用户名: 密码: 验证码:
微波铁氧体器件的非互易性和非线性问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波铁氧体的非互易性和非线性问题是两个技术关键问题,本文从磁矩进动方程出发,描述了铁氧体材料的旋磁特性,即磁导率张量特性及磁共振特性。以及电磁波在选磁介质中传播产生非互易传播特性。另一方面磁矩进动过程中,电子自旋磁矩的相互作用,导致了非线性效应,进动过程产生振动、晃动(障动),导致了材料高功率非线性损耗出现和倍频、混频和互调信号的激发等非线性问题的出现。
     本论文的主要工作是应用上述微波铁氧体的基本原理,建立了微波在旋磁介质中传播的非互易方程和非线性方程,以高频电磁场结构仿真软件(HFSS)为平台,结合各种微波铁氧体器件的设计为实例,定量地或定性地研究了它们的性能。
     第三章和第四章讨论了铁氧体器件的非互易性问题,微波铁氧体器件的非互易性有两类:幅度的非互易性,即正/反向传播时产生不同的损耗,与此相关的微波铁氧体器件有各种结构的Y形结环行器,如波导结环行器,带线和微带环行器,集总参数环行器等。通过一系列仿真设计结果和通过非互易方程的积分结果进行比较。通过上述一系列器件仿真结果来看,可以证明非互易方程的正确性,非互易原理可以指导铁氧体器件的设计工作。
     另一类非互易性为相位非互易性问题,不同传播方向或不同磁化方向传播产生不同的相位差值,可以设计成移相器和差相移环行器。
     除上述设计工作以外,对微波铁氧体非互易性机制的讨论至关重要,关系到旋磁性的张量磁导率和非互易传输特性相关,为了深入对非互易性基本概念的理解,非互易方程中的场积分包括场分布和张量特性关系,通过一些设计实例,如Y形带线和微带环行器,波导Y形结环行器和铁氧体开关,对此用非互易性机理进行了详尽的研究和设计计算。本文应用了归一化非互易性方程,其积分计算结果和仿真结果相比较十分吻合。
     第五章研究了铁氧体器件的非线性问题:非线性问题有两类:第一类非线性问题为高功率非线性问题,当微波功率大于临界功率后材料产生非线性损耗,损耗迅速增大,其来源于自旋波激发。通过仿真设计,对场强分布的观察,估量出临界功率的大小,解决高功率器件设计问题。
     第二类非线性问题为进动轨迹的扭曲产生的障动,或振动与晃动(摆动)。这在微波铁氧体器件应用到通讯技术中,同时出现两个主频f1,f2时,不仅有倍频效应2f1,2f2,还有混频效应,两者的复合效应便产生三阶互调信号:2f1-f2及2f2-f1,此信号对通讯中主频信号f1,f2产生严重干扰。所以重要的问题是研究铁氧体中的三阶互调问题以及如何去克服它,首先对出现三阶互调的磁谱进行了研究,为了减少三阶互调信号,必须计算出三阶互调的磁谱曲线;通过920-925MHz和1840-1845MHz两个频率的设计,指出当工作磁场大于铁磁共振场并大于谐波共振场时,可以获得最小互调3-IMD信号。第二,环行器的三阶互调可以通过HFSS仿真技术和数值计算法相结合进行,它和微波结构、材料磁矩采用、工作磁场大小密切相关。
Non-reciprocity and Non-linearity problems of the microwave ferrite are two kinds of basic key technical one. In this thesis, start from procession equation, the gyro-magnetic property of ferrite material,i.e. tensor permeability characteristic and ferromagnetic resonance property are discussed in detail, and electro-magnetic wave propagate in gyro-magnetic medium, in which it produce non-reciprocal transmission effect. In the other hand, in process of magnetic moment procession, due to spin magnetic moment interacting, it deduce high-power non-linearity loss in ferrite material. Some others, magnetic moment procession will be perturbed by vibration, shake and others infect in which appear doubling frequency, mixing frequency, and 3-order inter modulation et al. non-linearity.
