基于自适应方法容错控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文受吉林省杰出青年基金项目资助,对复杂系统的自适应容错控制问题进行了深入的研究。
    自动化系统日益大型化和复杂化,相应地对生产的可靠性要求也就越来越高,容错控制就是由此发展起来的一种提高控制系统可靠性的技术。而自适应方法能够有效的解决系统的不确定性和鲁棒性问题,所以在容错控制领域中,自适应控制方法有很大的发展前景。尤其在许多安全性比较重要的系统,例如飞行控制系统中,发生传感器或执行器故障时,我们无法获知有关故障的先验知识,采用自适应控制方法往往能获得令人满意的控制效果,即使在故障未知的情况下。1991年F.Ahmed-Zaid等人将自适应方法应用到F-16飞机的故障调节上。由于自适应方法本身会引起系统的非线性,其故障瞬间的过渡过程特性并不能令人满意。本文首先综述了各种容错控制方法,以及目前自适应方法在容错控制领域的应用,然后对系统的故障模型进行分析,建立执行器故障模型。
    对一类典型的多输入单输出复杂系统,设计基于Lyapunov方法的模型参考自适应执行器故障补偿控制器,理论上证明了采用所设计的自适应控制律能够实现系统的全局稳定性。本设计的控制目标就是设计一个控制器,即使在执行器发生故障时,仍然可以通过调节剩余的执行器来获得期望的性能指标。为了设计自适应控制策略,我们有必要了解当系统的参数和故障已知时,期望的控制器的结构的情况。研究故障发生前后的过程模型匹配条件,有助于任意执行器故障发生时控制器参数的自适应调节。我
    
    
    们分别针对参考模型的状态和输出设计相应的自适应控制律,通过不断的自适应调节状态反馈控制的各个参数,最终使得状态和输出都能够跟踪给定的参考信号。由于飞机系统是安全性要求比较高的典型系统,因此本文对一种线性化后的飞机系统模型进行了仿真研究,结果证明了设计方法的有效性。
    考虑到实际应用中,系统的内部状态并不都是可测量的,本文继续针对一类多输入单输出的复杂系统设计采用输出反馈的自适应控制策略。仍然对同样的执行器故障进行设计,仿真结果证明了所设计的方法能够实现系统的全局稳定性。但是由于自适应方法本身会引起系统的时变非线性,因此不能够保证系统的过渡过程特性,尤其是在未知执行器故障发生的瞬间,虽然系统最终保证了收敛性和稳定性,但过渡过程特性不能够令人满意。因此本文就改善系统故障瞬间的过渡过程特性,给出了一种带有固定补偿器的改进自适应执行器故障补偿控制方法,通过设计固定补偿器,组成一个附加的反馈环,来抵消由于参数不确定性和参数辨识所引起的误差,并对设计的自适应方法进行了性能分析,根据均方差和范数理论对该方法进行了证明。最后,对比没有固定补偿器的自适应方法和所设计的改进的带有固定补偿器的自适应方法,将其应用到线性化后的飞机系统模型,验证该改进方法针对方向舵执行机构故障能够有效的改善系统的性能指标,尤其是故障瞬间的过渡过程特性。
      综上,本文的主要工作内容如下:
    1.综述了容错控制发展的概况和现状,阐述了课题的背景及实际应用意义,并对自适应容错控制方法的分类及应用进行了深入的研究和详细的总结。
    2.分析控制系统各种故障模型的数学表示,并对于本文所要研究的多输入单输出系统进行执行器故障模型的建立。其中执行器的故障形式包括恒值(卡死)故障、可参数化的时变故障和不可参数化的时变故障。
    3.针对所建立的执行器故障模型设计状态反馈自适应故障补偿控制器。首先对自适应方法的模型匹配问题进行分析,给出前提条件;然后依据参考模型,利用状态反馈分别设计满足要求性能指标的状态跟踪和输出跟踪的自适应执行器故障补偿控制器;最后采用多输入单输出的飞机系统
    
