无线通信中剪枝FFT算法研究及其可配置VLSI设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的快速发展,人们已经不再满足于简单的语音通信和低速率的数据传输,来自高速数据及多媒体业务的市场需求推动了各领域中无线通信标准的快速演进。但同时快速增长的高速数据传输需求也给无线通信系统的设计及其硬件实现带来了一系列的挑战,其中一个重要方面便是高速数据传输与复杂通信系统实现中巨大运算量所需的能量消耗和移动通信终端有限的电池容量之间的矛盾。虽然半导体工艺技术仍然遵循着摩尔定律在发展,但单纯依赖工艺的进步已经不能完全抵消无线通信系统中运算量快速增长所带来的功耗增加,通过设计方法和硬件架构上的改进以提高硬件实现的功耗效率成为目前研究者关注的重点。
     从提高硬件实现功耗效率的角度出发,本文针对无线通信系统中,尤其是OFDM/OFDMA系统和认知无线电系统中具有广泛应用的剪枝FFT算法及其硬件实现进行了系统的研究,从算法、结构和硬件实现的不同层面对剪枝FFT进行了优化和改进。
     本文首先分析了无线通信中剪枝FFT的应用,其中重点研究了OFDM/OFDMA系统中信道估计和调制解调以及认知无线电系统中的频谱感知和动态频谱接入算法中剪枝FFT使用的特点,确定了无线通信中剪枝FFT的应用需求;在分析和总结已有剪枝FFT算法和实现的基础上,确定了本文的研究内容和研究目标。
     然后本文研究了通用的剪枝FFT算法。针对现有剪枝FFT算法中剪枝灵活性和适用范围不足的问题,文中提出了一种通用的混合基剪枝FFT算法,并给出了一般混合基SFG的剪枝计算方法;另外本文提出了一种分层剪枝策略,和高基(High-Radix) FFT的组合分解算法相结合,进一步降低了剪枝FFT的算法复杂度。
     在通用剪枝FFT算法研究的基础上,本文针对通用剪枝FFT实现中的关键问题——剪枝SFG信息的组织方法进行了研究,其中重点针对硬件实现中剪枝信息的表示、存储和使用等问题进行了分析。文中提出了一种优化的SFG剪枝信息压缩方法,利用FFT SFG的结构特点和合理的软硬件划分,有效降低了剪枝信息的存储需求。
     接下来本文研究了剪枝FFT的硬件实现架构并设计了通用的剪枝FFT可配置IP核。不同于已有文献中基于可编程计算平台或基于ASIC专用硬件的实现方法,本文从灵活性和功耗效率出发,根据通用剪枝FFT的算法特点,重新划分了剪枝FFT实现的软硬件界线,设计了以剪枝蝶形运算指令为核心的通用剪枝FFT可配置IP核,一方面为剪枝FFT的实现提供了高效灵活的运算引擎,另一方面为系统级剪枝FFT实现的优化提供了足够的灵活性。
     最后本文设计并实现了通用可配置剪枝FFT处理器。文中针对剪枝蝶形运算指令的存储进行了优化,降低了剪枝FFT实现的硬件代价。基于本文结构的灵活性,提出了一种减少旋转因子读取的方法,降低了剪枝FFT计算中旋转因子存储器操作的能量消耗。本文设计的剪枝FFT处理器成功的基于SMIC0.13μm工艺进行了流片,测试结果验证了本文设计的有效性。
As the fast development of the wireless communication technology, its applications are no longer limited to voice and low data rates transmission. The huge market demand from the high data rates communication that can support streaming media, mobile internet, and etc. drives all wireless communication standards in various domains toward higher date rates.
     But the rapid increase on data rates in wireless communication has also brought a series of challenges to the design and the hardware implementation of wireless communication systems, one important point of which is that on one hand the higher data rates processing and correspondingly the more complex wireless communication systems need more power consumption, but on the other hand the capacity of the battery increases in a much slower rate. Though the semiconductor technology still follows the Moore's Law, there is still a wide gap between the fast increasing power consumption and the capacity of the battery. More and more attention is paid to improve the design methodology and implementation architecture for higher power efficiency in wireless implementation.