     The main work in this paper is to set up non-reciprocal and non-linear equation about the microwave propagation in gyro-magnetic medium, and to apply high-frequency structure simulation (HFSS) soft-ware as design platform, and to combine practical examples for various design of microwave ferrite devices,and to research their properties quantitatively or qualitatively.
     The non-reciprocal problem of microwave ferrite is discussed in chapter 3.and 4. The non-reciprocity of microwave ferrite devices are divided into two types of parameter, the amplitude and phase. The non-reciprocity of amplitude means differ loss between the forward propagation and reverse one. The relative devices have various microwave-structure Y-j unction circulator, such as waveguide Y-circulator, strip-line and micro-strip-line Y-circulator, and lumped parameter circulator, and so on. Passing by a series of simulation for above devices,it can be proven that the non-reciprocal equation is exact by numerical resolution for non-reciprocity integration equation,that the principle of non-reciprocity can be used to guide ferrite device's design.
     Another kind non-reciprocity is phase one, which express with differ phase in differ transmit direction or magnetized direction, and it can be designed as phase-shifter or differential phase circulator.
     In besides of above, The mechanism problem of non-reciprocity on the microwave ferrite is also very importance which will be discussed, It well known that the tensor permeability property of ferrite related to non-reciprocal transmission characteristics, In order to deepen comprehension of non-reciprocity basic concept. It be quoted non-reciprocity equation which is field integral equation, including magnetic field and tensor permeability. Passing by the high frequency structure simulation (HFSS) and numeral integration, the resolution of non-reciprocity equation can be obtained. At last, the non-reciprocity of some microwave ferrite devices are discussed and calculated one by one through a number of project example, such Y-junction strip-line and micro-strip-line circulator, wave-guide junction circulator and ferrite switch,. For these devices, it is researched in detail, combining with non-reciprocity theory, HFSS-simulation and numerical integration. It should point out that all the non-reciprocity integration equations in the text must adopt normalized form, so as to calculate numeric integral value coincide to simulated resultants.
     About nonlinear problem of ferrite devices are researched in chapter 5.There are also two classes nonlinearity:The first class is so-called high-power nonlinearity, when microwave power grater then critical power,the ferrite device characteristics become very poor and insert loss increased more and more. Its source to coupling between the uniform procession and spin wave in ferrite, and in order to overcome nonlinear loss it is necessary to adopted higher spin-wave line-widen△Hk of ferrite material as used. Through simulating design and high field strength observed, and the critical power can be estimated which may be resolve high-power device design problem.
     The second class nonlinearity effect happens in circulator/isolator. As the ferrite material is used in the field of communication, it will appear the second class nonlinear effect, because here exist two adjacent and different frequency signal f1,f2 simultaneously, so that not only there are double-frequency effect(DFE)2f1,2f2,but also mixture-frequency effect(MFE), of which complex effect will induce 3-order inter-modulation(3-IMD) signal 2f1-f2 and 2f2-f1. These signals are the kinds of interference signals to f1 f2, it harm to communication quality. Therefore, it is important to study 3-IMD problem for ferrite applied and how to decrease 3-IMD level. First of all, we shall initiate discussion from magnetization vector procession equation, and in the condition of two greater signal f1, f2, nonlinear effect (NLE) will appear in ferrite material, and to obtain basic formula of the 3-IMD, and then to research IMD mechanism and to overcome it's method. To decrease the 3-IMD,it must be calculate its magnetic spectrum cures of 3-IMD,and through two examples:at the band 869-960MHz and 1805-1880MHz, it point out when operating magnetic field is greater then the ferromagnetic resonance one and harmonic one, minimum 3-IMD level can be obtained. Secondly, the circulator'3-IMD can be calculated by high frequency structure simulation (HFSS) and in combination with numerical integral method. Calculating results point out that the circulator is relative to ferrite material parameter, inner conductor shape/size, and bias magnetic field strength, and two kinds of inner conductor structure with lower 3-IMD operated above two band. At last, the statistical results of two kinds of products with lower 3-IMD are listed and the measure circuit of 3-IMD-measuring is set up.
