王昌,杨小伟.迈克耳孙Gires-Tournois干涉仪型梳状滤波器的奇偶周期特性分析[J].中国激光,2009,36(3):587-591.
    [186]董新永,赵春柳.基于悬臂梁啁啾调谐的光纤光栅滤波器[J].光电子·激光,2010,21(10):1455-1458.
    [187]Gang Junliu, Qu Li, Guo Liangjinet al. Transfer matrix method analysis of apodized grating couplers [J]. Opt.Commun,2004,235:319-324.
    [188]Otto Schwelb. Transmission, group delay and dispersion insingle-ring optical resonators and add/drop filters-a tutorialoverview[J]. Lightwave Technol,2004,22(5):1380-1394.
    [189]董小伟,裴丽,简水生.集成串联环型谐振光滤波器特性的数值分析[J].光学学报,2006,26(2):207-211.
    [190]M T Zhou, Q J Wang, B Luo et al. Performance improvement and wavelength reuse in millimeter-wave radio-over-fiber links incorporating all-fiber optical interleaver[J]. Opt Comm,2008,281 (9) :2572-2581.
    [191]Chao-Wei Lee, Ruibo Wang, Pochi Yehet al. A flat-top birefringent interleaver based on ring-cavity architecture[J]. Opt. Commun,2006,260:311-317.
    [192]Jinguji Kaname, Kawachi Masao. Synthesis of coherent two port lattice form optical delay-line ciruit[J]. Lightwave Technol,1995,13(1):73-82.
    [193]D X Dai, S L He. Novel ultrasmall Si-nanowire-based arrayed-waveguide grating interleaver with spirals[J]. Opt Comm,2008,281 (13):3471-3475.
    [194]邹喜华,潘炜,罗斌等.非惆啾取样光纤布拉格光栅反射峰值波长的分析.光学学报,2007,27(6):971-976.
    [195]Pei Li, Dong Xiaowei, Li Bin et al. Interleaver technology in DWDM system[J]. Optical Fiber & Electric Cable,2004,1:11-13.
    [196]汪歆.改善干涉型光纤微弱磁场传感器性能的若干关键技术研究[D]:(博士学位论文).上海:上海交通大学,2009.
    [197]W B Li, J Q Sun. Characteristic analysis on an interleaver with a fiber loop resonator by using a signal flow graph method[J]. Optica Applicata,2008,38(3):503-510.
    [198]M F Huang, J J Chen, J Yu et al. A novel dispersion-free interleaver for bidirectional DWDM transmission systems[J]. Lightwave Technol,2007,25(11):3543-3554.
    [199]L Rosa, K Saitoh, K Kakihara et al. Genetic-Algorithm Assisted Design of C-Band CROW Miniaturized PCW Interleave[J]. Lightwave Technol,2009,27(14):2678-2687.
    [200]J F Song, Q Fang, S H Tao et al. Proposed silicon wire interleaver structure[J]. Optics express, 2008,16(11):7849-7859.
    [201]M. Kuznetsov. Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division multiplexer optical systems[J]. Lightwave Technol,1994,12(2):226-230.
    [202]孟义朝,黄肇明,王陆唐.马赫曾德尔干涉仪型波长交错器研究[J].光学学报,2003,23(5):575-580.
    [203]何娜,吴重庆.熔锥平行排列3×3单模光纤耦合器的研究[J].中国激光,2004,31(3):323-328.
    [204]S Q Yao, Z H Wang. Theoretical analysis and experiments of 3 arm interferometric DWDM[J]. Acta Photonica Sinica,2000,29(4):339-343.
    [205]LIU Ai_ming, WU Chong_qing. Dual Loop Optical Buffer Based on A 3×3 Collinear Fiber Coupler [J]. IEEE Pho-ton, Technol Lett,2004,16:2129-2131.
    [206]章宝歌,王天鹏,鲁怀伟.四级方向耦合器组成的全光纤波长交错滤波器[J].光电工程,2009,36(3):93-96.
