高家山生物群沉积特征及碳同位素地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
埃迪卡拉生物群是目前已知最早、较为可靠的后生动物化石,它为早期生命研究提供了非常重要的化石证据.高家山生物群作为埃迪卡拉生物群晚期主要代表,其埋藏学特征与世界范围内广泛分布的埃迪卡拉型化石库存在很大的差异,因此,对高家山生物群沉积环境的研究可以为整个埃迪卡拉型化石库埋藏学的研究提供新的线索和思考,产生重要研究意义.埃迪卡拉生物群生物分异度低,分类位置不明确,具有明显的地方特色,导致了显生宙的生物地层学划分方法,在埃迪卡拉生物群难以适用.当前的首要任务,是要建立一个高分辨率的埃迪卡拉纪地层系统,但是,由于种种原因,高家山生物群的化学地层学的研究相对局限,为了使高家山生物群能更好的与全球其他埃迪卡拉纪生物群对比,迫切的需要对高家山生物群碳同位素地球化学作系统的研究.
     本文通过野外沉积特征、室内岩石薄片特征(8个剖面)以及同一区域不同剖面(19个剖面)碳同位素地球化学对比等方法对高家山生物群的沉积环境以及碳同位素地球化学特征进行了重点研究.根据风暴沉积的特征,对高家山生物群的沉积环境进行了详细的划分.与华南地区埃迪卡拉系碳同位素对比以及华南地区碳同位素合成剖面,构建了华南地区埃迪卡拉系碳同位素地球化学剖面.并总结了其特征,并在此基础上尝试解释了其形成原因.并总结了宽川铺生物群的属种,提出了2种沉积模式.
The Ediacaran Biota, known as the earliest and reliable metazoan, provids indispensable evidence for the study of early life. The Gaojiashan biota is of the Late Ediacaran in age and typically yields Nama-type fossils, and differs a great deal with the word-wide Ediacaran-type biotas in taphonomic feature. Therefore, the study of sedimentary environment of the Gaojiashan Biota can provide new clues and perspectives for the taphonomy of Ediacaran-type biotas. Unfortunately, biostratigraphy, a principle tool for subdivision and correlation of richly fossiliferous Phanerozoic strata, is of limited usefulness in developing a global time scale for the Ediacaran System, the difficulties being related to the low species diversity, taxonomic uncertainty, and the sporadic and endemic palaeogeographic distribution of Ediacaran fossils. Thus, a critical task of establishing a high resolution, globally applicable Ediacaran chemostratigraphy has become the primary objective of the International Subcommission on Neoproterozoic Stratigraphy of the ICS. However, chemostratigraphy of the Gaojiashan Biota is of relatively weak and still waiting to be corroborated.
     The purpose of this paper, therefore, will focus on the sedimentary facies and paleoenvironment as well as carbon isotope stratigraphy of the Gaojiasha Biota, with particular references to the sedimentary, petrological (8 reference sections) andδ~(13)C chemostratigraphy correlation of different sections (19 reference sections) in South China. The sedimentary environments of the Gaojiashan Biota are elaborated mainly based on the different features of storm deposits. A compositeδ~(13)C profile of the Dengying Formation in South China is provided and carbon isotopic oscillations from Gaojiashan section are correlated with the reference curves for South China. In addition, Small Shell Fossils from the Early Cambiran Kuanchuanpu Formation are rectified, including 14 genuses, 22 species, and two sedimentary models of the Kuanchuanpu Biota are reconstructed.
引文
1. Aharon P, Schidlowski M, Singh I B. Chronostratigraphic Carbon isotope record of the Lasser Himalaya. Nature, 1987, 327: 699-702
    
    2. Aigner T. Calcareous tempestites: Storm-dominanted stratification in Upper Muschelkalk Limestones (Middle Trias, SW-Germany). In: Einsele G and Seilacher A (eds.). Calcareous tempestites: Storm-dominanted stratification in Upper Muschelkalk Limestones (Middle Trias, SW-Germany). New York: Springer-Verlag, 1982. 180-198
    
    3. Aigner T (ed.). Storm depositional systems: Dynamic stratigraphy in modern and ancient shallow-marine sequences. New York. Springer-Verlag, 1985.1-174
    
    4. Allison P A. The role of anoxia in the decay and mineralization of proteinaceous macro-fossils. Paleobiology, 1988,14(2): 139-154
    
    5. Allison P A, Briggs D E G. The taphonomy of soft-bodied animals. In: Donovan S K, (ed.). The Processes of Fossilization. London: Belhaven Press, 1991. 120-140
    
    6. Allison P A, Briggs D E G. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology, 1993,21: 527-530
    
    7. Amthor J E, Gratzinger J P, Schroder S, et al., Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 2003, 31,431-434.
    