引文
[1]黄宏嘉.微波原理[M].北京:科学出版社,1964
    [2]陈振国.微波技术基础与应用[M].北京:北京邮电大学出版社,2002
    [3]J.Helszajn. Principle of Microwave Ferrite Engineering [M]. Wiley-Interscience, 1969
    [4]W. H. Von Aulock, C. E. Fay. Linear Ferrite Devices for Microwave Applicatio[M]. Academic press, New York and London,1968
    [5]E. R. Bertil Hansson, K. Gunnar Filipsson. Multiple-Frequency Operation of Y_Junction Circalators Using Single-mode Approximation[J]. IEEE Trans. Microwave Theory Tech., 1979, MTT-27 (4):322-328
    [6]M. Ezzat. EL_Shandwily, Ahmada.A. Kama, Esmat. A. F. Abdallah. General Field Theory Treatment of E_plane Waveguide Junction Circulators—Part Ⅰ:Full-Height Ferrite Configaration[J]. IEEE Trans. Microwave Theory Tech.,1977, MTT-25(9):784-793
    [7]M. Ezzat. EL_Shandwily, Ahmada. A. Kama, Esmat. A. F. Abdallah. General Field Theory Treatment of E_plane Waveguide Junction Circulators — Part Ⅱ:Two-Disk Ferrite Configaration[J]. IEEE Trans. Microwave Theory Tech.,1977, MTT-25(9):794-803
    [8]Naomichi Oramoto. Computer-Aided Design of H-plane Waveguide Junctions With Full-Height Ferrites of Arbitrary Shop[J]. IEEE Trans. Microwave Theory Tech.,1979, MTT-27(4):315-321
    [9]金国庆,唐正龙.高场工作模式下降低微波铁氧体环形器/隔离器三阶互调指标的方法.第十四届全国微波磁学会议论文集[C].第十四届全国微波磁学会议,威海,2009:170-175
    [10]黎万楚,沈维福.高功率环形器研制[C].第十四届全国微波磁学会议,威海,2009:176-191
    [11]刘永锋.S波段四端差相移式环形器设计及优化[C].第十四届全国微波磁学会议,威海,2009:195-200
    [12]陆鹏.如何降低微波铁氧体环形器插入损耗[C].第十四届全国微波磁学会议,威海,2009:201-206
    [13]岳峰,蒋仁培.超宽带带线环形器[C].第十四届全国微波磁学会议,威海,2009:211-215
    [14]周雁翎,干小陆,彭海兵,等.快速变极化器设计[C].第十四届全国微波磁学会议,威海,2009:216-223
    [15]蒋仁培,王希玉.电磁波在旋转磁化铁氧体波片中的传播[J].电子学报,1987,14(1)
    [16]蒋仁培,等.锁式变极化器的耦合波理论[J].电子学报,1983:64-72
    [17]蒋仁培,等.微波铁氧体张量磁导率的统计理论[J].电子学报,1982:51-63
    [18]Joesph Helszajn and W. Terence Nisbet. Circalator Using Planar WYE Resonator[J]. IEEE Trans. Microwave Theory Tech.,1981, MTT-29 (7):689-699
    [19]Joesph Helszajn. Operation of Tracking Circulators[J]. IEEE Trans. Microwave Theory Tech.,1981, MTT-29(7):700-707
    [20]张再祥,金国庆,刘旷希.小型化嵌入式环形器的研制[C].第十四届全国微波磁学会议,威 海,2009:230-232
    [21]范宇.S波段小型化Y结带线环形器的研制[C].第十四届全国微波磁学会议,威海,2009:224-248
    [22]李扬兴,陈宁,倪经.X波段宽带小型化微带隔离器环形器组件[C].第十四届全国微波磁学会议,威海,2009:90-96
    [23]于涛,刘华,田可艳.Ku波段宽带波导环形器设计[C].第十四届全国微波磁学会议,威海,2009:86-89
    [24]何瑞生.高功率环形器设计中恒稳磁场的控制[C].第十四届全国微波磁学会议,威海,2009:157-161
    [25]谢拥军,等.HFSS原理与应用[M].北京:科学出版社,2009.
