心衰心肌细胞肌浆网钙泵异常的机制及药物干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:通过观察心衰心肌细胞PLB(受磷蛋白)、SERCA2a(肌浆网钙泵)、CaM(钙调蛋白)、CaMKⅡ(钙调蛋白依赖性蛋白激酶Ⅱ)、PKA(蛋白激酶A)、PP1α(蛋白磷酸酶1α)的表达,PKA、CaMKⅡ的活性和SERCA2a的功能以及缬沙坦(ARB)、辛伐他汀(statins)药物对心衰心肌细胞以上方面的影响,探讨心力衰竭的机制以及ARB、statins药物改善心力衰竭的机制。
     研究方法:24只新西兰白兔分为4组,第1组为假手术组,2、3、4组联合应用主动脉瓣破坏术及腹主动脉缩窄术建立慢性心力衰竭模型;第2组为心力衰竭组;第3组为缬沙坦干预组,术后给予缬沙坦20mg·kg-1·d-1灌胃,连续7周;第4组为辛伐他汀干预组,术后即给予辛伐他汀10mg·kg-1·d-1灌胃,连续7周。观察开始及结束时进行超声心动图检查,测量左房内径(LAd)、左心室舒张末期内径(LVIDd)、左心室收缩末期内径(LVIDs)、室间隔厚度(IVSd)、左心室后壁厚度(LVPwd)、左心室射血分数(EF)、左心室缩短率(FS)。心导管法记录左心室舒张末压(LVEDP)、左室收缩末压(LVESP)、主动脉收缩压(ASBP)及舒张压(ADBP),同时记录心率(HR)。测量结束后处死动物、取标本。测量心脏重量、左心室重量、心脏重量指数、左心室重量指数;光镜检查心肌组织切片。RT-PCR检测心肌肌浆网钙泵(sarcoplasmic reticulum calcium adenodine triphosphatase,SERCA2a)、受磷蛋白(phospholamban,PLB)mRNA水平; Western blot检测PLB、SERCA2a、钙调蛋白(calmodulin,CaM)、钙调蛋白依赖性蛋白激酶Ⅱ(calcium/calmodulin-dependent protein kinase-Ⅱ,CaMKⅡ)、蛋白激酶A(protein kinase A,PKA)、蛋白磷酸酶1α(protein phosphatase 1 alpha,PP1α)的蛋白表达水平;用γ-32P掺入法测定CaMKⅡ和PKA的活性,无机磷酸根法测定SERCA2a活性,利用光谱荧光检测技术测定肌浆网的摄钙能力。
     结果:与假手术组比较,心衰组左心室重量、心脏重量指数、左心室重量指数、心率、LVESP、LVEDP显著升高(2.48±0.15g vs 7.15±0.59g,P<0.05;2.29±0.05g/kgvs 5.20±0.25g/kg,P<0.05;1.32±0.06g/kg vs 3.61±0.09g/kg,P<0.05;244.67±9.39bpm vs 270.50±2.88bpm,P<0.05;112.67±3.78mm Hg vs 139.50±3.08mm Hg,P<0.05;-0.50±1.05mm Hg vs 23.00±2.37mm Hg,P<0.05);与心衰组比较,缬沙坦组和辛伐他汀组的左心室重量、心脏重量指数、左心室重量指数、心率、LVESP、LVEDP显著降低(7.15±0.59g vs 4.82±0.21g、5.15±0.24g,P<0.05;5.20±0.25g/kg vs 2.83±0.03g/kg、2.88±0.08g/kg,P<0.05;3.61±0.09g/kg vs 2.07±0.14g/kg、2.17±0.13 g/kg,P<0.05;270.50±2.88bpm vs 252.67±3.50bpm、254.50±2.07 bpm,P<0.05;139.50±3.08mm Hg vs 122.17±0.75mm Hg、123.00±1.09mm Hg , P<0.05 ;23.00±2.37mm Hg vs 2.17±0.72mm Hg、2.33±0.52mm Hg,P<0.05);与假手术组比较,心衰组FS及EF明显降低(37.83±3.58﹪vs 17.38±3.13﹪,P<0.05;71.92±4.56﹪vs 38.50±6.07﹪,P<0.05);缬沙坦干预组和辛伐他汀干预组FS及左室EF明显高于心衰组(17.38±3.13﹪vs 33.83±2.85﹪、33.33±2.21﹪,P<0.05;38.50±6.07﹪vs 64.45±3.66﹪、62.15±3.34﹪,P<0.05)。
    
     与假手术组比较,心衰组SERCA2a和PLB mRNA表达下降(SERCA2a/β-actin:1.06±0.16 vs 0.70±0.04,P<0.05;PLB/β-actin:1.12±0.07 vs 0.81±0.04,P<0.05),心衰组SERCA2a、PKA蛋白表达下降(SERCA2a/β-actin:1.02±0.02 vs 0.69±0.04,P<0.05;PKA/β-actin:1.05±0.08 vs 0.61±0.03,P<0.05),心衰组CaMKⅡ、PP1α蛋白表达升高(CaMKⅡ/β-actin:0.89±0.05 vs 1.45±0.13,P<0.05;PP1α/β-actin:0.39±0.07 vs 1.25±0.06,P<0.05),心衰组PKA活性下降(1.85±0.05pmol/min/μg vs 1.09±0.09pmol/min/μg,P<0.05),心衰组CaMKⅡ活性增加(2.18±0.13pmol/min/μg vs 3.54±0.17 pmol/min/μg , P<0.05 ),心衰组SERCA2a活性下降(15.01±1.00μmolPi/mgp/h vs 8.32±0.15μmolPi/mgp/h,P<0.05),心衰组肌浆网摄钙能力下降(肌浆网外液Ca2+浓度下降百分比:95.52±2.12 vs 54.39±7.87,P<0.05)。
     与心衰组相比,缬沙坦干预组和辛伐他汀干预组SERCA2a、PLBmRNA表达增加(SERCA2a/β-actin:0.70±0.04 vs 0.90±0.04、0.86±0.02,P<0.05;PLB/β-actin:0.81±0.04 vs 1.01±0.06、0.96±0.07,P<0.05),缬沙坦干预组和辛伐他汀干预组SERCA2a、PKA蛋白表达增加(SERCA2a/β-actin:0.69±0.04 vs 0.91±0.02、0.87±0.03,P<0.05;PKA/β-actin:0.61±0.03 vs 0.86±0.06、0.78±0.07,P<0.05),缬沙坦干预组和辛伐他汀干预组CaMKⅡ、PP1α蛋白表达降低(CaMKⅡ/β-actin:1.45±0.13 vs 1.11±0.12、1.16±0.06,P<0.05;PP1α/β-actin:1.25±0.06 vs 0.78±0.12、0.81±0.09 , P<0.05 ),缬沙坦干预组和辛伐他汀干预组PKA活性增加(1.09±0.09pmol/min/μg vs 1.51±0.03pmol/min/μg、1.44±0.04pmol/min/μg,P<0.05),缬沙坦干预组和辛伐他汀干预组CaMKⅡ活性降低(3.54±0.17 pmol/min/μg vs 2.71±0.05 pmol/min/μg、2.83±0.14 pmol/min/μg,P<0.05),缬沙坦干预组和辛伐他汀干预组SERCA2a活性增加(8.32±0.15μmolPi/mgp/h vs 12.46±0.38μmolPi/mgp/h、11.81±0.63μmolPi/mgp/h,P<0.05),缬沙坦干预组和辛伐他汀干预组肌浆网摄钙能力升高(肌浆网外液Ca2+浓度下降百分比:54.39±7.87 vs 81.72±4.86、76.95±3.76,P<0.05)。
     结论:1.用超容量负荷联合压力负荷,可成功建立兔慢性心力衰竭模型。2.缬沙坦和辛伐他汀有效抑制心室重构,改善心功能。3.心力衰竭机制之一可能是:(1)SERCA2a表达的减少导致其活性下降;(2)PLB的表达减少导致SERCA2a的活性降低;(3)PKA表达、活性降低和PP1α表达增加引起了PLB的去磷酸化程度增加抑制了SERCA2a的活性;(4)CaMKⅡ表达和活性增加加重了心衰。4.缬沙坦和辛伐他汀能够抑制CaMKⅡ、PP1α表达;增加PLB、SERCA2a、PKA表达;增加SERCA2a、PKA活性,抑制CaMKⅡ活性,提高肌浆网的摄钙能力。
Objection: This study was to evaluate the effects of valsartan and simvastatin on expressions of PLB、SERCA2a、CaM、CaMKⅡ、PKA、PP1α, CaMKⅡactivity, PKA activity, SERCA2a function, heart function of chronic heart failure and investigate the mechanisms of chronic heart failure and mechanisms of cardioprotective effects of valsartan and simvastatin .
