装载机容错线控转向系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线控转向是指通过微电子技术连接并控制转向系统的元件来代替传统的机械或液压连接,用传感器记录驾驶者的转向数据和车辆转角、车速、转向阻力等数据并传送给车载控制器,车载控制器按照给定的控制算法计算输出控制信号,控制车辆的转向角度实现转向控制。装载机线控转向系统具有转向传动比可调、路感清晰、便于整机布置等优点,而且还可以自由设计车辆转向的力传递特性和角传递特性,是车辆转向系统的重大革新。但线控转向系统能否替代现有的装载机流量放大转向系统,取决于线控转向系统的可靠性、安全性和系统成本等方面。其中,最为重要的是系统的可靠性,这决定于系统容错能力的高低。容错是指所研究的对象能容许系统发生故障,不会因故障而发生失控或者崩溃;容错控制是指在传感器、控制器、执行器或系统其他元部件发生故障时,控制系统仍然是稳定的,并具有较理想的特性。
     本文立足于国内技术水平,追踪国外的先进技术,开发了装载机容错线控转向系统,并围绕该系统进行了较为深入的理论与实验研究。首先,应用有限状态机(FSM)系统动态行为建模工具,建立装载机容错线控转向系统的故障诊断模型,并根据该模型提出元件与系统的故障诊断算法。其次,应用马尔柯夫(Markov)过程理论建立系统的可靠性分析模型,并计算得出系统的可靠性。再次,对线控转向系统转向控制算法进行了研究,通过MATLAB仿真,对比分析数字PID控制算法、混合模糊控制算法,仿真及实验结果显示混合模糊控制算法响应时间较快、抗干扰能力强,可以较好地满足实际转向系统的需要。最后,对装载机容错线控转向系统进行了部分台架实验,包括转向液压系统性能实验、故障诊断算法及容错性能验证实验、转向控制算法及转向性能验证实验。实验及仿真结果表明本文开发的的装载机容错线控转向系统具有较高可靠性,能够满足转向系统的实时性、稳定性和准确性要求。
The continuous development of modern science and technology pushed the overlapping and penetrating between different subjects greatly. And due to the application of the microelectronic technique, computer technology and the electromechanical integration to wheel loader, the comprehensive technique of wheel loader leap onto a new step. The integration of electronic technique, micro-computer, sensor, electro-hydraulic servo and control system remakes the traditional wheel loader. The modern wheel loader is more preponderant in work efficiency, task quality, environmental protection, serviceability and automation. And it is moving forward to further intellectualized direction. The steer-by-wire technology replaces the traditional mechanical or hydraulic juncture by connecting and controlling all the component of steering system through micro-electronics technology, using sensors to collect the data of steering , vehicle corner, vehicle speed, turning resistance and transfers them to the controller on the vehicle. Then the controller processes these signals according to the given control algorithm and outputs actuating signals to control the steering degrees of vehicle so as to realize the steering. The steer-by-wire system on wheel loader has advantages in transmission ratio tunable, road sense clever and vehicles assembly simply. Besides, the design of force and angle transfer characteristics becomes freely. It is a significant innovation in the vehicles steering system. But the steer-by-wire system can replace the existing whole hydraulic pressure steering system or not lies on the reliability, stability and system cost of the steer-by-wire system. And the most important is the reliability and stability of the system that lies on the fault-tolerance capability.
     Fault-tolerance means that the researched object allow system failure and won't be out of control or breakdown for fault, fault-tolerance control is that the closed-loop control system can remain stable and has perfect characteristic when sensors, controllers, actuators or other parts of the system is wrong. The design of fault-tolerance control system mainly includes two parts: fault diagnosis and fault-tolerance controller design. The former checks the kinds and position of fault (failure separation), degrees and occurrence time(failure recognize). Generally speaking, fault diagnosis methods involve: based on mathematical model, based on signal processing and knowledge. The latter includes hardware fault-tolerance design, software fault-tolerance design, and other fault-tolerance design. Among them, the most important and effective method is the hardware fault-tolerance design that rely on adopting multiple hardware. In this paper, the fault-tolerance steer-by-wire system on wheel loader uses hardware redundancy fault-tolerance technology. Steering wheel corner sensors and vehicle corner sensors have triple modular redundancy, controller and its communication adopts duplication redundancy. At the same time, the system takes software fault-tolerance technology and resolution redundancy technology to ensure the fault-tolerance capability and reliability of the system.