    [207]鲁怀伟,张玉娥,罗冠炜.基于2×2和3×3耦合器的级联马赫-曾德干涉仪型波长交错滤波器[J].光学精密工程,2007,15(7):1021-1025.
    [208]H W Lu, Y E Zhang, G W Luo. Study of all-fiber flat-top passband interleaver based on 2x2 and 3x3 fiber couplers[J]. Opt Comm,2007,276(1):116-121.
    [209]Y H Ja. A Single-Mode Optical Fiber Ring Resonator Using a Planar 3×3 fiber Coupler and a Sagnac Loop[J]. Lightwave Technol,1994,12:1348-1354.
    [210]A M Liu, C Q Wu, Y D Gong et al. Dual loop optical buffer based on a 3×3 collinear fiber coupler[J]. IEEE Photon Technol. Lett,2004,16:2129-2131.
    [211]A M Liu, C Q Wu, M S Lim et al. A novel optical buffer configuration based on a 3x3 collinear fiber coupler. IEEE Photon Technol[J]. Lett,2004,40:1017-1019.
    [212]E E Ren, H W Lu, B G Zhang et al. Optimization design of all-fiber 3×3 multiplexer based on an asymmetrical Mach-Zehnder interferometer[J]. Opt Comm,2009,282(14):2818-2822.
    [213]Kumar N, Shenoy M R, Pal B P. Flattop all-fiber wavelength interleaver for DWDM transmission: Design analysis, parameter optimization, fabrication and characterization recipe[J]. Opt Commu, 2008,281:5156-5164.
    [214]Q J Wang, Y Zhang, Y C Soh. All-fiber 3×3 interleaver design with flat-top passband. IEEE Photon Technol[J]. Lett,2004,16(1):168-170.
    [215]H W Lu, Y E Zhang, G W Luo. Study of all-fiber flat-top passband interleaver based on 2×2 and 3×3 fiber couplers[J]. Opt Comm,2007,276(1):116-121.
    [216]鲁怀伟,章宝歌,李敏芝等.基于双耦合器的平坦型全光纤波长交错滤波器[J].光学精密工程,2006,14(2):145-150.
    [217]邵永红.光学梳状滤波器技术研究[D]:(博士学位论文).北京:中国科学院,2003.
    [218]Kolesik M, Matus M. All-optical Mach-Zehnder interferometer-based demultiplexer a computer simulationstudy[J]. IEEE Photo Tech Lett,2003,15(1):78-80.
    [219]章宝歌,王梓丞,李根.非对称M-Z型Interleaver输出光谱特性分析[J].兰州交通大学学报,2010,29(4):18-20.
    [220]Q. J.Wang, T. Liu, Y. C. Soh et al. All-Fiber F3 T interleaver design with specified performance parameters [J]. Opt. Eng,2003,43:3172-3178.
    [221]章宝歌,李碧琦,鲁彦.非对称马赫-曾德尔干涉仪型不等带宽光学梳状滤波器[J].光学精密工程,2010,18(10):2150-2155.
    [222]张佳宁,赵海发,郑嘉敏.不等带宽光学梳状滤波器[J].光子学报,2007,36(11):2046-2048.
    [223]董小伟,裴丽,许鸥等.环形谐振器辅助马赫-曾德尔干涉仪型波长交错滤波器的研究[J].光学学报,2008,28(4):638-642.
    [224]章宝歌,陶彩霞,鲁彦.全光纤马赫-曾德尔干涉仪型不等带宽梳状滤波器[J].光电子·激光,2010,21(11):1641-1644.
    [225]Zhujun Wan, Yaming Wu. Tolerance Analysis of Lattice-Form Optical Interleaver With Different Coupler Structures[J]. JOURNAL OF LIGHTWAVE TECHNOLOGY,2006,24(12):5013-5018.
    [226]张瑞峰,王书慧,葛春风等.不等带宽奇偶交错滤波器设计[J].天津大学学报,2006,39(3):365-368.
    [227]M. Kuznetsov. Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division multiplexer optical systems[J]. Lightwave Technol,1994,12(2):226-230.