     Methods: 24 rabbits were divided 4 groups, group I: received sham operation as health control. In other groups, aortic regurgitation and coarctation of ascending aorta were operated in rabbits. Group II was received no drugs. In group III, rabbits were given valsartan 20mg·kg-1·d-1 after the operation. In group IV, rabbits were given simvastatin 10mg·kg-1·d-1 after the operation. At begin and end of treatment period, LAd、LVIDd、LVIDs、IVSd、LVPwd、EF、FS were detected via echocardiography and left ventricular end LVEDP、LVESP、ASBP and ADBP were measured via catheterization. At the end of experiment, heart weight、left ventricular weight、body weight、heart weight index、left ventricular weight index were measured. RT-PCR was used to evaluate( sarcoplasmic reticulum calcium adenodine triphosphatase , SERCA2a) and (phospholamban ,PLB )mRNA expressions.Western blot analysed SERCA2a protein expressions in cardiomyocyte membrane and calmodulin(CaM)、calcium/calmodulin-dependent protein kinase-Ⅱ(CaMKⅡ)、protein kinase A(PKA) and protein phosphatase 1 alpha(PP1α) expressions in cardiomyocytes cytosol. CaMKⅡand PKA activity was determined by [γ-32P] ATP-binding assays. SERCA2a activity was examined by inorganic phosphate. Calcium uptake by sarcoplasmic reticulum was determined with fluorescence spectroscopy.
     Results: Compared with sham-operated rabbits, heart weight、heart weight index、left ventricular weight index、HR、LVESP、LVEDP of congestive heart failure (CHF) rabbits were significantly increased ((2.48±0.15g vs 7.15±0.59g,P<0.05; 2.29±0.05g/kg vs 5.20±0.25g/kg,P<0.05;1.32±0.06g/kg vs 3.61±0.09 g/kg,P<0.05;244.67±9.39bpm vs 270.50±2.88bpm,P<0.05;112.67±3.78mm Hg vs 139.50±3.08mm Hg,P<0.05;-0.50±1.05mm Hg vs 23.00±2.37mm Hg,P<0.05),compared with CHF rabbits, in rabbits received treatment of valsartan and simvastatin, heart weight、heart weight index、left ventricular weight index、HR、LVESP、LVEDP were significantly decreased ((7.15±0.59g vs 4.82±0.21g、5.15±0.24g,P<0.05;5.20±0.25g/kg vs 2.83±0.03g/kg、2.88±0.08g/kg,P<0.05;3.61±0.09g/kg vs 2.07±0.14g/kg、2.17±0.13 g/kg,P<0.05;270.50±2.88bpm vs 252.67±3.50bpm、254.50±2.07 bpm,P<0.05;139.50±3.08mm Hg vs 122.17±0.75mm Hg、123.00±1.09mm Hg,P<0.05;23.00±2.37mm Hg vs 2.17±0.72mm Hg、2.33±0.52 mm Hg,P<0.05);compared with sham-operated rabbits, the EF and FS of CHF rabbits were significantly decreased (37.83±3.58﹪vs 17.38±3.13﹪,P<0.05;71.92±4.56﹪vs 38.50±6.07﹪,P<0.05),compared with CHF rabbits, in rabbits received treatment of valsartan and simvastatin, EF and FS were significantly increased (17.38±3.13﹪vs 33.83±2.85﹪、33.33±2.21﹪,P<0.05;38.50±6.07﹪vs 64.45±3.66﹪、62.15±3.34﹪,P<0.05).
     Compared with sham-operated rabbits, the gene expressions of SERCA2a、PLB of CHF rabbits were significantly decreased (SERCA2a/β-actin:1.06±0.16 vs 0.70±0.04,P<0.05;PLB/β-actin:1.12±0.07 vs 0.81±0.04,P<0.05),and protein expressions of SERCA2a、PKA of CHF rabbits were significantly decreased(SERCA2a/β-actin :1.02±0.02 vs 0.69±0.04,P<0.05;PKA/β-actin:1.05±0.08 vs 0.61±0.03,P<0.05), protein expressions of CaMKⅡ、PP1αof CHF rabbits were significantly increased(CaMKⅡ/β-actin:0.89±0.05 vs 1.45±0.13,P<0.05;PP1α/β-actin:0.39±0.07 vs 1.25±0.06,P<0.05),the activity of PKA of CHF rabbits was significantly decreased(1.85±0.05pmol/min/μg vs 1.09±0.09pmol/min/μg,P<0.05),activity of CaMKⅡof CHF rabbits was significantly increased(2.18±0.13pmol/min/μg vs 3.54±0.17 pmol/min/μg , P<0.05) , activity of SERCA2a of CHF rabbits was significantly decreased(15.01±1.00μmolPi/mgp/h vs 8.32±0.15μmolPi/mgp/h,P<0.05),calcium uptake by sarcoplasmic reticulum of CHF rabbits was significantly decreased(percent of downregulation of calcium concentration out of SR:95.52±2.12 vs 54.39±7.87,P<0.05).