    8. Banner J L. Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology, 1995, 42: 805-824
    
    9. Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim Cosmochim Acta, 1990, 54: 3123-3137
    
    10. Barfod G H, Albarede F, Knoll A H, et al., New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth Planet Sci Lett, 2002, 201:203-212
    
    11. Bengtson S, Yue Z. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science, 1992,257:367-369
    
    12. Bengtson S, Yue Z. Fossilized Metazoan Embryos from the Earliest Cambrian. Science, 1997, 277: 1645-1648
    
    13. Berner R A. Calcium, carbonate concretions formed by the decomposition of organic matter. Science, 1968,159: 195-197
    
    14. Berner R A. Migration of iron and sulfur within anaerobic sediments during early diagenesis. Amer. Jour. of Sci, 1979,267: 19-42
    
    15. Berner R A. Sedimentary pyrite, an update. Geochemica et Cosmochemica Acta, 1984, 48: 605-615
    
    16. Bottjer D J, Etter W, Hagadorn J W, et al. Fossil-Lagerstatten: Jewels of the Fossil Record. In: Bottjer D J, Etter W, Hagadorn J W, et al, eds. Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life. New York: Columbia University, 2002. 1-10
    
    17. Brand U, Veizer J. Chemical diagenesis of a multi-component carbonate system. J Sediment Petrol, 1980, 50: 1219-1236
    
    18. Brasier M D, Magaritz M, Corfield R, et al., The carbon-and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geol. Mag. 1990,127: 319-332
    
    19. Brasier M D, Anderson M M, Corfield R M. Oxygen and carbon isotope stratigraphy of early Cambrian carbonates in southeastern Newfoundland and England. Geol. Mag, 1992, 129: 265-279
    
    20. Brasier M D, Shields G, Kuleshov V N, et al., Integrated chemo-and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwestern Mongolia. Geol. Mag, 1996,133 (4): 445-485
    
    21. Brasier M D, McCarron G, Tucker R, et al., New U-Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology, 2000, 28 (2): 175-178
    
    22. Briggs D E G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu Rev Earth Pl Sc, 2003, 31: 275-301
    
    23. Briggs D E G, Kear A J. Decay and mineralization of shrimps, Palaios, 1994, 9: 431-456
    
    24. Briggs D E G, Bottrell S H, Raiswell R. Pyritization of soft-bodied fossils: Beecher's Trilobite Bed, Upper Ordovician, New York State. Geology, 1991, 19: 1221-1224
    
    25. Briggs D E G, Raiswell R, Bottrell S H, et al. Controls on the pyritization of an analysis of the lower Devonian Hunsruck Slate of Germany. Am J Sci, 1996, 296: 633-663
    
    26. Butterfield N J. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 1990, 16: 272-286
    
    27. Cai Y P, Hua H. Pyritization in the Gaojiashan Biota. Chinese Science Bulletin, 2007, 52(5): 645-650
    
    28. Calver C R. Isotope Stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide rift complex. Australia and the overprint of the Water column stratification. Precambrian Research, 2000,100: 121-150.
    
    29. Cheel R J, Leckie D A. Hummocky cross stratification. In: Wright P V (ed.). Hummocky cross stratification. Oxford: IAS, Blackwell Scientific Publication. 1992, 103-122
    
    30. Chen D, Dong W, Zhu B, et al., Pb-Pb ages of Neoproterozoic Doushantuo phosphorites in South China: constraints on early metazoan evolution and glaciation events. Precambrian Research, 2004,132:123-132
    
    31. Chen Z, Bengtson S, Zhou C M, et al., Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia, 2007,1-9
    
    32. Christie-Blick N, Dyson I A, von der Borch C C. Sequence stratigraphy and the interpretation of Neoproterozoic Earth history. Precambrian Research, 1995, 73: 3-26
    
    33. Chu X L, Zhang Q, Zhang T G, et al., Sulfur and carbon isotopic variations in Neoproterozoic sedimentary rocks from southern China. Progress in Natural Science, 2003, 13: 875-880
    
    34. Chu X L, Todt W, Zhang Q, et al., Zircon U-Pb age of the Nanhua-Sinian boundary. Chinese Science Bulletin, 2005, 50 (6): 600-602
    
    35. Condon D, Zhu M Y, Bowring S, et al., U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95-98
    
    36. Cramer B D, Saltzman M R. Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive carbon isotope excursion. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219: 333-349
    
    37. Derry L A, Kaufman A J, Jacobsen S B. Sedimentary cycling and environmental change in the late Proterozoic evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica, 1992,56: 1317-1329
    
    38. Dong X P, Donoghue P C J, Cheng H, et al. Fossil embryos from the Middle and Late
    Cambrian period of Hunan, South China. Nature, 2004,427: 237-240
    
    39. Donnelly T H, Shergold J H, Southgate P N, et al., Events leading to global phosphogensis around the Proterozoic/Cambrian boundary. In: Noyholt A J, Jarvis I (eds). Phosphoriten research and development. London: Geological Society Special Publication, 1990. 52: 273-287
    
    40. Einsele G, Seilacher A. Distinction of tempestites and turbidites. In: Einsele G, Ricken W, Seilacher A (eds.). Distinction of tempestites and turbidites. Berlin: Springer-Verlag, 1991. 377-382.
    
