小型化宽带天线的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,对通信系统的大容量、高可靠和高品质化的要求普遍迅速增大,多种多样的服务正在出现。针对无线应用的新技术和新标准也是层出不穷,在满足工作和生活需要的同时也极大的促进了无线技术和相关产业的发展。通信系统的飞速发展对通信设备提出了越来越高的要求。通信设备的体积不断减小,通信频带不断向宽频段、高频段发展,推动了作为通信系统中的关键部件天线的小型化和宽带化的发展。因此高性能小型宽带天线的研制己成为一个紧迫且具有重大理论和实际意义的课题。本文阐述了目前通信系统小型宽带天线的设计理论、限制及国内外研究现状,对小型宽带天线的研究内容如下:
     第一,设计多种新型超宽带(UWB)天线结构,包括小型分形超宽带天线和全向带阻超宽带天线。本文对分形的基本理论、构造方法以及分形在天线设计中的应用特点做简单的说明,引入了分形几何概念,利用分形技术的自相似性和空间填充性来实现小型超宽带天线的设计。实验结果验证了该天线工作带宽可完全覆盖UWB应用所需的3.1GHz到10.6GHz频段。另外,本文对带阻超宽带天线进行了研究。在带阻超宽带天线的设计中,给出一种倒梯形超宽带天线的设计过程,在此超宽带天线结构上开一倒梯形缝隙来实现频率从5GHz到6GHz范围内的阻带功能,为了改善方向图的全向性,将平面带阻天线拓展成立体结构,设计了具有全向性的带阻超宽带天线。
     第二,用进化算法对小型超宽带天线进行设计。为了节省人工调节天线参数的时间,本文采用遗传算法(GA)与时域有限差分方法(FDTD)相结合,在已知的基本结构上,通过遗传算法优化天线结构参数,同时提出了一种适合于优化超宽带天线和带阻超宽带天线的适应度函数,由时域有限差分方法计算适应度函数值,优化设计了一种频率范围从3GHz到11GHz的超宽带天线。为了在有限的尺寸上设计出高性能的超宽带天线,本文用二维遗传算法(2-D GA)对超宽带天线和带阻超宽带天线进行自动设计,并设计了两款小型超宽带贴片天线。为了克服遗传算法收敛速度慢的缺陷,本文还采用二维遗传算法和二进制粒子群算法(BPSO)相结合自动设计了一小型的超宽带天线,加工测试结果显示此超宽带天线在相对介电常数为2.65的介质板上24mm×24mm的面积内实现了几乎在3.1GHz-10.6GHz频带范围内小于1.5的驻波比特性。
     第三,本文利用金属反射板反射电磁波提高增益原理设计了两种天线阵列,包括用于无线局域网(WLAN)系统的小型可重构天线阵列,和用于卫星通信系统的宽带天线阵列。在用于WLAN系统的可重构天线阵列的设计中,天线不仅可以实现方向图全向/定向转换,而且还可用于多入多出(MIMO)系统中的方向图分集。在用于卫星通信系统的宽带天线组成的阵列设计中,比较了两种阵列单元组阵的结果,表明本论文设计的分形天线结构实现的阵列带宽及增益都要优于传统圆形贴片单元组成的阵列。
Recently, the requirement of large capacity, high reliability and high quality in wireless communication systems is increasing generally and a variety of service is emerging. New technologies and new standards in wireless applications are coming out one after the other, and promoting the development of wireless technologies. The rapid development of communication system raises higher demand for communication equipments. Small volume and wide band of the communication equipment put forward the development of miniature and wideband antennas, which are known as key components of the communication systems. So the development of miniature and wideband antennas with good performance is an urgent and important issue in theory and applications. In the dissertation, the design principle, limitation and the status quo at home and abroad about miniature and wideband antennas are described. The thesis mainly consists of following parts:
     First, two new ultra-wide band (UWB) antennas are designed, including miniature fractal UWB antennas and band-notched UWB antennas. After the basic theory, the formation method and the characteristics of the fractal geometry are introduced, the self-similar characteristics and space filling property of the fractal geometry are used to design a miniature UWB antenna. Test results verify that the UWB antenna covers the frequency scale from 3.1GHz to 10.6GHz. In addition, a new UWB antenna structure with band-notch is also given, which is constructured by embedding an inverse trapeziform gap into the structure to realize 5GHz to 6GHz band-notched function. To improve the omnidirectional characteristic of the radiation pattern, the planar structure is extended to solid structure. The band-notched UWB antenna with omnidirectional radiation pattern is designed.