     In rabbits treated by valsartan and simvastatin, the gene expressions of SERCA2a and PLB were upregulated(SERCA2a/β-actin:0.70±0.04 vs 0.90±0.04、0.86±0.02,P<0.05;PLB/β-actin:0.81±0.04 vs 1.01±0.06、0.96±0.07,P<0.05);valsartan and simvastatin significantly promoted protein expressions of SERCA2a、PKA (SERCA2a/β-actin:0.69±0.04 vs 0.91±0.02、0.87±0.03,P<0.05;PKA/β-actin:0.61±0.03 vs 0.86±0.06、0.78±0.07,P<0.05),and decreased protein expressions of CaMKⅡ、PP1α(CaMKⅡ/β-actin:1.45±0.13 vs 1.11±0.12、1.16±0.06,P<0.05;PP1α/β-actin:1.25±0.06 vs 0.78±0.12、0.81±0.09,P<0.05);valsartan and simvastatin significantly diminished activity of CaMKⅡ(3.54±0.17 pmol/min/μg vs 2.71±0.13 pmol/min/μg、2.83±0.14 pmol/min/μg,P<0.05)and increased activity of SERCA2a (8.32±0.15μmolPi/mgp/h vs 12.46±0.38μmolPi/mgp/h、11.81±0.63μmolPi/mgp/h,P<0.05)and PKA(1.09±0.09pmol/min/μg vs 1.51±0.03 pmol/min/μg、1.44±0.04pmol/min/μg , P<0.05). Valsartan and simvastatin significantly increased calcium uptake by sarcoplasmic reticulum(percent of downregulation of calcium concentration out of SR:54.39±7.87 vs 81.72±4.86、76.95±3.76,P<0.05).
     Conclusion: 1.Animal model of heart failure were established by volume overload plus pressure overload in rabbits successfully.2.Given valsartan and simvastatin in chronic heart failure rabbit models could prevent heart enlarge and inhibite the development of cardiac hypertrophy and improve cardiac function. 3.The mechanisms of heart failure include: (1) Downregulation of protein expression of SERCA2a led to downregulation of SERCA2a activity; (2) Downregulation of expression of PLB decreased SERCA2a activity; (3) Downregulation of protein expression of PKA and PKA activity、upregulation of protein expression of PP1αincreased phosphorylation of PLB,which inhibited SERCA2a activity;(4) Upregulation of protein expression of CaMKⅡand CaMKⅡactivity aggravated heart failure. 4.Valsartan and simvastatin inhibited the protein expressions of CaMKⅡ、PP1αand CaMKⅡactivity in cardiomyocytes cytosol, promoted gene expressions of SERCA2a and PLB, increased protein expressions and activity of SERCA2a、PKA , increased calcium uptake by sarcoplasmic reticulum.
引文
1. Tsao L,Gibson CM.Heart failure: an epidemic of the 21st century[J].Crit Pathw Cardiol. 2004,3:194-204.
    2. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observation and clinical implications [J].Circulation,1990,81: 1161-1172.
    3. Nahrendorf M, Hu K, Hiller KH et al. Impact of hydroxymethylglutaryl coenzyme a reductase inhibition on left ventricular remodeling after myocardial infarction [J].JACC, 2002,40: 1695-1700.
    4. Currie S,Smith GL.Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure [J].Cardiovasc Res,1999,41:135-146.
    5. Konrad F. Frank, Birgit B?lck, Erland Erdmann ,etal.Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation [J].Cardiovasc Res,2003,57:20-27.
    6. Sande JB,Sjaastad I,Hoen IB,et al.Reduced level of serine(16) phosphorylated phospholamban in the failing rat myocardium: a major contributor to reduced SERCA2 activity [J].Cardiovasc Res, 2002,53:382-391.
    7. Maclennan DH,Tovofuku T,Kimura Y,etal.Sites of regulatory interaction between calcium ATPases and phospholamban [J].Basic Res Cardiol,1997,92:11-15.
    8. Hayashidani S, Tsutsui H, Shiomi T et al. Fluvastatin, a 3-Hydroxy-3- Methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction [J].Circulation, 2002,105: 868-873.
    9. Thai H,Guarraia D,Johnson N,etal.Valsartan Therapy in Heart Failure After yocardial Infarction: The Role of Endothelial Dependent Vasorelaxation [J].J Cardiovasc Pharmacol,2007,50:703-707.
    1. Ho KK, Pinsky JL, Kannel WB, et al. The epidemiology of heart failure: the Framingham Study [J]. J Am Coll Cardiol, 1993,22: 6A-13A.
    2.邹操,刘志华,赵彩明,等.超容量负荷联合压力负荷制备家兔心衰模型的可行性探讨[J].实验动物与比较医学,2005,25:211-214.
    3. Hayashidani S, Tsutsui H, Shiomi T et al. Fluvastatin, a 3-Hydroxy-3- Methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure afterexperimental myocardial infarction [J]. Circulation, 2002, 105: 868-873.
    4. Laufs U, Custodis F, Bohm M.HMG-CoA reductase inhibitors in chronic heart failure [J]. Drugs, 2006, 66: 145-154.
    5. Saka M, Obata K, Ichihara S, et al.Pitavastatin improves cardiac function and survival in association with suppression of the myocardial endothelin system in a rat model of hypertensive heart failure [J].J Cardiovasc Pharmacol, 2006,47: 770-779.
    6. Thai H,Guarraia D,Johnson N,etal.Valsartan Therapy in Heart Failure After yocardial Infarction: The Role of Endothelial Dependent Vasorelaxation [J].J Cardiovasc Pharmacol, 2007,50:703-707.
    7. Bissessor N,White H.Valsartan in the treatment of heart failure or left ventricular dysfunction after myocardial infarction [J].Vasc Health Risk Manag, 2007,3:425-430.
    8.刘晓垄,傅向华,马宁,等.心力衰竭的动物模型[J].国外医学.心血管疾病分册,2004,31:100-102.
    9.曹济民.心力衰竭实验研究进展[J] .基础医学与临床,2002,22:16-25.
    10. Pogwzid SM.Nonreentrant mechanisms underlying spontaneous ventricular arrhythmias in a model of nonischemic heart failure in rabbits [J].Circulation,1995,92: 1034-1048.
    11. Gilson N,Ei Houda Bouanani N,Corsin A,etal.Left ventricular function and beta-adrenoceptors in rabbit failing heart [J].AM J Physiol,1990,258:H634-641.
    12. Patel R, Nagueh SF, Tsybouleva N, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy [J]. Ciculation, 2001,104: 317-324.
    13. Chen MS, Xu FP, Wang GP et al. Statins initiated after hypertrophy inhibit oxidative stress and prevent heart failure in rats with aortic stenosis [J]. J Mol Cell Cardiol, 2004, 37: 889-896.
    14. Hayashidani S,Tsutsui H,Shiomi T,etal. Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction [J]. Ciculation,2002,105:868-873.
    15. Ray JG,Gong Y,Sykora K,etal.Statin use and survival outcomes in elderly patients with heart failure [J].Arch Intern Med, 2005,165:62-67.