     Motivated by the importance of power efficiency in wireless communication systems, this dissertation studies the algorithm and the hardware implementation of FFT pruning that can be widely used in wireless communication for higher power efficiency in implementing some special FFT processing, and presents optimization and modification on existing algorithms and implementation schemes with the consideration on algorithm, architecture and hardware implementation.
     Firstly this dissertation analyzes the application of FFT pruning in wireless communication, such as the DFT-based channel estimation in OFDM systems, modulation and demodulation in OFDMA systems, spectrum sensing in cognitive radio and spectrum shaping in dynamic spectrum access, and ascertain the requirement of FFT pruning in wireless communication. Then the research targets and contents are clarified on the basis of the complete survey on existing related work.
     Secondly this dissertation presents our studies on generic FFT pruning algorithms. Being aware of the lack of enough flexibility and adaptability in existing algorithms, a novel pruning scheme is developed for mixed-radix and high-radix FFT pruning. The proposed approach is applicable over a wide range of FFT lengths and input/output pruning patterns. In addition, it can effectively employ the benefits of high-radix FFT algorithms that have lower computational complexity.
     Then this dissertation focuses on the organization of the pruned SFG information which is one of the key points in effectively implementing the generic FFT pruning. The contents in this part concentrate on three aspects:pruned SFG description, storage of the information and the basic method of employing the information in implementing generic FFT pruning. This part also presents a new scheme for cutting down the storage of the pruned SFG information by employing the structural feature of SFG and software-hardware co-design methodology.
     Following chapter mainly studies the hardware architecture of FFT pruning. Unlike exiting implementation schemes which are pure software on general or specific programmable platform or pure hardware in ASIC, this dissertation designs a reconfigurable IP core with pruned butterfly computing instruction for generic pruned FFT implementation. It adopts a new software-hardware partition strategy according to the algorithm feature of FFT pruning and can be used as the computing engine for FFT pruning. It also provides necessary flexibility for the optimization when implementing FFT pruning algorithm on system level.
     Finally, based on the reconfigurable IP core, an integrated pruned FFT processor is designed and implemented. The scheme for decreasing storage proposed in previous part is employed for instruction compression and a new butterfly computing order in each stage of FFT processing is adopted that reduce the number of the reading operation on twiddle factor memory and corresponding power consumption. The processor is fabricated in SMIC0.13μm1P8M and the chip testing result validates the design.
引文
[1]李世鹤TS-SCDMA第三代移动通信系统标准[M].北京:人民邮电出版社2003.
    [2]周恩,张兴,吕召彪,孙宇昊.下一代宽带无线通信OFDM与MIMO技术[M].北京:人民邮电出版社,2005.
    [3]Andre Bourdoux, Jan Craninckx, Antoine Dejonghe, Liesbet Van der Perre. Receiver Architectures for Software-defined Radios in Mobile Terminals:the Path to Cognitive Radios [C]. IEEE Radio and Wireless Symposium,2007.
    [4]Takehiro Nakamura. Proposal for Candidate Radio Interface Technologies for IMT Advanced Based on LTE Release 10 and Beyond (LTE-Advanced) [C]. ITU-R WP 5D 3rd Workshop on IMT-Advanced, October 15th,2009.
    [5]Simon Haykin. Cognitive radio:brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications.2005,23(2), pp.201-220.
    [6]刘衡竹,莫方政,张波涛,赵恒,刘冬培,陈艇,周理.软件无线电数字信号处理器体系结构研究[J].国防科技大学学报,2009,31(5),pp.6-11.
    [7]Van Berkel, C.H. Multi-core for mobile phones [C]. Design, Automation & Test in Europe Conference & Exhibition,2009.
    [8]Richard G. Lyons. Understanding Digital Signal Processing[M]. Prentice Hall PTR,2004.
    [9]Markel, J.. FFT pruning [J]. IEEE Transactions on Audio and Electroacoustics. 1971,19(4), pp.305-311.