     Secondly, intelligent algorithm is used to design of UWB antennas. To save the time, the mixed model of genetic algorithm (GA) and finite-difference time-domain (FDTD) is used to optimize structure parameters of UWB antennas in the dissertation. The fitness function is evaluated by FDTD. A new UWB antenna from 3GHz to 11GHz is designed by this method. To design a UWB antenna in limited size, the 2-dimension genetic algorithm (2-D GA) is used to design automatically UWB antennas and band-notched UWB antennas. To avoid the slow convergence rate in GA, the 2-D GA and the binary particle swarm optimization (BPSO) is mixed. A UWB antenna with 24mm×24mm sizes and less than 1.5 VSWR from 3.1GHz to 10.6GHz is designed by the method.
     Finally, a metal reflector is adopted for adding the gain of antenna arrays, including the miniature reconfigurable array for wireless local area networks (WLAN) systems and wideband array for satellite communication systems. In the design of miniature reconfigurable array, not only the omni-directional/directional radiation switch is realized, but also pattern diversity in the multi-in multi-out (MIMO) systems is realized. In the design of the array for satellite communications, the array structure not only increases the bandwidth, but also improves the gain of the array. The characteristics of the arrays constituted by the fractal structure and the traditional disc structure are compared. The results prove the superiority of the fractal structure.
引文
[1] M.Multari, R.Staraj. Wideband miniature antenna for IEEE 802.11a and 11b WLAN standards. Microwave and Optical Technology Letters. 2006(48): 590-593
    [2] John P.Gianvittorio, Rahmat-Samii Yahya. Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas and Propagation Magazine. 2002(44):20-36
    [3] H.G.Schantz. Fed planar elliptical UWB antennas. IEEE Conference on Ultra Wideband Systems and Technologies,Virginia,USA, 2003:219-223
    [4] H.G.Schantz. Introduction to ultra-wideband antennas. 2003 IEEE Conference on Ultra Wideband Systems and Technologies, Virginia, USA. 2003:1-9
    [5] H.G.Schantz. A brief history of UWB antennas. Aerospace and Electronic Systems Magazine. 2004(19): 22-26
    [6]章文勋.天线.电子工业出版社.2005
    [7] J.L.Volakis, Mumcu G.Sertel. Antenna miniaturization using magnetic-photonic and degenerate band-edge crystals. IEEE Antennas and Propagation Magazine. 2006(48):12-18
    [8] L. J. Chu. Physical limitations on omni-directional antennas. J.Appl Phys.. 1948(19): 1163-1175
    [9] L. T Ket. Miniature aperture-coupled microstrip antenna of very high permittivity. Electronics Letters. 1997(33): 9-10
    [10] C.Ying, Y.P.Zhang. Integration of ultra-wideband slot antenna on LTCC substrate. Electronics Letters. 2004(40): 645-646
    [11] M. Sun, Y. P. Zhang. Miniaturization of planar monopole antennas for ultrawide-band applications. Antenna Technology. 2007: 197-200
    [12]崔学民,邱树恒,童张法,周济. BaO-TiO2-B2O3-SiO2体系LTCC介电性能的研究.功能材料. 2007(6):934-937
    [13] Akira Saitou, Kazuhiro Aoki, Kazuhiko Honjo. Miniaturized ultra-wideband self-complementary antennas using high permittivity thick resin material. Microwave Symposium, IEEE/MTT-S International. 2007:1007-1010
    [14]薛睿峰,钟顺时.微带天线小型化技术.电子科技. 2002(3):62-64
    [15] Lingling Zhong, Jinghui, Zhang Ning, Xiaohang Xing. Novel ultrawide-band miniature antennas. Microwave and Millimeter Wave Technology. 2007:1-4
    [16] W. J.Lui, C. H.Cheng, H. B. Zhu. Compact frequency notched ultra-wideband fractal printed slot antenna. IEEE Microwave and Wireless Components Letters. 2006(16):224-226