    16. Horwich TB,Maclellan WR,Fonarow GC.Statin therapy is associated with improved survival in ischemic and non-ischemic heart failure [J].J Am Coll Cardiol,2004,43:642- 648.
    17. Heart Protection Study Collaborative Group,Emberson JR,Ng LL,Armitage J,etal.N-terminal Pro-B-type natriuretic peptide, vascular disease risk, and cholesterol reduction among 20,536 patients in the MRC/BHF heart protection study [J].J Am Coll Cardiol,2007,49:311-319.
    18. Bauersachs J,Stork S,Kung M,etal.HMG CoA reductase inhibition and left ventricular mass in hypertrophic cardiomyopathy: a randomized placebo-controlled pilot study [J].Eur J Clin Invest,2007,37:852-859.
    19. Ledoux J, Gee DM,Leblanc N.Increased peripheral resistance in heart failure: new evidence suggests an alteration in vascular smooth muscle function [J].Br J Pharmacol, 2003,139:1245-1248.
    20. Laufs U, Fata VL, Plutzky J,etal.Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors [J].Circulation, 1998,97:1129-1135.
    21. Shanes JG,Minadeo KN,Moret A,etal.Statin therapy in heart failure: prognostic effects and potential mechanisms [J].Am Heart J,2007,154:617-623.
    22. San jose G,Fortuno A,Beloqui O,etal.NADPH oxidase CYBA polymorphisms, oxidative stress and cardiovascular diseases [J].Clin Sci (Lond),2008,114:173-182.
    23. Maack C,Kartes T,Kilter H,etal.Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment [J].Circulation, 2003,108:1567-1574.
    24. Obata T,Ebihara A,Yamanaka Y,etal.Effect of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on nitric oxide-induced hydroxyl radical generation in the rat heart [J].Biochim Biophys Acta,2001,1536:55-63.
    25. Denollet J,Vrints CJ, Conraads VM.Comparing Type D personality and older age ascorrelates of tumor necrosis factor-alpha dysregulation in chronic heart failure [J].Brain Behav Immun,2007 Dec 7 [Epub ahead of print].
    26. Hofmann U,Heuer S,Meder K,etal. The proinflammatory cytokines TNF-alpha and IL-1beta impair economy of contraction in human myocardium [J].Cytokine,2007,39: 157-162.
    27. Niethammer M,Sieber M,von Haehling S,etal.Inflammatory pathways in patients with heart failure and preserved ejection fraction [J].Int J Cardiol,2007 Jul 19. [Epub ahead of print].
    28. Dichtl W,Dulak J,Frivk M,etal.HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells [J].Arterioscler Thromb Vasc Biol, 2003,23:58-63.
    29. Shiroshita-Takeshita A,Brundel BJ,Burstein B,etal.Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure [J].Cardiovasc Res, 2007,74:75-84.
    30. Laufs U,Kilter H,Konkol C,etal.Impact of HMG CoA reductase inhibition on small GTPases in the heart [J].Cardiovasc Res,2002,53:911-920.
    31. Planavila A,Laguna JC,Vazquez-Carrera M,etal.Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor-kappa B activation [J].Biochim Biophys Acta, 2005,1687:76-83.
    32. Gullestad L,Oie E,Ueland T,eatl.The role of statins in heart failure [J].Fundam Clin Pharmacol. 2007,21:35-40.
    33. Zaca V,Rastogi S,Imai M,etal.Chronic monotherapy with rosuvastatin prevents progressive left ventricular dysfunction and remodeling in dogs with heart failure [J].J Am Coll Cardiol,2007,50:551-557.
    34. Lou JD,Xie F,Zhang WW,etal.Simvastatin inhibits noradrenaline-induced hypertrophy of cultured neonatal rat cardiomyocytes [J].Br J Pharmacol, 2001,132:159-164.
    35. Gao L,Wang W,Li YL,etal.Simvastatin therapy normalizes sympathetic neural control in experimental heart failure: roles of angiotensin II type 1 receptors and NADPHoxidase [J].Circulation, 2005,112:1763-1770.
    36. Pfeffer MA. Enhancing cardiac protection after myocardial infarction: rationale for newer clinical trials of angiotensin receptor blockers [J].Am Heart J, 2000,139:S23-28.
    37. Neuhaus O,Hartung HP.Evaluation of atorvastatin and simvastatin for treatment of multiple sclerosis [J].Expert Rev Neurother, 2007,7:547-556.
    38. Assmus B,Urbich C,AicherA,etal.HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes [J].Circ Res, 2003,92:1049-1055.
    39. Ferreira JC,Bacurau AV,Evangelista FS,etal. The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivity-induced heart failure in mice [J].Am J Physiol Regul Integr Comp Physiol,2008,294:R26-32.
    40. Klotz S,Danser AH,Foronjy RF,etal.The impact of angiotensin-converting enzyme inhibitor therapy on the extracellular collagen matrix during left ventricular assist device support in patients with end-stage heart failure [J].J Am Coll Cardiol, 2007,49:1166-1174.
    41. Cohn JN. Rationale for angiotensin II receptor blocker therapy in chronic heart failure [J].J Renin Angiotensin Aldosterone Syst,2000, Suppl 2:38-40.
    42. Kobori H,Nangaku M,Navar LG,etal. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease [J].Pharmacol Rev, 2007,59:251-287.
    43. Wolf G.The renin-angiotensin-aldosterone system -- more complex as previously thought [J].Med Klin (Munich),2005,100: 471-477.
    44. Brackbill ML,Bashaw-Keaton R,Sytsma CS. Angiotensin-converting enzyme inhibitor or angiotensin receptor blocker adherence in patients with primary versus secondary diagnosis of heart failure [J].Am J Manag Care, 2007,13:568-570.
    45. Oishi Y,Ozino R,Yoshizumi M,etal.AT2 receptor mediates the cardioprotective effects of AT1 receptor antagonist in post-myocardial infarction remodeling [J]. Life sciense, 2006,80:82-88.
    46. Trewet CB,Shireman TI,Rigler SK,etal.Do ACE Inhibitors/Angiotensin II type 1 receptor antagonists reduce hospitalisations in older patients with heart failure? A propensity analysis [J].Drugs Aging, 2007,24:945-955.
    47. Pitt B,Segal R,Martinez FA,etal.Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE) [J].Lancet,1997,349:747-752.
    48. Cohn JN,Tognoni G.A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure [J].N Engl J Med,2001,345:1667-1675.
    49. Pfeffer MA,Swedberg K,Granger CB,etal. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme [J].Lancet,2003,362:759-766.
    1. Jones L.R,Simmerman HK,Wilson WW,etal.Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum [J].J Biol Chem,1985,260: 7721-7730.
    2. Kargcin ME,Kargcin GJ.Methods for determining cardiac sarcoplasmic reticulum Ca2+ pump kinetics from fura 2 measurements[J].Am J Physiol.1994,267:C1145-1151.
    3. Currie S,Smith GL.Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmicreticulum from rabbits with heart failure[J].Cardiovasc Res.1999,41:135-146.