    41. Etter W. Beecher's Trilobite Bed: Ordovician pyritization for the other half of the tnlobite. In: Bottjer D J, Etter W, Hagadom J W, et al, eds. Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life. New York: Columbia University, 2002a. 131-141
    
    42. Etter W. Hunsruck Slate: widespread pyritization of a Devonian fauna. In: Bottjer D J, Etter W, Hagadorn J W, et al, eds. Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life. New York: Columbia University, 2002b. 143-165
    
    43. Etter W. La Voulte-sur-Phone: exquisite Cephalopod preservation. In: Bottjer D J, Etter W, Hagadorn J W, et al, eds. Exceptional Fossil Preservation: A Unique View on the Evolution of Marine Life. New York: Columbia University, 2002c. 293-305
    
    44. Fedonkin M A, Runnegar B. Proterozoic metazoan trace fossils. In: Schopf W J, Klein C (eds). The Proterozoic Biosphere: A multidisciplinary study. Cambridge: Cambridge University Press, 1992. 389-395
    
    45. Feng H, Ling H, Jiang S, et al., §13Ccarb and Ceanom excursions in the post-glacial Neoproterozoic and Early Cambrian interval in Guizhou, South China. Progress in Natural Science, 2004, 14(2): 188-192
    
    46. Gagan M K, Johnson D P, Carter R M. The cyclone winiffred storm bed, central Great Barrier Reef shelf, Australia. Journal of Sedimentary Petrology, 1988, 58: 845-856
    
    47. Gehling J G Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 1999, 14: 40-57
    
    48. Gehling J G. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research, 2000,100:65-95
    49. Gehling J G. Field Guide to the Ediacaran-Cambrian of the Flinders Ranges, South Australia. South Australian Museum, Adelaide, 2005, 1-69
    
    50. Germs G J B. The Neoproterozoic of southwestern Africa, with emphasis on platform stratigraphy and paleontology. Precambrian Research, 1995, 73: 137-151
    
    51. Grey K. Ediacaran Palynology of Australia: Memoirs of the Association of Australasian Palaeontologists, 2005, 31:1-439
    
    52. Grotzinger J P, Bowring S A, Saylor B Z, et al., Biostratigraphic and geochronological constraints on early animal evolution. Science, 1995,270: 598-604
    
    53. Hagadorn J W, Xiao S H, Donoghue P C, et al., Cellular and subcellular structure of Neoproterozoic embryos. Science, 2006, 314: 291-294
    
    54. Halverson G P, Hoffman P F, Schrag D, et al., Toward a Neoproterozoic composite carbon isotope record. GSA Bulletin, 2005, 117: 1181-1207
    
    55. Hu S X (ed). Taphonomy and paleoecology of the Early Cambrian Chengjiang Biota from Eastern Yunnan, China. Berliner: Berliner Palaobiologische Abhandlungen. 2005, 1-197
    
    56. Hua H, Pratt B R, Zhang L Y. Borings in Cloudina Shells: Complex Predator-Prey Dynamics in the Terminal Neoproterozoic. Palaios, 2003,18: 454-459
    
    57. Hua H, Chen Z, Zhang L Y. Early Cambrian phosphatized blastula- and gastrula-stage animal fossils from southern Shaanxi. Chinese Science Bulletin, 2004,49(5): 487-490
    
    58. Hua H, Chen Z, Yuan X L, et al., Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 2005, 33(4): 277-280
    
    59. Hua H, Chen Z, Yuan X L. The advent of mineralized skeletons in Neoproterozoic Metazoa-new fossil evidence from the Gaojiashan Fauna. Geological Journal, 2007, 42: 263-279
    
    60. Huang M, Buick I. High.δ~(13) C carbonates from the Songpan-Ganze orogenic belt: implications for correlation of Neoproterozoic carbon isotope anomalies across the Yangtze Platform, China. Gondwana Research, 2002, 5(1): 217-226
    
    61. Hoffman P F, Kaufman A J, Halverson G P, et al., A Neoproterozoic snowball earth. Science, 1998,281:1342-1346
    
    62. Hoffmann K H, Condon D J, Bowring S A, et al., U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: constraints on Marthoan glaciation. Geology, 2004, 32: 817-820
    63. Jacobsen S B. Gas hydrates and deglaciations. Nature, 412: 691-693
    
    64. Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 1999, 161: 37-57
    
    65. James N P, Narbonne G M, Kyser T K. Late Neoproterozoic cap carbonates, Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown. Canadian Journal Earth Science, 2001, 38: 1229-1262
    
    66. Jeffery D, Aigner T. Storm deposition in the Carboniferous limestones near Western Super-Mare, Dinantian, SW England. In: Einsele G and Seilacher A (eds.). Storm deposition in the Carboniferous limestones near Western Super-Mare, Dinantian, SW England. New York: Springer-Verlag. 1982, 240-247
    