    
    模型进行了仿真研究,仿真结果证明了所设计方法的有效性,所有的闭环信号都是有界的,系统的状态和输出最终都能跟踪给定的参考状态和输出。
    4.针对所建立的执行器故障模型设计输出反馈自适应故障补偿控制器。本章首先根据所建立的故障模式设计输出反馈的自适应故障补偿控制器,分析其结果可知所有的闭环信号都是有界的,系统输出最终都能跟踪给定的参考输出。但是,故障瞬间的过渡过程特性却并不能够令人满意,这是由于自适应方法会引起系统的时变非线性,不能够保证系统的过渡过程特性。因此本章在原有控制器的基础上设计了一种改进的自适应故障补偿控制器,能够改善故障瞬间系统的过渡过程特性。该控制器包含一个由固定补偿器组成的附加反馈环,能够抵消由于自适应方法中参数不确定性和参数辨识所引起的误差。最后进行了仿真研究,通过比较仿真结果,可以验证系统的过渡过程特性有了明显的改善。
    5.系统地对本文进行了总结,并指出进一步的研究重点。
Based on the fact that automatic systems are becoming more and more large and complex and the control accuracy for the practical engineering systems is advanced as high as possible, fault tolerant control was a reliable technology and put forward to improve control performance. Adaptive control as an effective method can solve the problem of the systems with uncertainty and robustness, so this control method has a promising foreground in fault tolerant control fields, especially for some systems focusing on their safety such as airplane system. When something has been wrong with the actuator or sensor of the system, where nothing about the failure is known previously, adaptive control scheme is applied to the system and always can get satisfied performance, even under the condition that failure pattern is unknown. In 1991, adaptive method was applied to F-16 airplane for its failure accommodation by F.Ahmed-Zaid. But unfortunately, the major difficulty with adaptive methods is that the transient performance could not be assured due to the property of the nonlinear time-varying systems that they result in. First, in this dissertation all sorts of fault tolerant control methods and the present situation and development of adaptive schemes in fault tolerant control fields are summarized. Then failure models of the system are analyzed and presented.
    Model Reference Adaptive Controller (MRAC) based on the Lyapunov method as actuator failure compensator is designed for a class of
    
    
    continuous-time, multi-input and single-output linear time-invariant complex plants. Global stability is proved in theory for the design of the adaptive control law. The control task is to design a controller and accommodate the rest actuators in order to attain the desired performance under the condition that failure parameters are unknown. The parameters of the system and failure pattern need to be analyzed and something of the desired controller should be known in order to design the adaptive control scheme. The plant model match parameters are discussed before and after the failure happens, so the designed controller can adaptively regulate arbitrary actuator failure. According to the states and output of the reference model respectively, adaptive control schemes are presented. Adaptively parameters of the state feedback controller are regulated continuously, so ultimately the states and output both could follow after the given reference signals. Due to airplane system as a typical one, which focused much on its safety, simulation results for a linearized airplane model with actuator failure are shown to verify the efficiency of the designed adaptive methods.
    Considering the practical situation that the internal states are not always measurable, an adaptive control scheme based on output feedback is given for a class of continuous-time, multi-input and single-output linear time-invariant complex plants. According to the same actuator failure, simulation results for a linearized airplane model with actuator failure are shown to realize the global stability. Unfortunately, the major difficulty with MRAC method is that the transient performance could not be satisfied due to the property of the nonlinear time-varying systems that result in notwithstanding ultimately the convergence and stability of the system are assured. In this dissertation we will seek ways of improving performance of the adaptive failure compensation controller. A modified adaptive scheme including an additive feedback loop through fixed compensator, which is introduced to counteract the error caused by parameter uncertainty and the inaccuracy of parameter identification, is proposed. The adaptive algorithm used for updating parameters is kept the
    
    
    same as the one used by the standard MRAC system. Performance analysis of the proposed adaptive control scheme is verified based on the mean square tracking error criterion and thetracking error theory. Finally, the adaptive controllers with and without fixed compensator are compared and applied to an aircraft
引文
[1] Patton R J. Robustness issues in fault tolerant control. Proc. of International conference on Fault Diagnosis, Toulouse, France,1993, 1081~1117.
    [2] Eterno J S, Looze D P, Weiss J L, &Willsky A S Design issues for fault–tolerant restructurable aircraft control. Proc.24th IEEE CDC, Fort Lauderdale,1985,900~905.
    [3] Niederlinski A. A heuristic approach to the design of interacting multivariable systems. Automatica,,1971,7:691~701.
    [4] Saljak D D. Reliable control using multiple control systems. Int. l. Control,1980,31:303~329.
    [5] WH pierce. Failure-Tolerant Computer Design. Academic Press, Inc, New York,1965.
    [6] ……,Challenge to Control: A Collective View, Report of the Workshop held at the University of Santa Clara on September 18-19,1986,IEEE Trans.Automa.Control,1987,32(4):275~285.
    [7] Patton R J. Fault–tolerant control: the 1997 situation. Proc. of IFAC/IMACs Symposium on Fault Detection and Safety for Technical Process. Hull, England,1997,1033~1055.
    [8] 张翰英.必须加速发展实用性的容错系统.控制工程.1986,(2).
    [9] 胡寿松等.动态系统的鲁棒容错控制方法.自动化学报,1991,(5).
    [10]程一.线性多变量系统控制器和传感器的功能冗余性分析.信息与控 制,1990,(5).
    [11]葛建华等.传感器失效故障系统的容错控制研究.浙江大学学报,1990(5).
    [12]葛建华,孙优贤.容错控制系统的分析与综合.杭州:浙江大学出版社,1994.
    