    [17] T.L.Simpson. The disk loaded monopole antenna. IEEE Transactions on Antennas and Propagation. 2004(52):542-550
    [18]阮成礼,王春.小型化准分形加载单极子天线.电波科学学报. 2006(21): 727-730
    [19]纪奕才,贺秀莲,刘其中,田步宁.加载螺旋天线的优化设计.西安电子科技大学学报. 2002(29): 721-724
    [20] Yi-Fang Lin, Chia-Ho Lin, Hua-Ming Chen, P.S.Hall. A miniature dielectric loaded monopole antenna for 2.4/5 GHz WLAN applications. IEEE Microwave and Wireless Components Letters. 2006(16):591-593
    [21] C.C.Chiau, X.Chen, C.G.Parini. A miniature dielectric-loaded folded half-loop antenna and ground plane effects. IEEE Antennas and Wireless Propagation Letters. 2005(4):459-462
    [22]苏东林,肖永轩,王桂珍,廖安谋.有源集成背馈式接收天线设计.北京航空航天大学学报. 2005(31): 1259-1263
    [23]林昌禄,聂在平等.天线工程手册.电子工业出版社. 2002
    [24]阮成礼.超宽带天线理论与技术.哈尔滨工业大学出版社. 2006
    [25] H.Choi Seok, K.Park Jong. A new ultra-wideband antenna for UWB applications. Microwave and Optical Technology Letters. 2004(40): 399-401
    [26] A.Mehdipour, K.Mohammadpour Aghdam, R.Faraji-Dana. Complete dispersion analysis of vivaldi antenna for ultra wideband applications. Progress in Electromagnetics Research. 2007(77): 85-96
    [27] Masuyama Soichi, Hirose Akira. Walled LTSA array for rapid, high spatial resolution, and phase-sensitive imaging to visualize plastic landmines. IEEE Transactions on Geoscience and Remote Sensing. 2007(45): 2536-2543
    [28] Feng-Tao Wu, Nai-Chang Yuan. The radiation characteristic of UWB planar TEM horn antenna array. CIE International Conference of Radar Proceedings, 2006: 414-420
    [29] R.Dehdasht Heydari, H.R.Hassani, A.R.Mallahzadeh. Quad ridged horn antenna for UWB applications. Progress in Electromagnetics Research. 2008(79): 23-38
    [30] Taylor Mary Cannella, K.Sarkar Tapan. WIPL-D model and simulation results for a 46cm diameter impulse radiating antenna (IRA). IEEE Antennas and Propagation Society International Symposium and USNC/URSI Meeting. Washington, DC, UnitedStates. 2005(1): 553-556
    [31] Y. Kim, D.H. Kwon. CPW-fed planar ultra wideband antenna having a frequency band notch function. Electronics Letters. 2004(40): 403-405
    [32]钟顺时,梁仙灵,延晓荣.超宽带平面天线技术.电波科学学报. 2007(22): 308-315
    [33] E.Avila-Navarro, J.M.Blanes, J.A.Carrasco, C.Reig, E.A.Navarro. A new bi-faced log periodic printed antenna. Microwave and Optical Technology Letters. 2006(48): 402-405
    [34]杨争光,苏东林,吕善伟.一种新型小型化带线印刷对数周期偶极天线.微波学报. 2006(22): 17-21
    [35] Kwan-Ho Kim, Sung-Bae Cho, Yong-Jin Park, Han-Gyu Park. Novel planar ultra wideband stepped-fat dipole antenna. Ultra Wideband Systems and Technologies. 2003 IEEE Conference on 16-19 Nov.2003: 508-512
    [36] Raj Kumar, P.Malathi. Effects of superstrates on the resonant frequency of rectangular microstrip antennas. Microwave and Optical Technology Letters. 2007(49): 2946-2950
    [37] C.K.Wu, K.L.Wong. Broadband microstrip antenna with directly coupled and parasitic patches. Microwave and Optical Technology Lett.. 1999(22): 348-349
    [38] C.K.Ananandan, P.Mohanan, K.G.Nair. Broadband gap coupled microstrip antenna. IEEE Trans.Antennas and propagation. 1990(38): 1581-1586
    [39] C.H.Cheng, K.Li, T.Matsui. Stacked patch antenna fed by a coplanar waveguide. Electronics Letters. 2002(38): 1630-1631
    [40] W.S.T.Rower, R.B.Waterhouse, C.T.Huat. Performance of a scannable linear array of stacked patches. IEE Proceedings Microwaves Antennas and Propag.. 2003(150):1~4
    [41] R.B.Waterhouse, D.Novak, A.Nirmalathas, C.Lim. Broadband printed millimeter-wave antennas. IEEE Transactions on Antennas and Propagation. 2003(52): 2492-2495