    67. Jenkins R J F. The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Research, 1995, 73: 51-69
    
    68. Jiang G Q, Christie-Blick N, Kaufman A J, et al., Sequence stratigraphy of the Neoproterozoic Infra Krol Formation and Krol Group, Lesser Himalaya, India. Journal of Sedimentary Research, 2002, 72: 524-542
    
    69. Jiang G Q, Kennedy M J, Christic-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 2003a, 426: 822-826
    
    70. Jiang G Q, Sohl L E, Cheristie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): paleogeographic implications. Geology, 2003b, 31: 917-920
    
    71. Jiang G Q, Shi X Y, Zhang S H. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates. Chinese Science Bulletin, 2006, 51(10): 1121-1138
    
    72. Jiang G Q, Kaufman A J, Christie-Blick N, et al., Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ~(13)C gradient. Earth and Planetary Science Letters, 2007, 261: 303-320
    
    73. Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 1995, 73: 27-49
    
    74. Kaufman A J, Jacobsen S B, Knoll A H. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet. Sci. Lett. 1993, 120: 409-430
    
    75. Kaufman A J, Knoll A H, Narbonne G M. Isotopes, ice ages, and terminal Proterozoic earth history. Proc. Natl. Acad. Sci. 1997, 94: 6600-6605
    
    76. Kaufman A J, Jiang G Q, Christic-Blick N, et al., Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrian Research, 2006,147:156-185
    
    77. Kennedy M J, Christic-Blick N, Sohl L E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology, 2001,29:443-446
    
    78. Knoll A H. Learning to tell Neoproterozoic time. Precambrian Research, 2000,100: 3-20
    
    79. Knoll A H, Vidal G Late Proterozoic vase-shaped microfossils from the Visingso Beds. Sweden Geologiska Foreningens Stockholm Forhandlingar, 1980,102: 207-211
    
    80. Knoll A H, Xiao S H. On the age of the Doushantuo Formation. Acta Micropalaeontologica Sinica, 1999,16:225-236
    
    81. Knoll A H, Walter M R. Latest Proterozoic stratigraphy and earth history. Nature, 1992, 356: 673-678
    
    82. Knoll A H, Hayes J M, Kaufman A J, et al., Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 1986, 321: 832-838
    
    83. Knoll A H, Grotzinger J P, Kaufman A J, et al., Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia. Precambrian Research, 1995a, 73: 251-270
    
    84. Knoll A H, Kaufman A J, Semikhatov M A, et al., Sizing up the sub-Tommotian unconformity in Siberia. Geology, 1995b, 23(12): 1139-1143
    
    85. Knoll A H, Walter M R , Narbonne G M, et al., A new period for the geologic time scale. Science, 2004, 305:621-622
    
    86. Knoll A H, Walter M R , Narbonne G M, et al., The Ediacaran Period: a new addition to the geologic time scale. Lethaia, 2006,39: 13-30
    
    87. Kreisa R D. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of Southwestern Virgina. Journal of Sedimentary Petrology, 1981, 51(3): 823-848
    
    88. Lambert I B, Walter M R, Zang W, et al., Paleoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 1987, 325: 140-142
    
    89. Le Guerroue E, Allen P A, Cozzi A, et al., 50 Myr recovery from the largest negative δ~(13)C excursion in the Ediacaran ocean. Terra Nova, 2006, 18: 147-153
    
    90. Li J W, Chen J Y, Hua T. Precambrian Sponges with Cellular Structures. Science, 1998, 279: 879-882
    
    91. Li R W, Chen J S, Zhang S K, et al., Spatial and temporal variations in carbon and sulfur isotopic compositions of Sinian sedimentary rocks in the Yangtze Platform, South China. Precambrian Research, 1999, 97: 59-75
    
    92. Li R W, Chen J S, Zhang S K, et al., Secular variations in carbon isotopic compositions of carbonates from Proterozoic successions in the Ming Tombs Section of the North China Platform. Journal of Asian Earth Sciences, 2003,22: 329-341
    
    93. Li P, Hua H, Zhang L Y, et al., Lower Cambrian phosphatized Punctatus from southern Shaanxi and their ontogeny sequence. Chinese Science Bulletin, 2007,2820-2828
    
    94. Ling H F, Feng H Z, Pan J Y, et al., Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: Implications for chemostratigraphy and paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 158-174
    
    95. Liu H, Chen M, Lu G Measurements of δ~(13)C and δ~(18)O in carbonate of the Upper Sinian Xifengsi Formation in Changshan County, Zhejiang. Sci. Geol. Sin, 1992,342-348
    
    96. Macouin M, Besse J, Ader M, et al., Combined paleomagnetic and isotopic data from the Doushantuo carbonates, South China: implications for the 'snowball Earth' hypothesis. Earth Planet. Sci. Lett, 2004, 224: 387-398
    
    97. Magaritz M, Holser W T, Kirschvink J L. Carbon-isotope events across the Precambrian/Cambrian boundary on the Siberian Platform. Nature, 1986, 320: 258-259
    