    [228]邵永红.光学梳状滤波器技术研究[D]:(博士学位论文).北京:中国科学院,2003.
    [229]Jianyi Yang, Fan Wang, Xiaoqing Jiang et al. Linearization of Mach-Zehnder modulator using micr-oring based all-pass filter[J]. Chin. Opt. Lett,2005,3(6):333-335.
    [230]姚寿铨,陈凯旋.光纤马赫-陈德尔干涉型8波分超窄波分复用器的研制[J].光学学报,1998,18(8):1113-1117.
    [231]Ja Y H. A single-mode optical fiber ring resonator using a planar3×3 fiber coupler and a sagnac loop[J]. J. Lightwave Technol,1994,12:1348-1354.
    [232]Ja Y H. Analysis of optical fiber ring resonators using a collinear 3×3 fiber coupler[J]. IEEE Quantum Electron,1994,30:2639-2644.
    [233]Qijie Wang, Ying Zhang, Yeng Chai Soh. All-fiber 3×3 interleaver design with flat-top passband[J]. IEEE Photon. Technol. Lett.,2004,16(1):168-170.
    [234]Yi-Chao Meng, Zhao-Ming Huang, Lu-Tang Wang et al. Hybrid optical comb filter with multi-port fiber coupler for DWDM optical network[J]. Acta Optica Sinica,2003, Supplement.
    [235]孟义朝,黄肇明,王陆唐.马赫-曾德尔干涉仪型波长交错器研究[J].光学学报,2003,23(5):575-580.
    [236]姚寿铨,王子华.用三干涉臂马赫-曾德尔干涉仪制成的光纤密集型波分复用器[J].光学学报,2000,20(7):952-956.
    [237]YAO S, WANG Z H. Theoretical analysis and experiment of 3 arm interferometric DWDM[J]. Acta Photonica Sinica,2000,29(4):339-343.
    [238]Ja Y H. Analysis of four port optical fiber ring and loop resonators using a 3x3 fiber coupler and degenerate two wave mixing [J]. IEEE Photon technol Lett,1992,4:743-745.
    [239]Yan Fang Chen, Zhen yi, Song Yuezhu. An All-Fiber Fused Biconical Filter with Two Ring-Three Fiber Mutually Couplings[J]. ACTA OPTICA SINICA,1997,17(2):181-184.
    [240]任恩恩,鲁彦,鲁怀伟等.全光纤MZI型三信道波长交错滤波器的改进[J].光学精密工程,2010,18(7):1484-1490.
    [241]KOK S W, ZHANG Ying, WEN Chang-yun et al. Design of all-fiber optical interleavers with a given specification on passband ripples[J]. Optics Communications,2003,226:241-248.
    [242]鲁怀伟,张玉娥,罗冠炜.基于2×2和3x3耦合器的级联马赫-曾德干涉仪型波长交错滤波器[J].光学精密工程,2007,15(7):339-347.
    [243]WANG Q J, ZHANG Y, SON Y C. All-Fiber 3×3 Interleaver Design With Flat-Top Passband[J]. Passband[J]. IEEE Photon Technol. Lett.,2004,16(1):168-170.
    [244]章宝歌.马赫-曾德尔干涉仪的光纤耦合容差分析[J].兰州交通大学学报,已接受,于2011年12月出版。
    [245]YAO S, WANG Z H. Theoretical analysis and experiment of 3 arm interferometric DWDM[J]. Acta Photonica Sinica,2000,29(4):339-343.
    [246]章宝歌,王天鹏,鲁怀伟.利用三个3×3耦合器串连构成干涉型三波长波分复用器[J].光电工程,2009,36(8):147-150.
    [247]姚寿铨,王子华.用三干涉臂马赫-曾德尔干涉仪制成的光纤密集型波分复用器[J].光学学报,2000,20(7):952-956.
    [248]Qijie Wang, Ying Zhang, Yeng Chai Soh. All-Fiber 3x3 Interleaver Design With Flat-Top Pass-band[J]. IEEE PHOTONICS TECHNOLOGY LETTERS,2004,16(1):168-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700