    4. Dibb KM,Graham HK,Venetucci LA ,etal. Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart [J].Cell Calcium,2007,42:503- 512.
    5. Inesi G,Prasad AM,Pilankatta R.The Ca(2+) ATPase of cardiac sarcoplasmic reticulum:hysiological role and relevance to diseases [J].Biochem Biophys Res Commun, 2008,369:182-187.
    6. Venetucci LA,Trafford AW,ONeill SC,etal.The sarcoplasmic reticulum and arrhythmogenic calcium release [J].Cardiovasc Res,2008,77:285-292.
    7. Terracciano CM,Macleod KT.Overexpression of the Na/Ca exchanger and reduced SERCa function [J].Cardiovasc Res,2001,50:167-169.
    8. Periasamy M,Bhupathy P,Babu GJ.Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology [J].Cardiovasc Res,2008,77:265-273.
    9. Frank KF,Bolck B,Erdmann E,etal.Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation [J].Cardiovasc Res,2003,57:20-27.
    10. Metcalfe EE,Traaseth NJ,Veglia G.Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban [J].Biochemistry,2005,44: 4386-4396.
    11. Mueller B,Karim CB,Negrashov IV,etal.Direct detection of phospholamban and sarcoplasmic reticulum Ca-ATPase interaction in membranes using fluorescence resonance energy transfer [J].Biochemistry,2004,43:8754-8765.
    12. Xu YJ,Chapman D,Dixon IM,et al.Differential gene expression in infarct scar and viable myocardium from rat heart following coronary ligation [J].J Cell Mol Med, 2004,8:85-92.
    13. Babu GJ,Bhupathy P,CarnesCA,etal.Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology [J].J Mol Cell Cardiol,2007,43:215- 222.
    14. Zakhary DR,Moravec CS,Stewart RW,etal. Protein kinase A (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy [J].Circulation,1999,99:505-510.
    15. EI-Armouche A,Gocht F,Jaeckel E,etal.Long-term beta-adrenergic stimulation leads to downregulation of protein phosphatase inhibitor-1 in the heart[J].Eur J Heart Fail. 2007,9:1077-1080.
    16. Neumann J,Maas R,Boknik P, etal.Pharmacological characterization of protein phosphatase activities in preparations from failing human hearts[J].J Pharmacol Exp Ther. 1999,289:188-193.
    17. Neumann J. Altered phosphatase activity in heart failure, influence on Ca2+ movement [J].Basic Res Cardiol,2002,97:I91-195.
    18. Waggoner JR,Kranias EG.Role of phospholamban in the pathogenesis of heart failure [J].Heart Fail Clin,2005,1:207-218.
    19. Zhao XY,Hu SJ,Li J,etal.rAAV-asPLB transfer attenuates abnormal sarcoplasmic reticulum Ca(2+)-ATPase activity and cardiac dysfunction in rats with myocardial infarction [J].Eur J Heart Fail,2008,10:47-54.
    20. Leszek P,Szperl M,Klisiewicz A,etal.Alteration of myocardial sarcoplasmic reticulum Ca2+-ATPase and Na+-Ca2+ exchanger expression in human left ventricular volume overload [J].Eur J Heart Fail,2007,9:579-586.
    21. Lao YS,Hendley ED,Felder RA,etal.Elevated renal cortical calmodulin-dependent protein kinase activity and blood pressure [J].Clin Exp Hypertens,2002,24:289-300.
    22. Zhang T,Maier LS,Dalton ND,etal.The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure [J].Circ Res, 2003,92:912-919.
    23. Ai X,Curran JW,Shannon TR,etal.Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure[J].Circ Res, 2005,97:1314-1322.
    24. Ju H,Scammel-La Fleur T,Dixon IM.Altered mRNA abundance of calcium transportgenes in cardiac myocytes induced by angiotensin II[J].J Mol Cell Cardiol. 1996,28:1119-1128.
    25. Shao Q,Ren B,Saini HK,etal.Sarcoplasmic reticulum Ca2+ transport and gene expression in congestive heart failure are modified by imidapril treatment[J].Am J Physiol Heart Circ Physiol. 2005,288:H1674-682.
    26. Toyoshima H,Nasa Y,Kohsaka Y,etal.The effect of chronic treatment with trandolapril on cyclic AMP-and cyclic GMP-dependent relaxations in aortic segments of rats with chronic heart failure[J].Br J Pharmacol. 1998,123:344-532.
    27. Yoshida J,Yamamoto K,Mano T,etal.AT1 receptor blocker added to ACE inhibitor provides benefits at advanced stage of hypertensive diastolic heart failure [J].Hypertension,2004,43:686-691.
    1. Laufs U, Custodis F, Bohm M.HMG-CoA reductase inhibitors in chronic heart failure [J]. Drugs, 2006, 66: 145-154.
    2. Xu YJ,Chapman D,Dixon IM,et al.Differential gene expression in infarct scar and viable myocardium from rat heart following coronary ligation [J].J Cell Mol Med, 2004,8:85-92.
    3. Babu GJ,Bhupathy P,CarnesCA,etal.Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology [J].J Mol Cell Cardiol,2007,43:215- 222.
    4. Waggoner JR,Kranias EG.Role of phospholamban in the pathogenesis of heart failure [J].Heart Fail Clin,2005,1:207-218.
    5. Lao YS,Hendley ED,Felder RA,etal.Elevated renal cortical calmodulin-dependent protein kinase activity and blood pressure [J].Clin Exp Hypertens,2002,24:289-300.
    6. Zakhary DR,Moravec CS,Stewart RW,etal. Protein kinase A (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy [J].Circulation,1999,99:505-510.
    7. EI-Armouche A,Gocht F,Jaeckel E,etal.Long-term beta-adrenergic stimulation leads to downregulation of protein phosphatase inhibitor-1 in the heart[J].Eur J Heart Fail.2007,9:1077-1080.
    8. Neumann J,Maas R,Boknik P, etal.Pharmacological characterization of protein phosphatase activities in preparations from failing human hearts[J].J Pharmacol Exp Ther. 1999,289:188-193.
    9. Neumann J. Altered phosphatase activity in heart failure, influence on Ca2+ movement [J].Basic Res Cardiol,2002,97:I91-195.
    10. Waggoner JR,Kranias EG.Role of phospholamban in the pathogenesis of heart failure [J].Heart Fail Clin,2005,1:207-218.
    11. Skaletz-Rorowski A,Muller JG,Kroke A,etal.Lovastatin blocks basic fibroblast growth factor-induced mitogen-activated protein kinase signaling in coronary smooth muscle cells via phosphatase inhibition[J].Eur J Cell Biol. 2001,80:207-212.
    12.Latruffe N,Boscoboinik D,Azzi A.Stimulation of protein kinase C activity by compactin in vascular smooth muscle cells[J].Biochem Biophys Res Commun.1995,217:459-465.