    98. Martin D, Briggs D E G, Parkes R J. Experimental mineralization of invertebrate eggs and the preservation of Neoproterozoic embryos. Geology, 2003, 31: 39-42
    
    99. Martin D, Briggs D E G, Parkes R J. Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft-bodied fossils. J Geol Soc London, 2004, 161: 735-738
    
    100. Melezhik V A, Gorokhov I M, Kuznetsov A B, et al., Chemostratigraphy of Neoproterozoic carbonates: Implications for "blind dating". Terra Nova, 2001,13: 1-11
    
    101. Mohseni H, Al-Aasm I S. Tempestite deposition on a storm-influenced carbonate ramp: an example from the Pabdeh Formation (Paleogene), Zagros Basin, SW Iran. Journal of Sedimentary Petrology, 2004,27(2): 163-178
    
    102. Norris R D. Cnidarian taphonomy and affinities of the Ediacara biota. Lethaia, 1989, 22:381-393
    
    103. Myrow P M. Neoproterozoic rocks of the Newfoundland Avalon Zone. Precambrian Research, 1995, 73: 123-136
    
    104. Myrow P M, Kaufman A J. A newly discovered cap carbonate above Varanger-age glacial deposits in Newfoundland, Canada. Journal of Sedimentary Research, 1999, 69: 784-793
    
    105. Narbonne G M. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 2005, 33: 421-442
    
    106. Narbonne G M, Aitken J D. Neoproterozoic of the Mackenzie Mountains, northwestern Canada. Precambrian Research, 1995, 73: 101-121
    
    107. Narbonne G M, Gehling J G Life after snowball: the oldest complex Ediacaran fossils. Geology, 2003, 31: 27-30
    
    108. Narbonne G M, Kaufman A J, Knoll A H, et al., Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. Geological Society of America Bulletin, 1994,106: 1281-1291
    
    109. Narbonne G M, Dalrymple W, La Flamme M, et al., Life after Snowball: Mistaken Point Biota and the Cambrian of Avalon. North American Paleontological Convention Field Trip Guidebook. NAPC 2005, Halifax, Nova Scotia, 2005, 1-100
    
    110. Oing H, Veizer J. Oxygen and Carbon isotopic composition of Ordovician brachiopods: implications for coeval seawater. Geochimica et Cosmochimic Acta, 1994, 58(20): 4429-4442
    
    111. Pelechaty S M. Integrated chronostratigraphy of the Vendian System of Siberia: implications for a global stratigraphy. Journal of the Geological Society, 1998, 155: 957-973
    112. Porter S M, Knoll A H. Testate amoebae in the Neoproterozoic Era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 2000, 26(3): 360-385
    
    113. Porter S M, Meisterfeld R, Knoll A H. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae. Journal of Paleontology, 2003, 77(3): 409-429
    
    114. Pyle L J, Narbonne G M, James N P, et al., Integrated Ediacaran chronostratigraphy, Wernecke Mountains, northwestern Canada. Precambrian Research, 2004,132: 1-27
    
    115. Qian Y, Bengtson S. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 1989,24: 1-156
    
    116. Retallack G J. Were the Ediacaran fossils lichens? Paleobiology, 1994,20: 523-544
    
    117. Saltzman M R. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology, 2005,33: 573-576
    
    118. Saylor B Z, Kaufman A J, Grotzinger J P, et al., A composite reference section for terminal Proterozoic strata of southern Namibia. Journal of Sedimentary Research 1998, 68: 1223-1235
    
    119. Seilacher A. Distinctive features of sandy tempestites. In: Einsele G, Seilacher A (eds.). Distinctive features of sandy tempestites. New York: Springer-Verlag. 1982, 333-349
    
    120. Seilacher A. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions? In: Holland H D, Trendall A F (eds.). Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions? Berlin: Springer-Verlag. 1984, 159-168
    
    121. Seilacher A. Vendozoa: organismic construction in the Precambrian biosphere. Lethaia, 1989, 22: 229-239
    
    122. Seilacher A. Event and their signatures-an overview. In: Einsele G, Ricken W, Seilacher A (eds.). Event and their signatures-an overview. Berlin: Springer-Verlag. 1991, 222-226
    
    123. Seilacher A. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, 1992,149: 607-613
    
    124. Seilacher A, Reilf W E, Westphal F. Sedimentological, ecological and temporal patterns of Fossil-Lagerstatten. In: Whittington H B, Conway Morris S (eds.). Sedimentological, ecological and temporal patterns of Fossil-Lagerstatten. Philosophical Transactions of the Royal Society of London. 1985, 5-23
    
    125. Shen B, Xiao S H, Dong L, et al., Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks: implications for their evolutionary roots and biostratigraphic significance. Journal of Paleontology, 2007, 81(6): 1396-1411
    
    126. Shen Y A. C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China. Precambrian Research, 2002,113: 121-133
    
    127. Shen Y A, Schidlowski M. New C isotope stratigraphy from Southwest China, implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations. Geology, 2000, 28: 623-626
    