    [13]冯永新.基于模型的故障诊断技术研究及其在航天器中的应用.哈尔滨工业大学,1996.
    [14]闻新,张洪钺,周露.控制系统的故障诊断与容错控制.北京:机械工业出版社,1998.
    [15]胡昌华,许化龙.控制系统故障诊断与容错控制的分析和设计.北京:国防工业出版社,2000.
    [16]周东华,叶银忠.现代故障诊断与容错控制.清华大学出版社,2000,6.
    [17]M.Blanke,R.Izadi-Zamanabadi,etc. Fault Tolerant Control Systems—A Holistic View. Control Eng. Pratice, 1997, 5(5), 693~702.
    [18]M.Blanke, C.W.Frei, F.Krans, R.J.Patton, M.Staroswiecki, What is fault-tolerant control? Proc. IFAC SAFEPROCESS'2000 (Budapest) (A.Edelmeier and,ed.),IFAC,June 2000.
    [19]M.Blanke, M.Staroswiecki, N.Eva Wu. Concepts and Methods in Fault-tolerant Control, Proceedings of the American Control Conference, Arlington, 2001, 2606~2620.
    [20]M.Staroswiecki,Anne-Lise Gehin.From Control To Supervision,Annual Reviews in Control,2001,(11),1~11.
    [21]南英,陈士橹,戴冠中.容错控制进展.航空与航天,1993,(4),62~67.
    [22]胡寿松,范存海,王执铨,胡维礼.大系统分散鲁棒容错控制的进展及主要成果.数据采集与处理,1994,(12),285~293.
    [23]刘伟,田树苞.动态系统容错控制的新近发展.河北理工学院学报,1997,(2),28~38.
    [24]周东华,Ding X.容错控制理论及其应用.自动化学报,2000,(11),787
    ~797.
    [25]蒙建波,罗辞勇,张学通.容错技术及其在过程控制中的应用.重庆大学学报,2000,(5),125~130.
    [26]Eryuurek E. Fault-tolerant Control and Diagnostics for Large scale Systems[J].IEEE Trans on Control Systems,1995,15(5):34~42.
    [27]刘伟.基于专家系统的容错控制及在合成反应过程中的应用[J].化工自动化及仪表,1996,23(5):13~16.
    
    [28]沈毅.造纸过程定量环节容错控制方法研究[J].控制理论与应用,1996,13,(6):333~340.
    [29]Beard R V. Failure accommodation in linear systems through self-reorganization.Report MVT-71-1, Man Vehicle Lab, MIT,Cambridge,
    Massachusetts,1971.
    [30]Willsky A S. A survey of design methods for failure detection in dynamic systems. Automatica, 1976,12:601~611.
    [31]Himmelblau D M. Fault Detection and Diagnosis in Chemical and Petrochemical Process. Amsterdam:Elsevier Press.1978.
    [32]Gertler JJ. Survey of model based failure detection and isolation in complex plants. IEEE Control Systems Magazine,1988,8(6):3~11.
    [33]Isermann R. Process fault-detection based on modeling and estimation methods: a survey. Automatica,1984,20:387~404.
    [34]Frank P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results. Automatica,1990,26(3): 459~474.
    [35]Isermann R.Fault diagnosis of machines via parameter estimation and knowledge processing: tutorial paper.Automatica,1993,29(4):815~835.
    [36]Basseville M.(eds.)Detection of Abrupt Changes in Signal and Dynamic Systems. Berline:Springer- Verlag,1985.
    [37]Patton R et al. (eds. )Fault Diagnosis in Dynamic Systems. New York:Prentice Hall, 1989.
    [38]Zhang X J.Auxiliary Signal Design in Fault Detection and Diagnosis.Berlin:Springer-Verlag,1991.
    [39]叶银忠,潘日芳,蒋慰孙. 动态系统的故障检测与诊断方法. 信息与控制, 1985,14(6):27~34.
    [40]周东华,孙优贤.控制系统的故障检测与诊断技术.清华大学出版社,1994.
    [41]张育林,李东旭.动态系统故障诊断理论与应用.长沙:国防科技大学出版社,1997.
    