    [10]Sorensen, H.V. and C.S. Burrus. Efficient computation of the DFT with only a subset of input or output points [J]. IEEE Transactions on Signal Processing.1993, 41(3), pp.1184-1200.
    [11]沈嘉,索士强,全海洋,赵训威,胡海静,姜怡华.3GPP长期演进(LTE)技术原理与系统设计[M].北京:人民邮电出版社,2008.
    [12]Mehmet Kemal Ozdemir, Huseyin Arslan. Channel Estimation for Wrieless Communication Systems[J]. IEEE Communication Surveys and Tutorials.2007,9(2), pp.18-48.
    [13]Jan-Jaap van de Beek, Ove Edfors, Magnus Sandell. On channel estimation in OFDM systems[C]. IEEE 45th Vehicular Technology Conference,1995.
    [14]杨玉庆3GPP LTE下行接收系统的数字信号处理与VLSI实现研究[D].上海:复旦大学,2011
    [15]Evolved universal terrestrial radio access (E-UTRA):Physical channels and modulation[J].3GPP, Release 8 Dec.2008, TR 36.211 v.8.5.0.
    [16]Zh Tian. Cognitive Radio Communicationsn[R]. Michigan Tech University,2008
    [17]陈东.认知无线电中频谱感知技术研究[D].西安:西安电子科技大学,2009
    [18]Qing Zhao and B.M. Sadler. A Survey of Dynamic Spectrum Access[J]. IEEE Signal Processing Magazine,2007.24(3):pp.79-89.
    [19]Jun Ma, Geoffrey Ye Li and Biing Hwang (Fred) Juang. Signal Processing in Cognitive Radio [J]. Proceedings of the IEEE,2009,97(5), pp.805-823.
    [20]Tevfik Yucek and Huseyin Arslan. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys & Tutorials.2009. 11(1), pp.116-130.
    [21]Harry Urkowitz. Energy detection of unknown deterministic signals[J]. Proceedings of the IEEE,1967,55(4), pp.523-531.
    [22]Carlos Cordeiro, Kiran Challapali, Dagnachew Birru, and Sai Shankar N. IEEE 802.22:The First Worldwide Wireless Standard based on Cognitive Radios[C]. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005, pp.328-337
    [23]Tsung-Han Yu, Oussama Sekkat, Santiago Rodriguez-Parera, Dejan Markovic and Danijela Cabric. A Wideband Spectrum-Sensing Processor With Adaptive Detection Threshold and Sensing Time[J]. Circuits and Systems I:Regular Papers, IEEE Transactions on Circuits and Systems I:Regular Papers.,2011,58(11), pp.1-11.
    [24]Rakesh Rajbanshi, Alexander M. Wyglinski, Gary J. Minden. An Efficient Implementation of NC-OFDM Transceivers for Cognitive Radios[C]. The 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications,2006.
    [25]Roberto Airoldi, Omer Anjum, Fabio Garzia and Alexander M. Wyglinski. Energy-Efficient Fast Fourier Transforms for Cognitive Radio Systems[J]. IEEE Micro.10,30(6), pp.66-76.
    [26]J. W. Cooley and J. W. Tukey. An algorithm for the machine computation of complex Fourier series[J] Math. Computation.1965, vol.19, pp.297-301.
    [27]R. Singleton. An algorithm for computing the mixed radix fast Fourier transform[J]. IEEE Transaction on.Audio Electro-acoustic.1969,17(2), pp.93-103.
    [28]T. Sreenivas and P. Rao. FFT algorithm for both input and output pruning[J]. IEEE Transactions on Acoustics, Speech and Signal Processing.1979,27(3), pp.291-292.
    [29]K. Nagai. Pruning the decimation-in-time FFT algorithm with frequency shift[J]. IEEE Transactions on Acoustics, Speech and Signal Processing.1986,34(4), pp.1008-1010.
    [30]H. Shousheng and M. Torkelson. Computing partial DFT for comb spectrum evaluation[J]. IEEE Signal Processing Letters.1996,3(6), pp.173-175.