    13. Kang l,Fang Q,Hu SJ.Regulation of phospholamban and sarcoplasmic reticulum Ca2+-ATPase by atorvastatin: implication for cardiac hypertrophy[J].Arch Pharm Res. 2007,30:596-602.
    14. Zheng X,Hu SJ.Effects of simvastatin on cardiac performance and expression of sarcoplasmic reticular calcium regulatory proteins in rat heart[J].Acta Pharmacol Sin. 2005,26:696-704.
    15. Ju H,Scammel-La Fleur T,Dixon IM.Altered mRNA abundance of calcium transport genes in cardiac myocytes induced by angiotensin II[J].J Mol Cell Cardiol. 1996,28:1119-1128.
    16. Toyoshima H,Nasa Y,Kohsaka Y,etal.The effect of chronic treatment with trandolapril on cyclic AMP-and cyclic GMP-dependent relaxations in aortic segments of rats with chronic heart failure[J].Br J Pharmacol. 1998,123:344-532.
    1. Lloyd-jones DM, Larson MG, Leip EP et al. Framingham heart study. Lifetime risk for developing congestive heart failure: the Framingham Heart Study [J].Circulation,2002, 106: 3068-3072.
    2. Dibb KM,Graham HK,Venetucci LA ,etal. Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart [J].Cell Calcium,2007,42:503- 512.
    3. Inesi G,Prasad AM,Pilankatta R.The Ca(2+) ATPase of cardiac sarcoplasmicreticulum:hysiological role and relevance to diseases [J].Biochem Biophys Res Commun, 2008,369:182-187.
    4. John LM,Lechleiter JD,Camacho P,etal.Differential modulation of SERCA2 isoforms by calreticulin [J].J Cell Biol,1998,142:963-973.
    5. Wu KD,Lee WS,Wey J,etal. Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts [J].Am J Physiol,1995,269:C775-784.
    6. Dode L,Wuytack F,Kools PF,etal.cDNA cloning, expression and chromosomal localization of the human sarco/endoplasmic reticulum Ca(2+)-ATPase 3 gene [J].Biochem J,1996,318:689-699.
    7. Ozog A,Pouzet B,Bobe R,etal.Characterization of the 3' end of the mouse SERCA 3 gene and tissue distribution of mRNA spliced variants [J].FEBS Lett,1998,427:349-352.
    8. Zarain-Herzberg A,Maclennan DH,Periasamy M.Characterization of rabbit cardiac sarco(endo)plasmic reticulum Ca2(+)-ATPase gene [J].J Biol Chem, 1990,265:4670- 7467.
    9. Gombosova I,Boknik P,Kirchhefer U,etal.Postnatal changes in contractile time parameters, calcium regulatory proteins, and phosphatases [J].Am J Physiol, 1998,274: H2123- H2132.
    10. Cain BS,Meldrum DR,Joo KS,etal.Human SERCA2a levels correlate inversely with age in senescent human myocardium [J].J Am Coll Cardiol,1998,32:458-467.
    11. Pottorf WJ,Duckles SP,Buchholz JN.SERCA function declines with age in adrenergic nerves from the superior cervical ganglion [J].J Auton Pharmacol,2000,20:281-290.
    12. Marino F,Guasti L,Cosentino M,etal. Thyroid hormone and thyrotropin regulate intracellular free calcium concentrations in human polymorphonuclear leukocytes: in vivo and in vitro studies [J].Int J Immunopathol Pharmacol,2006,19:149-160.
    13. Tang YD,Kuzman JA,Said S,etal.Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction [J].Circulation,2005,112:3122-3130.
    14. Periasamy M,Kalyanasundaram A.SERCA pump isoforms: their role in calciumtransport and disease [J].Muscle Nerve,2007,35:430-442.
    15. Vangheluwe P,Raeymaekers L,Dode L,etal.Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications [J].Cell Calcium,2005, 38:291-302.
    16. Kranias ER,Bers DM.Inesi G,Prasad AM,Pilankatta R. Calcium and cardiomyopathies [J].Subcell Biochem,2007,45:523-537.
    17. Loughrey CM,Smith GL,MacEachem KE. Comparison of Ca2+ release and uptake characteristics of the sarcoplasmic reticulum in isolated horse and rabbit cardiomyocytes [J].Am J Physiol Heart Circ Physiol,2004,287:H1149-1159.
    18. Venetucci LA,Trafford AW,ONeill SC,etal.The sarcoplasmic reticulum and arrhythmogenic calcium release [J].Cardiovasc Res,2008,77:285-292.
    19. Terracciano CM,Macleod KT.Overexpression of the Na/Ca exchanger and reduced SERCa function [J].Cardiovasc Res,2001,50:167-169.
    20. Periasamy M,Bhupathy P,Babu GJ.Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology [J].Cardiovasc Res,2008,77:265-273.
    21. Chelu MG,Wehrens XH.Sarcoplasmic reticulum calcium leak and cardiac arrhythmias [J].Biochem Soc Trans,2007,35:952-956.
    22. Frank KF,Bolck B,Erdmann E,etal.Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation [J].Cardiovasc Res,2003,57:20-27.
    23. Frey N,Mckinsey TA,Olson EN.Decoding calcium signals involved in cardiac growth and function [J].Nat Med,2000,6:1221-1227.
    24. Chin D,Means AR.Calmodulin: a prototypical calcium sensor [J].Trends Cell Biol,2000,10:322-328.
    25. Means AR.Regulatory cascades involving calmodulin-dependent protein kinases [J].Mol Endocrinol,2000,14:4-13.
    26. Bers DM,Guo T.Calcium signaling in cardiac ventricular myocytes [J].Ann N Y Acad Sci,2005,1047:86-98.
    27. Maier LS,Bers DM. Calcium, calmodulin, and calcium-calmodulin kinase II: heartbeat to heartbeat and beyond [J].J Mol Cell Cardiol,2002,34:919-939.
    28. Maier LS,Bers DM.Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart [J].Cardiovasc Res,2007,73:631-640.
    29. Saito T,Fukuzawa J,Osaki J,etal.Roles of calcineurin and calcium/calmodulin-dependent protein kinase II in pressure overload-induced cardiac hypertrophy [J].J Mol Cell Cardiol,2003,35:1153-1160.
    30. Mckinsey TA.Derepression of pathological cardiac genes by members of the CaM kinase superfamily [J].Cardiovasc Res,2007,73:667-677.
    31. Colomer JM,Mao L,Rockman HA,etal.Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo [J].Mol Endocrinol,2003,17:183 -192.
    32. Wu Y,Colbran RJ,Anderson ME. Calmodulin kinase is a molecular switch for cardiac excitation-contraction coupling [J].Proc Natl Acad Sci U S A,2001,98:2877-2881.
    33. Zhu L,Ferrier GR. Regulation of a voltage-sensitive release mechanism by Ca(2+)-calmodulin-dependent kinase in cardiac myocytes [J].Am J Physiol Heart Circ Physiol,2000,279:H2104-2115.