    128. Shields G Stratified oceans and oxygenation of the late Precambrian environment: a post glacial geochemical record from the Neoproterozoic of W. Mongolia. Terra Nova, 1997, 9: 218-222
    
    129. Shields G Working towards a new stratigraphic calibration scheme for the Neoproterozoic- Cambrian. Eclogae Geologicae Helveticae, 1999, 92: 221
    
    130. Steiner M, Li G X, Qian Y, et al. Lower Cambrian Small Shelly Fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance. Geobios, 2004a, 37: 259-275
    
    131. Steiner M, Zhu M Y, Li G X, et al. New Early Cambrian bilaterian embryos and larvae from China. Geology, 2004b, 32(10): 833-836
    
    132. Strauss H, Vidal G, Moczydlowska, M, et al., Carbon isotope geochemistry and palaeontology of Neoproterozoic to early Cambrian siliciclastic successions in the East European Platform, Poland. Geological Magazine, 1995, 134: 1-16
    
    133. Sun W G. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research, 1986, 31: 361-375
    
    134. Tucker M E. Carbon isotope excursions in Precambrian/Cambrian boundary beds, Morocco. Nature, 1986,319:48-50
    
    135. Veizer J, Ala D, Azmy K, et al., ~(87)Sr/~(86)Sr, δ~(13)C and δ~(18)O evolution of Phanerozoic seawater. Chemical Geology, 1999, 161: 59-88
    
    136. Vidal G, Moczydlowska M. The Neoproterozoic of Baltica-stratigraphy, palaeobiology and geological evolution. Precambrian Research, 1995, 73: 197-216
    137. Walter M R, Veevers J J, Calver C R, et al., Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Research, 2000, 100: 371-433
    
    138. Wang J, Li Z X. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 2003,122: 141-158
    
    139. Wang X, Erdtmann B D, Chen X, et al., Integrated sequence-, bio- and chemo-stratigraphy of the terminal Proterozoic to lowermost Cambrian "black rock series" from central South China. Episodes, 1998, 21(3): 178-189
    
    140. Williams D F. Isotope chronostratigraphy: theory and methods. California: Academic Press. 1988, 39-68
    
    141. Xiao, S H. Neoproterozoic glaciations and the fossil record. In: Jenkins G S, McMenamin M, McKay C P, Sohl L E (Eds.). Multidisciplinary Studies Exploring Extreme Proterozoic Environment Conditions. American Geophysical Union, Washington DC, 2004a, 199-214
    
    142. Xiao, S H. New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China). Journal of Paleontology, 2004b, 78(2): 393-401
    
    143. Xiao S H, Knoll A H. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China. Lethaia, 1999, 32: 219-240
    
    144. Xiao S H, Knoll A H. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 2000,74(5): 767-788
    
    145. Xiao S H, Zhang Y, Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 1998,391: 553-558
    
    146. Xiao S H, Yuan X L, Knoll A H. Eumetazoan fossils in terminal Proterozoic phosphorites? Proc. Natl. Acad. Sci. 2000, 97(25): 13684-13689
    
    147. Xiao S H, Yuan X L, Steiner M, et al., Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 2002, 76(2): 345-374
    
    148. Xiao S H, Bao H, Wang H, et al., The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation. Precambrian Research, 2004a, 130: 1-26
    
    149. Xiao S H, Knoll A H, Yuan X L, et al., Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. Am. J. Bot, 2004b, 91:214-227
    
    150. Xiao S H, Hu J, Yuan X L, et al., Articulated sponges from the Early Cambrian Hetang Formation in southern Anhui, South China: their age and implications for early evolution of sponges. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005a, 220: 89-117
    
    151. Xiao S H, Shen B, Zhou C M, et al., A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proc. Natl. Acad. Sci, 2005b, 102: 10227-10232
    
    152. Xiao S H, Hagadorn J W, Zhou C M, et al., Rare helical spheroidal fossils from the Doushantuo Lagerstatte: Ediacaran animal embryos come of age? Geology, 2007, 35(2): 115-118
    
    153. Yang J D, Sun W G, Wang Z, et al., Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater? Precambrian Research, 1999,93: 215-233
    
    154. Yao J, Xiao S H, Yin L M, et al., Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, north-west China): systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China. Palaeontology, 2005,48: 687-708
    
    155. Yin L M, Xue Y S. An extraordinary microfossil assemblage from Terminal Proterozoic phosphate deposits in South China. Chinese J Botany, 1993,5(2): 168-175
    
    156. Yin C Y, Tang F, Liu Y, et al., U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges, South China: constraint on the age of Marinoan glaciation. Episodes, 2005,28(1): 48-49.
    