    [31]R. G. Alves, P. L. Osorio and M. N. S. Swamy. General FFT pruning algorithm[C]. Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems,2000.
    [32]H. Zhong and W. Honghui. A novel generic fast Fourier transform pruning technique and complexity analysis. IEEE Transactions on Signal Processing.2005, 33(1),pp.274-282.
    [33]S. Singh and S. Srinivasan. Architecturally efficient FFT pruning algorithm[J]. Electronics Letters.2005 41(23), pp.1305-1306.
    [34]Min Li, David Novo, Bruno Bougard, Liesbet Van Der Perre, Francky Catthoor. Generic Multi-Phase Software-Pipelined Partial-FFT on Instruction-Level-Parallel Architectures and SDR Baseband Applications[C]. In Design, Automation and Test in Europe,2008.
    [1]J. W. Cooley and J. W. Tukey. An algorithm for the machine computation of complex Fourier series[J] Math. Computation.1965, vol.19, pp.297-301.
    [2]R. Singleton. An algorithm for computing the mixed radix fast Fourier transform[J]. IEEE Transaction on.Audio Electro-acoustic.1969,17(2), pp.93-103.
    [3]程佩青.数字信号处理教程[M],北京:清华大学出版社,2001.
    [4]Gentleman, W.M. and G. Sande. Fast Fourier Transforms:for fun and profit[C]. In Proceedings of the November 7-10,1966, fall joint computer conference.1966. San Francisco, California:ACM.
    [5]Shousheng, H. and M. Torkelson. A new approach to pipeline FFT processor[C]. The 1 Oth International Parallel Processing Symposium,1996
    [6]Shousheng, H. and M. Torkelson. Designing pipeline FFT processor for OFDM (de)modulation. International Symposium on Signals, Systems, and Electronics,1998.
    [7]Marke1,J.. FFT pruning[J]. IEEE Transactions on Audio and Electroacoustics. 1971,19(4), pp.305-311.
    [8]Skinner, D.. Pruning the decimation in-time FFT algorithm[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1976.24(2), pp.193-194.
    [9]T. Sreenivas and P. Rao. FFT algorithm for both input and output pruning[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1979, Vol.27, No.3, pp. 291-292.
    [10]K. Nagai. Pruning the decimation-in-time FFT algorithm with frequency shift[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, Vol.34, No.4, pp. 1008-1010,1986.
    [11]H. V. Sorensen and C. S. Burrus. Efficient computation of the DFT with only a subset of input or output points[J]. IEEE Transactions on Signal Processing, Vol.41, No.3, pp.1184-1200,1993.
    [12]H. Shousheng and M. Torkelson. Computing partial DFT for comb spectrum evaluation[J]. IEEE Signal Processing Letters.1996 Vol.3, No.6, pp.173-175,1996.
    [13]R. G. Alves, P. L. Osorio and M. N. S. Swamy. General FFT pruning algorithmi[C]. Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems,2000.
    [14]H. Zhong and W. Honghui. A novel generic fast Fourier transform pruning technique and complexity analysis[J]. IEEE Transactions on Signal Processing.2005, 33(1),pp.274-282.
    [15]Min Li, David Novo, Bruno Bougard, Liesbet Van Der Perre, Francky Catthoor. Generic Multiphase Software Pipelined Partial FFT on Instruction Level Parallel Architectures[J]. IEEE Transactions on Signal Processing.2009 Vol.57, No.4, pp. 1604-1615.
    [1]H. Zhong and W. Honghui. A novel generic fast Fourier transform pruning technique and complexity analysis[J]. IEEE Transactions on Signal Processing.2005, 33(1), pp.274-282.
    [2]Min Li, David Novo, Bruno Bougard, Liesbet Van Der Perre, Francky Catthoor. Generic Multiphase Software Pipelined Partial FFT on Instruction Level Parallel Architectures[J]. IEEE Transactions on Signal Processing.2009 Vol.57, No.4, pp. 1604-1615.