    34. Tombes RM,Faison MO,Turbeville JM.Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes [J].Gene,2003,322:17-31.
    35. Lantsman K,Tombes RM.CaMK-II oligomerization potential determined using CFP/YFP FRET [J].Biochim Biophys Acta,2005,1746:45-54.
    36. Xu JJ,Hao LY,Kameyama A,etal.Calmodulin reverses rundown of L-type Ca(2+) channels in guinea pig ventricular myocytes [J].Am J Physiol Cell Physiol,2004,287:C 1717-1724.
    37. Wright DC.Mechanisms of calcium-induced mitochondrial biogenesis and GLUT4 synthesis [J].Appl Physiol Nutr Metab,2007,32:840-845.
    38. Afroze T,Yang LL,Wang C,etal.Calcineurin-independent regulation of plasma membrane Ca2+ ATPase-4 in the vascular smooth muscle cell cycle [J].Am J PhysiolCell Physiol,2003,285:C88-95.
    39. Bayer KU,Harbers K,Schulman H.alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle [J].EMBO J,1998,17:5598-5605.
    40. Haghighi K,Kadambi VJ,Koss KL,etal.In vitro and in vivo promoter analyses of the mouse phospholamban gene [J].Gene,1997,203:199-207.
    41. Fujii J,Zarain-Herzberg A,Willard HF,etal.Structure of the rabbit phospholamban gene, cloning of the human cDNA, and assignment of the gene to human chromosome 6 [J].J Biol Chem,1991,266:11669-11675.
    42. Otsu K,Fujii J,Periasamy M,etal.Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes [J].Genomics,1993,17:507-509.
    43. Sutliff RL,Hoying JB,Kadambi VJ,etal. Phospholamban is present in endothelial cells and modulates endothelium-dependent relaxation. Evidence from phospholamban gene-ablated mice [J].Circ Res,1999,84:360-364.
    44. Traaseth NJ,Ha KN,Verardi R,etal. Structural and Dynamic Basis of Phospholamban and Sarcolipin Inhibition of Ca(2+)-ATPase [J].Biochemistry,2008,47:3-13.
    45. Rodriguez P, Kranias EG.Phospholamban: a key determinant of cardiac function and dysfunction [J].Arch Mal Coeur Vaiss,2005,98:1239-1243.
    46. Metcalfe EE,Traaseth NJ,Veglia G.Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban [J].Biochemistry,2005,44: 4386-4396.
    47. Mueller B,Karim CB,Negrashov IV,etal.Direct detection of phospholamban and sarcoplasmic reticulum Ca-ATPase interaction in membranes using fluorescence resonance energy transfer [J].Biochemistry,2004,43:8754-8765.
    48. Luo W,Chu G,Sato Y,etal.Transgenic approaches to define the functional role of dual site phospholamban phosphorylation [J].J Biol Chem,1998.273:4734-4739.
    49. Chu G,Lester JW,Young KB,etal.A single site (Ser16) phosphorylation in phospholamban is sufficient in mediating its maximal cardiac responses to beta -agonists [J].J Biol Chem,2000,275:38938-38943.
    50. Kiss E,Jakab G,Kranias EG,etal.Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation [J].Circ Res,1994,75:245-251.
    51. Bhupathy P,Babu GJ,Periasamy M.Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase [J].J Mol Cell Cardiol,2007,42:903-911.
    52. Pantano S,Carafoli E.The role of phosphorylation on the structure and dynamics of phospholamban: a model from molecular simulations [J].Proteins,2007,66:930-940.
    53. Boknik P,Fockenbrock M,Herzig S,etal.Protein phosphatase activity is increased in a rat model of long-term beta-adrenergic stimulation [J].Naunyn Schmiedebergs Arch Pharmacol,2000,362:222-231.
    54. Lissandron V,Zaccolo M. Compartmentalized cAMP/PKA signalling regulates cardiac excitation-contraction coupling [J].J Muscle Res Cell Motil,2006,27:399-403.
    55. KimC,Vigil D,Anand G,etal.Structure and dynamics of PKA signaling proteins [J].Eur J Cell Biol,2006,85:651-654.
    56. Li L,Dixon JE. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases [J].Semin Immunol,2000,12:75-84.
    57. Barford D.Colworth Medal Lecture. Structural studies of reversible protein phosphorylation and protein phosphatases [J].Biochem Soc Trans,1999,27:751-766.
    58. Granot-Attas S,Knobler H,Elson A.Protein tyrosine phosphatases in osteoclasts [J].Crit Rev Eukaryot Gene Expr,2007,17:49-71.
    59. Lytton J.Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport [J].Biochem J,2007,406:365-382.
    60. Weisser-Thomas J,Kubo H,Hefner CA,etal.The Na+/Ca2+ exchanger/SR Ca2+ ATPase transport capacity regulates the contractility of normal and hypertrophied feline ventricular myocytes [J].J Card Fail,2005,11:380-387.
    61. Yao A,Matsui H,Spitzer KW,etal.Sarcoplasmic reticulum and Na+/Ca2+ exchanger function during early and late relaxation in ventricular myocytes [J].Am J Physiol,1997,273:H2765-7273.
    62. Reed TD,Babu GJ,Ji Y,etal. The expression of SR calcium transport ATPase and the Na(+)/Ca(2+)Exchanger are antithetically regulated during mouse cardiac development and in Hypo/hyperthyroidism [J].J Mol Cell Cardiol,2000,32:453-464.
    63. Houser SR,Piacentino V3rd,Mattiello J,etal.Functional properties of failing human ventricular myocytes [J].Trends Cardiovasc Med,2000,10:101-107.
    64. Xu YJ,Chapman D,Dixon IM,et al.Differential gene expression in infarct scar and viable myocardium from rat heart following coronary ligation [J].J Cell Mol Med,2004, 8:85-92.
    65. Plank DM,Yatani A,Ritsu H,etal.Calcium dynamics in the failing heart: restoration by beta-adrenergic receptor blockade [J].Am J Physiol Heart Circ Physiol,2003,285:H305 -315.
    66. Yue P,Long CS,Austin R,etal.Post-infarction heart failure in the rat is associated with distinct alterations in cardiac myocyte molecular phenotype [J].J Mol Cell Cardiol,1998,30:1615-1630.
    67. Van der Velden J,Merkus D,Klarenbeek BR,etal. Alterations in myofilament function contribute to left ventricular dysfunction in pigs early after myocardial infarction [J].Circ Res,2004,95:e85-95.
    68. Kneller J,Sun H,Leblanc N,etal.Remodeling of Ca(2+)-handling by atrial tachycardia: evidence for a role in loss of rate-adaptation [J].Cardiovasc Res,2002,54:416-426.
    69. Ai X,Curran JW,Shannon TR,et al.Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure [J].Circ res,2005,97:1314-1322.
    70. Munch G,Bolck B,Brixius K,etal,SERCA2a activity correlates with the force-frequency relationship in human myocardium [J].Am J Physiol Heart Circ Physiol,2000,278:H 1924-1932.