     This Ph.D. dissertation is funded by the project (No.2005083) named "Application of Steer-By-Wire technology in wheel loader" from JILIN Education Department and the project named "Research of Steer-By-Wire technology and Application on Wheel Loader" funded by corporation. Based on domestic technology level and tracking foreign advanced technology, the fault-tolerance steer-by-wire system on wheel loader is researched and designed. The system integrates electro-hydraulic proportion control technology, computer technology and fault-tolerance control technology etc., realized the transform between two steering sensitivity modes in the light of the wheel loader actual operating modes. At the same time the system has a high reliability and safety.
     This dissertation fulfilled research objective as following:
     1、The research achievements of turning technology of wheel loader and steer-by-wire technology domestic and abroad were surveyed and worked up, and the characteristics, operating principle, the feasibility and progress of the technology applied to the articulated wheel loader steering system is analyzed.
     2、The design proposal of“fault-tolerance steer-by-wire system on wheel loader "was put forward. This system adopted fault-tolerance control technology with high reliability, adjustable steering ratio and steering sensitive.
     3、Finite state machine (FSM)was used to establish the system dynamic behavior model, and it was applied to fault diagnosis of the system.
     4、The control algorithms for steer-by-wire system were researched.MATLAB simulation results showed that Fuzzy control algorithm has quick response time, high stability and control precision.
     5、. Markov state transition diagram was applied to establish the steer-by-wiresystem reliability analysis model which was used to analysis the system reliability and calculated the reliability of the system.
     6、Embedded controller of the fault-tolerance steer-by-wire on wheel loader was developed, contains hardware design and software design. Because of the complicated operating modes and the bad working conditions, the wheel loader will be influenced by all sorts of disturbances and the system failure will occur, therefore the system anti-jamming design was done to guarantee the system stabability and reliability under the complex working conditions.
     7、Some experiments were done for the fault-tolerance steer-by-wire system, including fault diagnosis algorithm and fault-tolerant performance verification test ,the control algorithms verification test. Test and simulation results showed that the fault-tolerance steer-by-wire system on wheel loader has high reliability, and it can satisfy the requirements of real-time, stability and accuracy requirements.
     8、summarized the steer-by-wire technology on wheel loader , and put forward the research expectation in the future.
     The main innovations of this dissertation are as follows:
     1、The fault-tolerance control technology was applied to the steer-by-wire system on wheel loader for the first time domestically.
     Researches on the steer-by-wire technology on vehicles are fewer in our country than others. Especially, the reliability study is almost blank. The fault-tolerance control technology and the steer-by-wire technology were integrated for the first time domestically. The design scheme of the fault-tolerance steer-by-wire system on wheel loader was put forward in this dissertation, and the theory and experiment researches were taken about it. The results showed that the system has high reliability, and can satisfy the requirements of real-time, stability and accuracy requirements.
     2、The fault-tolerance steer-by-wire system fault diagnosis algorithm was put forward.
     In this article, the fault state of the fault-tolerant steer-by-wire system were researched and classified in detail. Finite state machine was used to establish the system dynamic behavior model, and according to the model, fault diagnosis algorithm was proposed. Test results verified the correctness of the algorithm.
     3、Researches on the steering control algorithm of the steer-by-wire system.
     Fuzzy control algorithm was chosen through MATLAB simulation results compare. Simulation and test results showed that Fuzzy control with faster response time and the strong anti-interference capability can satisfy the requirement of actual steering system.
     Research expectation of the future is proposed in this dissertation:
     1、Take more experimental study to verify the performance including real-time, accuracy and stability of the steer-by-wire system in different operating conditions. Set various fault conditions comprehensively by the fault injection method to certify the fault tolerance and reliability of the system.
     2、Analysis the infection of the speed, tire pressure and bucket height .Make the system control model and the actual operating mode more closer, and improve the system performance further.
     3、Research the road sense feedback control to enhance the controllability of the vehicle.
     4、Carry out the integration control study, and take the steer-by-wire as a part of the entire vehicle control system. Prepare for the integration of the engine control, speed changing, steering, braking, remote fault diagnosis, remote machine cluster operating and so on.
     5、Strengthen the applied research, optimize the system and reduce the cost in order to prepare full for the production.