    [3]Roberto Airoldi, Omer Anjum, Fabio Garzia and Alexander M. Wyglinski. Energy-Efficient Fast Fourier Transforms for Cognitive Radio Systems[J]. IEEE Micro.10,30(6), pp.66-76.
    [4]Dong-Sun Kim, Seung-Yerl Lee and Duck-Jin Chung. A partially operated FFT/IFFT processor for low complexity OFDM modulation and demodulation of WiBro in-car entertainment system[J]. IEEE Transactions on Consumer Electronics. 2008.54(2):pp.431-436.
    [5]In-Gul Jang, Zhe-Yan Piao, Ze-Hua Dong, Kang-Yoon Lee. Low-power FFT design for NC-OFDM in cognitive radio systems[C]. IEEE International Symposium on Circuits and Systems (ISCAS),2011.
    [6]Sheng-Yeng Peng, Kai-Ting Shrt, Chao-Ming Chent and Yuan-Hao Huang. Energy-efficient 1024-2048/1536-point FFT processor with resource block mapping for 3GPP-LTE system[C]. International Conference on Green Circuits and Systems (ICGCS),2010.
    [7]R. G. Alves, P. L. Osorio and M. N. S. Swamy. General FFT pruning algorithm[C]. Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems,2000.
    [8]Yihu, X., L. Chung-Hoon and L. Myong-Seob. Design of split-radix FFT pruning for OFDM based cognitive radio system[C]. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS),2010.
    [9]Jan Rabaey. Low Power Design Essentials[M]. Springer,2009.
    [10]Frank Emnett and Mark. Power Reduction Through RTL Clock Gating[C]. In Synopsis User Group Conference,2000.
    [1]Shousheng, H. and M. Torkelson. A new approach to pipeline FFT processor[C]. The 10th International Parallel Processing Symposium,1996
    [2]刘亮OFDM超宽带系统的低功耗、低复杂度数字信号处理及VLSI实现方法研究[D].上海:复旦大学.
    [3]Shousheng, H. and M. Torkelson. Designing pipeline FFT processor for OFDM (de)modulation. International Symposium on Signals, Systems, and Electronics,1998.
    [4]汪文义,王琳凯,周金元,周晓方.改进的多路基24FFT处理器设计[J].计算机工程.2011,Vol.37 No.7,pp.262-264
    [5]Jung-yeol, O. and L. Myoung-seob. Fast Fourier transform processor based on low-power and area-efficient algorithm[C]. IEEE Asia-Pacific Conference on Advanced System Integrated Circuits 2004.
    [6]Bevan M. Baas. A low-power, high-performance,1024-point FFT processor[J]. IEEE Journal of Solid-State Circuits.1999, Vol.34, No.3, pp.380-387.
    [7]Bevan M. Baas. A generalized cached-FFT algorithm[J]. IEEE International Conference on Acoustics, Speech, and Signal Processing,2005.
    [8]Chun-Lung Huang, Syu-Siang Long and Muh-Tian Shiue. A low power and variable-length FFT processor design for flexible MIMO OFDM systems[J]. IEEE International Symposium on Circuits and Systems (ISCAS),2009.
    [9]程佩青.数字信号处理教程[M],北京:清华大学出版社,2001.
    [10]Johnson, L.G.. Conflict free memory addressing for dedicated FFT hardware[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing. 1992,39(5), pp.312-316.
    [11]Byung G. Jo and Myung H. Sunwoo. New continuous-flow mixed-radix (CFMR) FFT Processor using novel in-place strategy[J]. IEEE Transactions on Circuits and Systems I:Regular Papers.2005,52(5), pp.911-919.
    [12]Chen-Fong Hsiao, Yuan Chen and Chen-Yi Lee. A Generalized Mixed-Radix Algorithm for Memory-Based FFT Processors [J]. IEEE Transactions on Circuits and Systems II:Express Briefs.2010,57(1), pp.26-30.
    [13]Zhong, H. and W. Honghui. A novel generic fast Fourier transform pruning technique and complexity analysis[J]. IEEE Transactions on Signal Processing.2005, 53(1), pp.274-282.