    [42]郑应平.控制科学面临的挑战:专家意见综述.控制理论与应用,1987,4(3):1~10.
    [43]Vidyasagar M, Viswanadham N. Reliable stabilization using a multi-controller configuration. Automatica,1985, 21:599~602.
    [44]Veillette R J, Medanic JV, Perkins W R. Design of reliable control systems. IEEE Trans. Automatic Control,1992, 37(3):290~304.
    [45]Gundes A N. Controller design for reliable stabilization. Proc. of 12th IFAC World Congress, 1993, 4:1~4.
    [46]Sebe N, Kitamori T. Reliable stabilization based on a multi-compensator configuration. Proc. of 12th IFAC World Congress,1993, 4:5~8.
    [47]Ackermann, J. Robustness Against Sensor Failure. Automatica, 1984,20(2): 211~215.
    [48]Morari M. Robust stability of systems with integral control. IEEE Trans. on Automatic Control,1985,30:574~588.
    [49]葛建华,孙优贤,周春辉.故障系统容错能力判别的研究.信息与控制, 1989,18(4):8~11.
    [50]倪茂林,吴宏鑫.具有完整性的最优控制系统设计.控制理论与应用.1992,9,(3):245~249.
    [51]Ye Y Z. Fault tolerant pole assignment for multi-variable systems using a fixed state feedback.控制理论与应用,1993,10(2):212~218.
    [52]黄苏南,邵惠鹤.分散容错控制的最优设计.智能控制与智能自动化,科学出版社,1993,1499~1503.
    [53]孙金生,李军,徐蕾,王执铨.动态大系统的分散容错控制.南京理工大学学报,1998,2(2):117~120.
    [54]Ackermann. Parameter Space Design of Robust Control System. IEEE Trans AC 25,1980,1058~1072.
    [55]Saeks R,Murray J. Fractional representation,algebraic geometry,and the simultaneous stabilization problem. IEEE Trans. Automatic Control, 1982, 24 (4):895~903.
    [56]Kabamba P T, Yang C.Simultaneous controller design for linear time-
    
    
    invariant systems. IEEE Trans. on Auto-matic Control,1991,36 (1):106~111.
    [57]Moerder D D et al. Application of pre-computed control laws in a reconfigurable aircraftflight control system. J.Guid. ,Con. &Dyn.,1989,12 (3):325~333.
    [58]Rugh W J. Analytical framework for gain scheduling. IEEE Con. Sys. Mag. 1991,11 :79~84.
    [59]Shamma J, Athans M. Gain scheduling: potential hazards and possible remedies. IEEE Conotrl. Syst. Mag. 1992,10 (3):101~107.
    [60]Lawrence D, Rugh W. Gain scheduling dynamic linear controllers for nonlinear plant. Automatica,1995,31(3):381~388.
    [61]Kaminer et al. A velocity algorithm for the implementation of gain -scheduled controllers. Automatica,1995,31(8):1185~1192.
    [62]Huber R R, Mc Culloch B. Self-repairing flight control system. SAE Tech. Paper Series, 1984,1~20.
    [63]Srichander R, Walker B K. Stochastic stability analysis for continuous-time fault tolerant control systems. Int.J. Control, 1993, 57 (3): 433~452.
    [64]Ramamurthi K, Agogino A M. Real-time expert system for fault tolerant supervisory control. J. Dynamic Systems, Measurement, and Control, 1993,11 5(3): 219~227.
    [65]Kwong W A et al. Expert supervision of fuzzy learning systems for fault tolerant aircraft control. Proceedings of the IEEE,1995,83(3):466~483.
    [66]周东华,王庆林.一种非线性系统容错控制的混合方法.控制与决策, 1997,12(2):167~170.
    [67]Zhou D H, Frank PM. Fault diagnostics and fault tolerant control. IEEE Trans. on Aerospace and Electronic Systems, 1998,34(2): 420~427.
    [68]Zhou D H, Sun Y X, Xi Y G, Zhang Z J. Extension of Friedland's separate-bias estimation to randomly time-varying bias for nonlinear systems. IEEE Trans. on Automatic Control, 1993,38(8):1270~1273.
    