引文
[1]许仰曾、刘忠华、张天福等,液压转向器的电控与信息化发展趋势,流体传动与控 制,2004-3:1-3
    [2]焦生杰等,工程机械机电液一体化[M].北京:人民交通出版社,2000
    [3] New Small Wheel Loader ,PUSHING AHEAD , 2008,1
    [4] Construction Spending , PUSHING AHEAD , 2008,1
    [5] Wheels or Tracks? PUSHING AHEAD , 2008,1
    [6] Volvo Construction Equipment, www.vovlo.com.
    [7] Edward J. Jaselskis ,Road Equipment Procurement and Utilization Study, Iowa StateUniversity, October 2002
    [8] Caterpillar Corporation, Last Update Date: 2-1 -2007
    [9] New Equipment Showcase, Utliity Contractor, MAY 2005
    [10] Steer By Wire Control Systems for Earth Moving Equipment Applications ,http://www.uic.edu/labs/mechatronics/research.html
    [11]陈善华等,汽车电子转向技术发展与展望,汽车技术,2003,1
    [12]何仁、李强,汽车线控转向技术的现状与发展趋势,交通运输工程学报,2005,2
    [13]王同建,装载机线控转向技术研究,吉林大学博士论文,2006,4
    [14] Dominke Peter and Ruck Gerhard, Electric Power Steering - The First Step on the Way to "Steer by Wire",SAE Technical Paper Series 1999-01-0401 http://auto.sohu.com/2003/l l/27/26/article216132617.shtml
    [15]和飞机一样-未来氢汽车演绎四大“颠覆”,
    [16]田晋跃,工程机械电子转向技术,工程机械与维修,2002.1
    [17]丁建民,轮式装载机转向系统的研究,吉林大学硕士论文,2006,4
    [18]唐经世编著,工程机械,北京:中国铁道出版社,1996.11第一版
    [19]陈家丽,卡特彼勒新G系列轮式装载机,工程机械与维修,1998.10:22-23
    [20]黄振德、李福荣、吴继飞,同轴流量放大器及其应用,工程机械,1999.1229-30
    [21]黄宗益,轮式装载机的发展趋势,工程机械,1996.3:25-29
    [22]吴晓,超大排量全液压转向器的研制及其对大型铰接式车辆转向行驶稳定性的关键作用,《机床与液压》2003.No.5
    [23]陆剑君,两级液压放大技术在CAT、装载机转向装置上的应用,《起重运输机械》,2004, (5)
    [24] OleKanstrup, Steering Stimulant ,Engineering Technology,Sauer-Danfoss,Denmark NT Internationa 1,2002
    [25]宁悦,装载机流量放大转向系统特性研究,吉林大学硕士论文,2006,4
    [26] Catepillar,Parts of 980G Wheel Loader,Published 1999,3
    [27] Walers R.B.etc.,Hydraulic and Electro-hydraulic control systems, Elesevier appliedscience, 1991
    [28] Ackermann Jetal., Advantages of Active Steering for Vehicle DynamicsControl,99ME013,1999
    [29]攻弯之王-F400 Carving,http://auto.sohu.com/56/12/article13831256.shtml
    [30]美国《时代》杂志评出2002年度人们最喜爱的发明,
    [31]力士乐为行走机械配套技术-新型集装箱货物转运车,力士乐信息季刊2000年第四期 曼内斯曼力士乐股份公司
    [32] Sabri Cetinkunt, Salem Haggag, David Alstrom, Steer-By-Wire Control System for Electrohydraulic Powered Articulated Vehicles,University of Illinois at Chicago
    [33] Steer By Wire Control Systems for Earth Moving Equipment Applications, http://www.uic.edu/labs/mechatronics/research.html
    [34]物流自动化实验室,http://www.iim.ac.cn/y7.htm
    [35]高赞,基于粗糙集的故障诊断和容错控制理论和方法研究,西安科技大学博士论文, 2005,6
    [36]周东华、叶银忠,现代故障诊断与容错控制,清华大学出版社,2000
    [37] Gang Tao and Petar Kokotovic,Adaptive Control of Systems with Actuator and SensorNonlinearities, published by John Wiley & Sons, 1996