    71. Babu GJ,Bhupathy P,CarnesCA,etal.Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology [J].J Mol Cell Cardiol,2007,43:215- 222
    72. Waggoner JR,Kranias EG.Role of phospholamban in the pathogenesis of heart failure [J].Heart Fail Clin,2005,1:207-218.
    73. Hoshijima M,Knoll R,Pashmforoush M,et al.Reversal of calcium cycling defects in advanced heart failure toward molecular therapy [J].J Am Coll Cardiol,2006,48:A15- 23.
    74. Schmitt JP,Kamisago M,Asahi M,etal. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban [J].Science,2003,299:1410-1413.
    75. Zakhary DR,Moravec CS,Stewart RW,etal. Protein kinase A (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy [J].Circulation,1999,99:505-510.
    76. EI-Armouche A,Gocht F,Jaeckel E,etal.Long-term beta-adrenergic stimulation leads to downregulation of protein phosphatase inhibitor-1 in the heart[J].Eur J Heart Fail. 2007,9:1077-1080.
    77. Neumann J,Maas R,Boknik P, etal.Pharmacological characterization of protein phosphatase activities in preparations from failing human hearts[J].J Pharmacol Exp Ther. 1999,289:188-193.
    78. Neumann J. Altered phosphatase activity in heart failure, influence on Ca2+ movement [J].Basic Res Cardiol,2002,97:I91-195.
    79. Zhao XY,Hu SJ,Li J,etal.rAAV-asPLB transfer attenuates abnormal sarcoplasmic reticulum Ca(2+)-ATPase activity and cardiac dysfunction in rats with myocardial infarction [J].Eur J Heart Fail,2008,10:47-54.
    80. Ramirez MT,Zhao XL,Schulman H,etal,The nuclear deltaB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes [J].J Biol Chem,1997,272:31203-31208.
    81. Kashiwase K,Higuchi Y,Hirotani S,etal. CaMKII activates ASK1 and NF-kappaB to induce cardiomyocyte hypertrophy [J].Biochem Biophys Res Commun,2005,327:136- 142.
    82. Zhang T,Johnson EN,Gu y,etal. The cardiac-specific nuclear delta(B) isoform ofCa2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity [J].J Biol Chem,2002,277:1261-1267.
    83. Xin WJ,Li MT,Yang HW,etal.Role of phospho-calcium/ calmodulin-dependent protein kinase II in the induction and maintenance of long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn of the rat [J].Sheng Li Xue Bao,2004,56:83-88.
    84. Lao YS,Hendley ED,Felder RA,etal.Elevated renal cortical calmodulin-dependent protein kinase activity and blood pressure [J].Clin Exp Hypertens,2002,24:289-300.
    85. Wu Y,Kimbrough JT,Colbran RJ,etal.Calmodulin kinase is functionally targeted to the action potential plateau for regulation of L-type Ca2+ current in rabbit cardiomyocytes [J].J Physiol,2004,554:145-155.
    86. Mishra S,Sabbah HN,Jain JC,etal. Reduced Ca2+-calmodulin-dependent protein kinase activity and expression in LV myocardium of dogs with heart failure [J].Am J Physiol Heart Circ Physiol,2003,284:H876-883.
    87. Hagemann D,Bohlender J,Hoch B,etal. Expression of Ca2+/calmodulin-dependent protein kinase II delta-subunit isoforms in rats with hypertensive cardiac hypertrophy [J].Mol Cell Biochem,2001,220:69-76.
    88. Zhang T,Maier LS,Dalton ND,etal.The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure [J].Circ Res,2003,92:912-919.
    89. Wright SC,Schellebberger U,Ji L,etal.Calmodulin-dependent protein kinase II mediates signal transduction in apoptosis [J].FASEB J,1997,11:843-849.
    90. Kawai T,Nomura F,Hoshino K,etal.Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity [J].Oncogene,1999,18:3471-3480.
    91. Bers DM. Macromolecular complexes regulating cardiac ryanodine receptor function [J].J Mol Cell Cardiol,2004,37:417-429
    92. Huke S,Bers DM.Temporal dissociation of frequency-dependent acceleration ofrelaxation and protein phosphorylation by CaMKII [J].J Mol Cell Cardiol,2007,42:590- 599.
    93. Xu A,Narayanan N.Ca2+/calmodulin-dependent phosphorylation of the Ca2+-ATPase, uncoupled from phospholamban, stimulates Ca2+-pumping in native cardiac sarcoplasmic reticulum [J].Biochem Biophys Res Commun,1999,258:66-72.
    94. Communi D,Gevaert K,Demol H,etal.A novel receptor-mediated regulation mechanism of type I inositol polyphosphate 5-phosphatase by calcium/calmodulin-dependent protein kinase II phosphorylation [J].J Biol Chem,2001,276:38738-38747.
    95. Mishra S,Sabbah HN,Jain JC,etal.Reduced Ca2+-calmodulin-dependent protein kinase activity and expression in LV myocardium of dogs with heart failure [J].Am J Physiol Heart Circ Physiol,2003,284:H876-883.
    96. Sipido KR.CaM or cAMP: linking beta-adrenergic stimulation to 'leaky' RyRs [J].Circ Res,2007,100:296-298.
    97. Muller OJ,Lange M,Rattunde H,etal.Transgenic rat hearts overexpressing SERCA2a show improved contractility under baseline conditions and pressure overload [J].Cardiovasc Res,2003,59:380-389.
    98. del Monte F,Hajjar RJ,Harding SE.Overwhelming evidence of the beneficial effects of SERCA gene transfer in heart failure [J].Circ Res,2001,88:E66-67.
    99. Baartscheer A.Adenovirus gene transfer of SERCA in heart failure. A promising therapeutic approach ? [J].Cardiovasc Res,2001,49:249-252.
    100. Sakata S,Lebeche D,Sakata N,etal. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins [J].J Mol Cell Cardiol,2007,42:852-861.
    101.郭豫涛,李小鹰,鲁小春,等.钙离子ATP酶2a基因修饰的骨髓干细胞移植治疗大鼠慢性心力衰竭[J].中国组织工程研究与临床康复,2006,11:1267-1270.
    102. Li J,Wang D,Qian S,etal. Efficient and long-term intracardiac gene transfer in delta-sarcoglycan-deficiency hamster by adeno-associated virus-2 vectors [J].Gene Ther,2003,10:1807-1813.
    103. Jang IK,Weissman NJ, Picard MH,etal.A randomized, double-blind, placebo-controlled study of the safety and efficacy of intravenous MCC-135 as an adjunct to primary percutaneous coronary intervention in patients with acute myocardial infarction: Evaluation of MCC-135 for left ventricular salvage in acute myocardial infarction (EVOLVE) [J].Am Heart J,2008,155:113.e1-8.
    104. Yamada M,Ikeda Y,Yano M,etal.Inhibition of protein phosphatase 1 by inhibitor-2 gene delivery ameliorates heart failure progression in genetic cardiomyopathy [J].FASEB J,2006,20:1197-1199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700