    [26]B.Lax K, J. Butto. Microwave Ferrite and Ferromagnetics[M]. Mc Graw-Hill Book Compang Ine,1962:538-539
    [27]R.P.Jiang, W.B.Jiang. Non-reciprocities on the Microwave Ferrite[C]. The 10. th international conference on Ferrite 2008 Oct.:339-342
    [28]R.P.Jiang, W.B.Jiang. Non-Linear ity in the Microwave Ferrite [C]. The 10. international conference on Ferrite,2008 Oct.:332-335
    [29]Joesph Helszajn, Davids. Jamce, W. Terence Nisbe. Circalator Using Planar Triavgular Resonators[J]. IEEE Trans. Microwave Theory Tech.,1979, MTT-27(2):188-193
    [30]Hulan, Jiang Renpei. Perturbation Theory and Simulation Compution for Dual-mode Ferrite Device[C]. proceedings of 2006. CIE International Conference on Rad,2006
    [31]Gordon P. Riblet. Techniques for Broad-Banding Above Resonance Circulator Tunctions Without the Use of External Matching Networks [J]. IEEE Trans. Microwave Theory Tech. 1980, MTT-28(2):125-129
    [32]岳峰.带线环行器的温度稳定性问题[J].微波学报,2005,21(6):56-61.
    [33]蒋仁培,胡岚.铁氧体双模器件的广义理论[J].微波学报,2007,23(8):161-167
    [34]蒋仁培,魏克珠.微波铁氧体理论和技术[M].北京:科学出版社,1984
    [35]蒋仁培,胡岚.纵向场铁氧体双模波导的本征值问题[J].微波学报,2004,20(9):33-38
    [36]蒋仁培,董胜奎.复合磁化场双模铁氧体波导变极化器[J].微波学报,2003,18(3):34-38
    [37]董胜奎,蒋仁培.旋转四磁极化及铁氧体波导系统分析[J].微波学报,2002,18(1)
    [38]董胜奎,蒋仁培.铁氧体矩形波导双模传输特性的研究[J].微波学报,2003,19(2):336-341
    [39]Henk Bosma. A General Moder for Junction Circulators;Choice of Magnetization and Bias Field[J]. IEEE Trans. Mag.,1968,MAG-4, (3):587-596
    [40]Tanroku Miyoshi, Shinchi Migauchi.The Design of Planar Circulators for Wide-Band Operation[J]. IEEE Trans. Microwave Theory Tech.,1980, MTT-28 (3):210-214
    [41]Joesph Helszajn, Reinhard D. Baars, W. Terence Nisbe. Characteristics of Circulators Using Planar Triangular and Disk Resonators Symmetically Loaded with Magnetic Ridges[J]. IEEE Trans. Microwave Theory Tech.,1980, MTT-28(6):616-621
    [42]蒋仁培,等.广义铁氧体变极化理论[J].微波学报,2000,16(12)
    [43]魏克珠,李士根,蒋仁培.微波铁氧体新器件[M].北京:国防工业出版社,1995
    [44]蒋微波,蒋仁培.微波铁氧体器件在雷达和电子系统中的应用、研究和发展(上)[J].现代雷达,2009,31(9):5-13
    [45]蒋微波,蒋仁培.微波铁氧体器件在雷达和电子系统中的应用、研究和发展(下)[J].现代雷达,2009,10(31):1-9
    [46]Yoshihiro Konishi.A High-Power UHF Circulator[J]. IEEE Trans. Microwave Theory Tech.,1981, MTT-15 (12):700-708
    [47]韩志荃.微波铁氧体材料的近期动态[C].第十四届全国微波磁学会议,威海,2009:1-23
    [48]陆鹏.铁氧体环形器温度补偿中特殊现象的补偿[C].第十四届全国微波磁学会议,威海,2009:249-255
    [49]韩志荃.铁氧体及其磁性物理[M].北京:航空工业出版社,2010:129-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700