    157. Yue Z, Bengtson S. Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides. Lethaia, 1999, 32: 181-195
    
    158. Yuan X L, Li J, Cao R. Adiversemetaphyte assemblage from the Neoproterozoic black shales of South China. Lethaia, 1999, 32: 143-155
    
    159. Yuan X L, Xiao S H, Li J, et al. Pyritized chuarids with excystment structures from the late Neoproterozoic Lantian formation in Anhui, South China. Precambrian Research, 2001, 107: 253-263
    
    160. Yuan X L, Xiao S H, Taylor T N. Lichen-like symbiosis 600 million years ago. Science, 2005, 308: 1017-1020
    161.Zhang X G,Pratt B R.Middle Cambrian arthropod embryos with blastomeres.Science,1994,266:637-639
    162.Zhang Y,Yuan X L,Yin L M.Interpreting Late Precambrian microfossils.Science,1998,282:1783
    163.Zhang T G,Chu X L,Zhang Q,et al.,Variations of sulfur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoic.Chinese Science Bulletin,2003,48(13):1375-1380
    164.Zhang S,Jiang G Q,Zhang J,et al.,U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China:Constraints on late Neoproterozoic glaciations.Geology,2005,33:473-476
    165.Zhou C M,Xiao S H.Ediacaran δ~(13)C chemostratigraphy of South China.Chemical Geology,2007,237:89-108
    166.Zhou C M,Brasier M D,Xue Y,Three-dimensional phosphatic preservation of giant acritarchs from the terminal Proterozoic Doushantuo Formation in Guizhou and Hubei provinces,South China.Palaeontology,2001,44(6):1157-1178
    167.Zhou C M,Tucker R,Xiao S H,et al.,New constraints on the ages of Neoproterozoic glaciations in South China.Geology,2004,32,437-440
    168.Zhu M Y,Zhang J M,Yang A H.Integrated Ediacaran(Sinian)chronostratigraphy of South China.Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254:7-61
    169.蔡耀平,华洪.高家山生物群中的黄铁矿化作用.科学通报,2006,20:2404-2409
    170.陈孟莪,陈祥高,劳秋元.陕南震旦系上部地层中的后生动物化石.地质科学,1975,2:181-190
    171.陈孟莪.四川峨眉麦地坪剖面震旦系-寒武系界线的新认识及有关化石群的记述.地质科学,1982,3:253-262
    172.陈哲,孙卫国.陕南晚震旦世后生动物管状化石Cloudina和Sinotubulites.微体古生物学报,2001,18(2):180-202
    173.陈哲,孙卫国,华洪.陕南晚震旦世Gaojiashania的保存特征及其形态解释.古生物学报,2002,41(3):448-454
    174.邓文峰,韦刚健,李献华.不纯碳酸盐碳氧同位素组成的在线分析.地球化学,2005,34(5):495-500
    175.丁莲芳,李勇,安国勤.论陕南震旦系.寒武系界线.西安地质学院学报,1983,2:9-23
    176.丁莲芳,李勇,陈会鑫.湖北宜昌震旦系-寒武系界线地层Micrhystridium regulare化石的发现及其地层意义.微体古生物学报,1992,9(3):303-309
    177.丁莲芳,张录易,李勇,等.扬子地台北缘晚震旦世-早寒武世早期生物群研究.北京:科学技术出版社,1992.1-156
    178.华洪,张录易,张子福,等.陕南末元古代高家山生物群主要化石类群及其特征.古生物学报,2000a,39(4):507-515
    179.华洪,张录易,张子福,等.晚震旦世高家山生物群化石新材料.古生物学报,2000b,39(3):381-390
    180.华洪,张录易,张子福,等.高家山生物群化石组合面貌及其特征.地层学杂志.2001,25(1):13-17
    181.华洪,张录易,谢从瑞.陕南新元古代末期奇异骨骼化石新发现及其意义.地球学报,2002,23(5):387-394
    182.华洪,张录易,陈哲.陕南晚震旦世骨骼化石中的微生物磷酸盐化作用.古生物学报、2003,42(2):189-199