    [14]Franchetti, F. and M. Puschel. Generating high performance pruned FFT implementations[C]. IEEE International Conference on Acoustics, Speech and Signal (ICASSP),2009.
    [15]Min Li, David Novo, Bruno Bougard, Liesbet Van Der Perre, Francky Catthoor. Generic Multiphase Software Pipelined Partial FFT on Instruction Level Parallel Architectures[J]. IEEE Transactions on Signal Processing.2009 Vol.57, No.4, pp. 1604-1615.
    [16]Qiwei Zhang, A.B.J. Kokkeler and G.J.M. Smit. An Efficient FFT For OFDM Based Cognitive Radio On A Reconfigurable Architecture[J]. IEEE International Conference on Communications(ICC),2007.
    [17]Roberto Airoldi, Omer Anjum, Fabio Garzia and Alexander M. Wyglinski. Energy-Efficient Fast Fourier Transforms for Cognitive Radio Systems[J]. IEEE Micro.10,30(6), pp.66-76.
    [18]Dong-Sun Kim, Seung-Yerl Lee and Duck-Jin Chung. A partially operated FFT/IFFT processor for low complexity OFDM modulation and demodulation of WiBro in-car entertainment system[J]. IEEE Transactions on Consumer Electronics. 2008.54(2):pp.431-436.
    [19]Chao-Ming Cheng, Chien-Chang Huang and Yuan-Hao Huang. An Energy-Efficient Partial FFT Processor for the OFDMA Communication System[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs.2010,57(2): pp.136-140.
    [20]In-Gul Jang, Zhe-Yan Piao, Ze-Hua Dong, Kang-Yoon.Lee. Low-power FFT design for NC-OFDM in cognitive radio systems[C]. IEEE International Symposium on Circuits and Systems (ISCAS),2011.
    [21]Yihu, X., L. Chung-Hoon and L. Myong-Seob. Design of split-radix FFT pruning for OFDM based cognitive radio system[C]. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS),2010.
    [22]Masahide Hatanakat, Ryoji Hashimotot, and etc. VLSI design of OFDM baseband transceiver with dynamic spectrum access[C]. International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS),2010.
    [23]Sorensen, H.V. and C.S. Burrus. Efficient computation of the DFT with only a subset of input or output points[J]. IEEE Transactions on Signal Processing.1993, 41(3), pp.1184-1200.
    [24]Jacobson, A.T., D.N. Truong and B.M. Baas. The design of a reconfigurable continuous-flow mixed-radix FFT processor[C]. IEEE International Symposium on Circuits and Systems(ISCAS) 2009.
    [25]Jan Rabaey. Low Power Design Essentials[M]. Springer,2009.
    [26]任俊彦.低功耗VLSI设计[R].复旦大学集成电路设计课程,2007.
    [27]Wen-Bin Chien, Chih-Kai Yang, and Yuan-Hao Huang. Energy-Saving Cooperative Spectrum Sensing Processor for Cognitive Radio System[J]. IEEE Transactions on Circuits and Systems I:Regular Papers.2011.58(4), pp.711-723
    [1]Johnson, L.G.. Conflict free memory addressing for dedicated FFT hardware[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing. 1992,39(5), pp.312-316.
    [2]Byung G. Jo and Myung H. Sunwoo. New continuous-flow mixed-radix (CFMR) FFT Processor using novel in-place strategy[J]. IEEE Transactions on Circuits and Systems I:Regular Papers.2005,52(5), pp.911-919.
    [3]Chun-Lung Huang, Syu-Siang Long and Muh-Tian Shiue. A low power and variable-length FFT processor design for flexible MIMO OFDM systems[J]. IEEE International Symposium on Circuits and Systems (ISCAS),2009.
    [4]Sapatnekar S S, Su H H. Analysis and optimization of power grids [J]. IEEE Design and Test of Computers,2003,20 (3),7-15.
    [5]Chao-Ming Cheng, Chien-Chang Huang and Yuan-Hao Huang. An Energy-Efficient Partial FFT Processor for the OFDMA Communication System[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs.2010,57(2): pp.136-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700