    [69]Chen Z, Chang T. Modeling and fault-tolerant control of large urban traffic network. Proc. of American Control Conference, 1997,4,2469~2472.
    [70]Huzmezan M, Maciejowski JM. Reconfigurable flight control during actuator failure using predictive control. Proc. of 14th IFAC World Congress,1999,301~ 306.
    [71]Noriega JR, Wang H. A direct adaptive neural-network control for unknown nonlinear systems and its application. IEEE Trans. on Neural Networks, 1998,9(1): 27~34.
    [72]Morse W D, Ossman K A. Model- following reconfigurable flight control system for the AFTI/ F-16. J. Guid. ,Control. &Dyn., 1990,13(6):969~976.
    [73]孙金生,李军,胡寿松.鲁棒容错控制系统设计.控制理论与应用,1994,11 (3):376~380.
    [74]孙金生, 李军, 王执铨. 离散系统鲁棒容错线性调节器设计.控制与决策, 1996,11(1):68~72.
    [75]孙金生,李军,王执铨.不确定离散系统的D稳定鲁棒容错控制.控制理论与应用,1998,15(4):636~641.
    [76]Stengel,F.J.Intelligent Failure-Tolerant Control. IEEE Control Systems Magazine. 1991,11(4):14~23.
    [77]Farrell, J. et al, Using Learning Techniques to Accommodate Unanticipated Faults. IEEE Control Systems Magazine,1993,13(3):40~49.
    [78]Passino,K. M. Antsaklis,P. J. Fault Detection and Identification in an Intelligent Restructurable Controller. J. Intell. Robotic Syst, 1988,1:145~161 .
    [79]Howell,W. E. et al. Restructurable Controls for Aircraft. Proc. AIAA Guiadance and Control Conf. Gatlinburg, TN. USA. 1983.
    [80]周东华,叶昊,王桂增,Ding X.基于观测器方法的故障诊断技术若干重要问题的探讨.自动化学报,1998,24(3):338~344.
    
    [81]Henrik Niemann, Ali Saberi et al. Exact, Almost and Delayed Fault Detection: an Observer Based Approach. Int.J.Robust Nonlinear Control, 1999,9,215~238.
    [82]Yi Xiong, Mehrdad Saif, Robust fault detection and isolation via a diagnosis observer. Int.J.Robust Nonlinear Control, 2000,10:1175~1172.
    [83]Qinghua Zhang, A new residual generation and evaluation method for detection and isolation of faults in non-linear systems. Int.J.Adapt Control Signal Process, 2000,14:759~773.
    [84]Tramone Curry, Emmanuel G.Collins, Jr.,Majura Selekwa. Robust fault detection using robust L1 estimation and fuzzy logic. Proceedings of American Control Conference, Arlington,2001,6:1753~1758.
    [85]Dimitry Gorinevsky, D. Mylaraswamy. Designing model-based fault estimator for a separation column. Proceedings of American Control Conference,Arlington,Arlington,2001,6:1765~1770.
    [86]Jose R.Noriega, Hong Wang, A direct adaptive neural-network control for unknown nonlinear systems and its application. IEEE Trans.on Neural Networks.1998,1:27~34.
    [87]S.Jakubek, H.P.Jorgl. Fault-diagnosis and fault-compensation for nonlinear systems. Proceedings of the American Control Conference. 2000,6:3198~3202.
    [88]Lingji Chen, Kumpati S.Narendra. Nonlinear adaptive control using neural networks and multiple models. Proceedings of the American Control Conference. 2000,6:4199~4203.
    [89]Felipe M Pait, Fuad Kassab Jr. On a class of switched, robustly stable adaptive systems. Proceedings of the 38th Conference on Decision and Control.1999, 2673~2577.
    [90]YongWha Kim, Giorgio Rizzoni, Vadim I.Utkin. Developing a fault tolerant power-train control system by integrating design of control and diagnostics. Int.J. Robust Nonlinear Control, 2001,11:1095~1114.
    [91]G.G.Yen, P.G.Lima.Adaptive critic fault tolerant control using dual
    