    183.华洪,陈哲,张录易.Shaanxilithes在贵州的发现及其意义.地层学杂志.2004a,28(3):265-269
    184.华洪,陈哲,张录易.陕南早寒武世磷酸盐化囊胚期及原肠胚期动物化石.科学通报,2004b,49(2):177-180
    185.华洪,陈哲,张录易.陕南新元古代末期微体管状疑难化石.古生物学报,2005,44(4):487-493
    186.李国祥,钱逸.磷酸盐化球状化石研究述评.微体古生物学报,1999,16(3):287-296
    187.李朋,华洪,张录易,等.陕南早寒武世磷酸盐化的Punctatus及其个体发育序列.2007a,科学通报,52(18):2153-2160
    188.李朋,华洪,张录易,等.陕南早寒武世Anabarites壳体内部结构及亲缘关系探讨.古生物学报,2007b,46(3):327-333
    189.李任伟,陈锦石,张淑坤.中元古代雾迷山组碳酸盐岩碳和氧同位素组成及海平面变化.科学通报,1999,44(16):1697-1702
    190.李日辉,杨式溥,李维群.中国震旦系-寒武系界线过渡层以及化石研究.北京:地质出版社,1997.1-99
    191.李耀西,宋礼生,周志强,等.大巴山西段早古生代地层志.北京:地质出版社,1975.1-36
    192.李中平.陕西西乡河西地区早寒武世早期小壳化石的发现及其意义.陕西地质,1984,2(1):73-77
    193.林世敏,张运芬,张录易,等.陕南震旦系上统高家山组发现的后生动物、遗迹化石和宏观藻类.陕西地质,1986,4(1):9-17
    194.刘云焕,李勇,邵铁全,等.陕西南部早寒武世原始锥石类Carinachitids两新种记述.微体古生物学报,2005,22(3):311-321
    195.刘云焕,李勇,邵铁全,等.陕西宁强地区早寒武世磷酸盐化Punctatus新材料.古生物学报,2006a,45(1):95-101
    196.刘云焕,李勇,邵铁全,等.陕西早寒武世磷酸盐化Punctatus奇异星状口盘的发现及其形态功能分析.微体古生物学报,2006b,23(1):62-69
    197.罗惠麟,蒋志文,武希彻,等.云南东部震旦系-寒武系界线.昆明:云南人民出版社,1982.163-200
    198.罗惠麟,胡世学,陈良忠,等.昆明地区早寒武世澄江动物群.昆明:云南科技出版社,1999.1-129
    199.马国干,李华芹,张自超.华南地区震旦系时限范围的研究.中国地质科学院宜昌地质矿产研究所所刊,1984,13:1-17
    200.潘家永,马东升,曹双林,等.华南Pc-C过渡期深水相剖面的碳、氧同位素记录.地球学报,2005,26:182-185
    201.钱逸.华中西南区早寒武世梅树村阶的软舌螺纲及其它化石.古生物学报,1977,16(2):255-275
    202.王伟,松本良,王海峰,等.长江三峡地区上震旦统稳定同位素异常及地层意义.微体古生物学报,2002,19(4):382-388
    203.王自强,尹崇玉,高林志,等.湖北宜昌峡东地区震旦系层型剖面化学地层特征及其国际对比.地质论评,2002,48(4):408-415
    204.刑裕盛.记震旦纪蠕形动物新科-Huaiyuanellidae Xing fam.Nov.中国科学院地质研究所所刊,1984,9:151-154
    205.刑裕盛,毕治国,王贤芳.皖南震旦系发现宏观藻类化石.中国科学院地质研究所所刊,1985,32
    206.刑裕盛,岳昭.中国震旦系-寒武系界线.中国科学院地质研究所所刊,1984,10:111-125
    207.许靖华,H.奥伯亨斯利,高计元,等.寒武纪生物爆发前的死劫难海洋.地质科学,1986,(1):1-6
    208.薛耀松,唐天福,俞从流,等.贵州瓮安-开阳地区陡山沱期含磷岩系的大型球形绿藻化石.古生物学报,1995,34(6):688-706
    209.杨杰东,孙卫国,王银喜,等.云南晋宁梅树村剖面前寒武系-寒武系界线化石Sm-Nd 同位素年龄测定.中国科学,1992,(3):322-327
    210.杨杰东,张俊明,陶仙聪,等.末远古系-寒武系底Sr、C同位素对比.高校地质学报,2000,6(4):532-545
    211.杨式溥,郑昭昌.宁夏贺兰山正目关组遗迹化石.地球科学,1985,10:9-10
    212.尹崇玉,岳昭,高林志.磷酸盐化原肠胚化石在瓮安陡山沱组磷块岩中的发现.科学通报,2001,46(12):1036-1039
    213.殷继成,丁莲芳,何廷贵,等.四川峨嵋-甘洛地区震旦纪地层古生物及沉积环境.成都:四川人民出版社,1980.1-231
    214.岳昭.Olivooides属的微结构及其系统位置.中国地质科学院地质研究所所刊,1986,14:147-162
    215.张二朋,牛道韫,霍有光,等.秦巴及邻区地质-构造特征概论.北京:地质出版社,1993.35-52.
    216.张录易.陕西宁强晚震旦世晚期高家山生物群的发现和初步研究.中国地质科学院西安西安地质矿产研究所所刊,1986,13:67-88
    217.张录易,华洪.震旦纪晚期管壳化石类群及其意义.古生物学报,2000,39(3):326-333
    218.张录易,董军社,田淑华,等.高家山生物群.见:丁莲芳,张录易,李勇,等.扬子地台北缘晚震旦世.早寒武世生物群研究.北京:科学技术文献出版社,1992.33-63
    219.张录易,华洪,谢从瑞.新元古代末期高家山生物群研究新进展与展望.中国地质,2001,28(9):19-24
    220.赵自强,刑裕盛,丁启秀,等.湖北震旦系.武汉:中国地质大学出版社,1988.97-110
    221.周传明.贵州瓮安地区上震旦统碳同位素特征.地层学杂志,1997,21(2):124-129
    222.周传明,张俊明,李国祥,等.云南永善肖滩早寒武世早期碳氧同位素记录.地质科学,1997,32(2):201-211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700