    [38] Philip P. Shirvani and Edward J. McCluskey, Fault-Tolerant Systems in A SpaceEnvironment, CRC Technical Report No. 98- 2,December 1998
    [39]周东华、x.Ding.,容错控制理论及其应用,自动化学报,2000,26(6):788-797
    [40]王德军,故障诊断及容错控制方法研究,吉林大学博士论文,2004,10
    [41] Dr. Heck, Advanced Control Configuration, ECE 8873
    [42]周东华、王庆林,一种非线性系统容错控制的混合方法,控制与决策,1997,12(2): 167-170
    [43] D. H. Zhou, P. M. Frank, Fault Diagnostics and Fault Tolerant Control,, IEEE Transaction on Aerospace and Electronic Systems, 1998,34(2): 420-427
    [44]胡寿松、程炯,动态系统的鲁棒容错控制方法,自动化学报,1991,17(3):280-287
    [45] M. Darouach, M. Zasadzinski, Unbiased Minimum Variance Estimation for Systems with Unknown Exogenous Inputs, Automatica, 1997, 33(4): 717-719
    [46]景军清,流量放大转向系统原理特点及故障诊断,工程机械与维修,1998,10
    [47]丁建民,全液压流量放大转向系统探讨,工程机械,2002,9,P35-36
    [48]张萍、王桂增、周东华,动态系统的故障诊断方法,控制理论与应用,2000,2
    [49]赵保华、钱兰、周颢、郭雄辉,基于有限状态机的错误诊断算法,电子与信息学报, 2006,9
    [50]闻新、张洪钺、周露,控制系统的故障诊断和容错控制,北京:机械工业出版社, 1998
    [51] Sourabh Dash and Venkat Venkatasubramanian,Challenges In the Industrial Applicationsof Fault Diagnostic Systems,School of Chemical Engineering, Purdue University ,1999
    [52] Venkat Venkatasubramanian ,Raghunathan Rengaswamy ,Kewen Yin, Surya N. Kavuri ,Areview of process fault detection and diagnosis Part I: Quantitative model-based methods,Computers and Chemical Engineering 27 (2003) 293-311
    [53] Venkat Venkatasubramanian, Raghunathan Rengaswamy, Surya N. Kavuri,Kewen Yin ,Areview of process fault detection and diagnosis Part III: Process history basedmethods,Computers and Chemical Engineering 27 (2003) 327-346
    [54]葛建华、孙优贤,容错控制系统的分析与综合,浙江大学出版社,1994
    [55] Blank M et al,Fault tolerant control systems:a holistic view,Control Eng.Practice,1997,5(5):693-702
    [56] R. J. Patton, Fault-Tolerant Control: the 1997 Situation, Proceedings of IFAC/IMACsSymposium on Fault Detection and Safety for Technical Process, Hull, England, 1997:1033-1055.
    [57]张翰英,必须加速发展实用性的容错系统,控制工程,1986,2
    [58] Q. Zhao, Fault Tolerant Control System Design, Ph. D. Dissertation,the University Western Ontario, Canada, 1999
    [59]王平,嵌入式计算机控制系统容错策略研究,中国科学院研究生院博士论文,2004, 8
    [60]王仲生,智能容错技术及应用,国防工业出版社,2002
    [61]黄文君等,控制系统的冗余策略和实现准则,仪器仪表,2004,4
    [62]陈子平,浅谈控制系统冗余控制的实现,《自动化仪表》第26卷第9期,2005,9
    [63] Alice M. Agogino, Intelligent Sensor Validation and Sensor Fusion for Reliability andSafety Enhancement in Vehicle Control,Final Report,June 30, 1995,Department ofMechanical Engineering University of California at Berkeley.