    
    heuristic programming. IEEE Control Systems Magazine.2002,1814~1819.
    [92]F.Caliskan,Ch.M.Hajiyev. EKF Based surface fault detection and reconfiguration in aircraft control systems. Proceedings of the American Control Conference.2000,6:1220~1224.
    [93]Youmin Zhang, Jin Jiang,Design of proportional-integral Reconfigurable Control Systems via Eigenstructure Assignment. Proceedings of the American Control Conference. 2000,6:3732~3736.
    [94]N.Eva Wu,Youmin Zhang,Kemin Zhou. Detection, estimation, and accomodation of loss of control effectiveness. Int.J.Adapt Control Signal Process,2000,14: 775~795.
    [95]Oon-Pyo Zhu, Bok Ryul Kim et al. An adaptive controller for Wolsong NGS Bulk liquid zone control of RRS. IEEE Control Systems Magazine.2000,1699~1703.
    [96]Gang Tao, Shuhao Chen, An adaptive control scheme for systems with unkonwn actuator failures. Proceedings of the American Control Conference.2001,6:1115~1120.
    [97]Jovan D.Boskov, Rnman K.Mehra. Hybrid fault-tolerant control of aerospace vehicles. Proceedings of the 2001 IEEE International Conference on Control Applications.2001,9:441~446.
    [98]Albert Y.Zomaya. Fault-tolerant recursive least-squares computations on a Mesh-connected Parallel processor. Journal of Parallel and Distributed Computing, 2002,62:1142~1167.
    [99]Jovan D.Boskov, Rnman K.Mehra. Fault tolerant control of spacecraft in the presence of sensor bias. Proceedings of American Control Conference. 2000, 6:1205~1209.
    [100]罗大庸.自适应控制.中国铁道出版社,1993.
    [101]Youmin Zhang, Jin Jiang. Design of Porportional-Integral Reconfigurable Control Systems via Eigenstructure Assignment, Proceedings of the 2000, American Control Conference, pp.3732-3736.
    
    [102]Lingji Chen, Kumpati S.Narendra. Nonlinear Adaptive Control Using Neural Networks and Multiple Models. Proceedings of the 2000, American Control Conference, pp.4199-4203.
    [103]王礼信,J.A.Peterstraete.“动力学容错控制系统的设计研究”, 北京轻工业学院学报, vol.12,no.1,pp 83-84,1994.
    [104]秦宝,秦岭松,翁清等. “一种自适应容错控制方法”,武汉大学学报,vol.44,no.3, pp365-368, 1998. 
    [105]苏丙末,曹云峰,陈欣等. “基于BACKSTEPPING的无人机飞控系统设计研究”, vol.33,no.3,pp 250-253,2001.
    [106]J.D.Boskovic, S.-H.Yu, and R.K.Mehra, A stable scheme for automatic control reconfiguration in the presence of actuator failures, Proceedings of the 1998 American Control Conference,pp.2455-2459.
    [107]G.Tao, S.M.Joshi, and X.L.Ma, Adaptive output tracking control of systems with actuator failures, IEEE Transactions on Automatic Control, vol.46, no.1, pp.78- 75 ,2001.
    [108]B.ErikYdstie,“Transient performance of direct adaptive control with parameter projection,” Proceedings of the 30th Conference on Decision and Control, December,pp.2848- 2853,1991.
    [109]J.Sun, “A modified reference adaptive control scheme for improved transient performance,” IEEE Transactions On Automatic Control, vol.38, no.8, pp. 1255- 1259,1993.
    [110]K.S.Narendra, J.Balakrishnan,“Adaptive control using multiple models,” IEEE Transactions On Automatic Control,vol.42,no.2,pp.171-187,1997.
    [111]A.Datta, P.A.Ioannou, “Performance analysis and improvement in model reference adaptive control,”IEEE Transactions On Automatic Control, vol.39, no.12, pp. 2370- 2387,1994.
    [112]S.Masuda, A.Inoue, “Transient performance improvement in dynamic certainty equivalent adaptive controller by including a fixed compensator,” Proceedings of the 35th Conference on Decision and Control, December,pp.2998-3005,1996.
    
    [113]G.Tao, S.H.Chen, and S.M.Joshi, “An adaptive actuator failure compensation controller using output feedback,” Proceedings of the 2001 American Control Conference, pp.3085-3090.
    [114]S.P.Bovd, C.H.Barratt, Linear Controller Design.Limits of Performance, Prentice -Hall, pp.118,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700