    [64] Richard R. Larson, AFTI/F-111 MAW flight control,system and redundancy managementdescription [M].NASA, February 1987.21-36
    [65] Bilung Lee and Edward A. Lee, Interaction of Finite State Machines and ConcurrencyModels, Proceeding of Thirty Second Annual Asilomar Conference on Signals, Systems,and Computers, California, November 1998
    [66]徐小良、汪乐宇、周泓,有限状态机的一种实现框架,工程设计学报,2003,5
    [67]张国庆、霍国义,有限状态机设计与实现方法,电脑应用技巧与维护,2001,10
    [68]徐秀华、王亚杰、乔敏东,基于有限状态机的界面流描述与设计,计算机工程与设 计,2007,8
    [69] Eric W. Endsley, Morrison R. Lucas, Dawn M. Tilbury ,SOFTWARE TOOLS FOR VERIFICATION OF MODULAR FSM BASED LOGIC CONTROL FOR USE IN RECONFIGURABLE MACHINING SYSTEMS*,2000 Japan-USA Symposium on Flexible Automation ,July 23-26,2000
    [70] SALEM HAGGAG, FAULT-TOLERENT ELECTROHYDRAULIC STEER-BY-WIRECONTROL SYSTEM FOR ARTICULATED VEHICLES, DOCTOR THESIS,
    [71] University of Illinois, 2003
    [72]丁建民,轮式装载机转向系统的研究,吉林大学硕士学位论文,2006,5
    [73]宁悦,装载机流量放大转向系统特性研究,吉林大学硕士学位论文,2006,6
    [74] L. Gilardino, S. Manco, N. Nervegna and M. A. Pavanetto,Flow Amplifiers in Hydrostatic Steering,SAE TECHNICAL PAPER SERIES,2002,01,1358
    [75]佟理,介绍两种流量放大转向系统,起重运输机械,1989年8期
    [76]黎启柏,电液比例控制与数字控制系统,北京:机械工业出版社,1997,5
    [77]王成都,《比例减压阀的参数辨识、性能测试及实验研究》,西安交通大学硕士学位论文,2000
    [78]尹妍萍、李天石、王成都,比例减压阀数学模型辨识,《机床与液压》,2001.3,P40-41
    [79] K. Astrom and T. Hagglund. PID Controllers: Theory, Design, and Tuning, International Society for Measurement and Con. 1995
    [80]董景新等,控制工程基础(第二版),北京:清华大学出版社,2003,8
    [81][美]Katsuhiko Ogata著,卢伯英等译,现代控制工程(第四版)[M],北京:电子工业出版社,2003
    [82] Ying H, Analytical relationship between the fuzzy PID controllers and the linear PID control, Technical Report, Department of Biomedical Engineering, the University of Alabama at Birmingham, 1987
    [83]韩瑞珍,PID控制器参数模糊自整定研究,浙江工业大学硕士学位论文,2001.12
    [84] Timothy J. Ross, Fuzzy logic with engineering applications, Hoboken, NJ : John Wiley,2nd Edition 2004
    [85] Kevin M.Passino, Stephen Yurkovich, Fuzzy Control ,北京:清华大学出版社,2001.11
    [86]黄奇,马尔可夫骨架过程在可靠性理论中的应用,中南大学博士论文,2004,4
    [87] David W. Coit ,System Reliability Prediction Prioritization Strategy, 2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium
    [88]刘惟信编著,机械可靠性设计,北京:清华大学出版社,1996年8月,第一版
    [89]吴志良、郭晨、赵红,基于马尔柯夫过程的可修系统可靠性建模,大连海事大学学报,第33卷第l期,2007年2月
    [90]王少萍,工程可靠性[M].北京:北京航空航天大学出版社,2000
    [91]王社伟、陶军、高玉宝,基于马尔可夫模型的容错系统可靠性分析,上海海运学院学报,Vo1.22 No.3 Sep.2001
    [92]李佳,ARM系列处理器应用技术完全手册,人民邮电出版社,2006
    [93]周立功,ARM嵌入式基础教程,北京航空航天大学出版社,
    [94]王瑞丰,基于ARM的变温空调伺服系统设计,西北工业大学硕士论文,2007
    [95]孙秋野、孙凯、冯健,ARM嵌入式系统开发典型模块,人民邮电出版社,2007
    [96]刘彩志、陈思忠,多轮转向汽车电液控制系统的研究与开发,交通科技,2002,2
    [97]王幸之、王雷、瞿成,单片机应用系统抗干扰技术,北京航空航天大学出版社,2000
    [98]高建明,装载机线控转向系统半实物仿真研究,吉林大学硕士学位论文,2005,7
    [99]黄建兵,差距就是动力,建筑机械化,2004,5
    [100]刘良臣,bauma China 2004展会上的装载机,今日工程机械,2005,1
    [100]刘良臣、石光林,工程机械行业现状及技术发展趋势,工程机械,2005(9)
    [101]邹十践,客观认识我国工程机械行业实力和发展前景,建筑机械化,2004,2
    [102]青风,国内装载机的现状和发展趋势,机电信息,2004年第8期总第68期
    [103]徐晓光,工程机械的智能化趋势与发展对策,工程机械,2002,6
    [104]黄建兵,轮式装载机的发展方向与中国装载机的出路,工程机械与维修,2004.5: 58
    [105]中国工程机械工业协会,对中国工程机械行业发展的几点意见,工程机械与维修, 2005年11期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700