    [42] S.D.Targonski, R.B.Waterhouse, D.M.Pozar. Design of wideband aperture- stacked patch microstrip antennas. IEEE Transactions on Antennas and Propagation. 1998(46): 1246-1251
    [43] S.D.Targonski, R.B.Waterhouse, D.M.Pozar. Wideband aperture coupled stacked patch antenna using thick substrates. Electronics Letters. 1996( 32): 1941-1942
    [44] Jeongpyo Kim, Taeyeoul Yoon, Jaemoung Kim. Design of an ultra wide-band printed monopole antenna using FDTD and genetic algorithm. IEEE Microw Wirel Co. 2005(15): 395-397
    [45] N.Telzhensky, Y.Leviatan. Novel method of UWB antenna optimization for specified input signal forms by means of genetic algorithm. IEEE Trans. Antennas Propagat 2006(54): 2216-2225
    [46] J. Michael Johnson, Yahya Rahmat-Samii. Genetic algorithms in engineering electromagnetic. IEEE Trans. Antennas Propag. 2006(39): 2216-2225
    [47] H. Choo, H. Ling. Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm. Microwaves, Antennas and Propagation, IEE Proceedings. 2003(150): 137-142
    [48] L. Alatan, M.I. Aksun, K. Leblebicioglu. Use of computationally efficient method of moments in the optimization of printed antennas. IEEE Trans. Antennas Propagat. 1999(47): 725-732
    [49] Chi-Fang Huang, Ho-Min Li. Design optimization of chip antennas using the GA-FDTD approach. Int J RF Microw C E 2005(15): 116-127
    [50] Nanbo Jin, Yahya Rahmat-Samii. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Antennas Propag.. 2007(15): 556-567
    [1]武林俊,李燕文.超宽带技术在未来无线通信中的应.无线通信.2007(13):8-11
    [2] Federal Com unication Commission. Revision of part 15 of the commissions rules regarding ultra-wdeband transmission systems. First Report and Order, ET Docket, FCC. 2002(48):1-118
    [3]张士兵.超宽带无线技术的应用前景及其挑战.南通大学学报. 2005(4): 64-68
    [4] John D. Kraus, Ronald J. Marhefka. Antennas for all applications. Ed. McGraw-Hill. 2002(11): 378-379
    [5] Hans Gregory Schantz. Introduction to ultra-wdeband antennas. Ultra Wideband Systems and Technologies. 2003: 1-9
    [6] H.Schantz. A brief history of UWB antennas, IEEE Aerospace and Electronic Systems Magazine. 2004(19): 22-26
    [7] T.Ezaki, T.Ohtsuki. Performance evaluation of space hopping ultra wideband impulse radio (SH-UWB-IR) system. Communications, IEEE International Conference. 2004(6): 3591-3595
    [8] J.Liang, C.C.Chiau, X.Chen, C.G.Parini. Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters. 2004(40): 1246-1247
    [9]钟顺时,梁仙灵,张丽娜,汪伟.阻抗带宽超过21∶1的印刷单极天线.上海大学学报(自然科学版). 2007 (13): 337-343
    [10] E.Guillanton, J.Y.Dauvignac, C.Pichot, J.Cashman. A new design tapered slot antenna for ultra-wideband applications. Microwave and Optical Technology Letters. 1998(19): 286-289
    [11] C.Marchais, G.Leray, A.Sharaiha. Stripline slot antenna for UWB communications. Antennas and Wireless Propagation Letters. 2006(5):319-322
    [12] C.Ying, Y.P.Zhang. Integration of ultra-wideband slot antenna on LTCC substrate. Electronics Letters. 2004(40): 645-646
    [13] Tzyh-Ghuang Ma, Shyh-Kang Jeng. Planar miniature tapered-slot-fed annular slot antennas for ultrawide-band radios. IEEE Transactions on Antennas and Propagation. 2005(53): 1194-1202
    [14] Seong-Youp Suh, W.L.Stutzman, W.A.Davis. A new ultrawideband printed monpole antenna: the planar inverted cone antenna (PICA). IEEE Transactions on Antennas and Propagation. 2004(52): 1361-1365
    [15] Saou-Wen Su, Kin-Lu Wong, Chia-Lun Tang. Ultra-wideband square planar monopole antenna for IEEE 802.16a operation in the 2-11GHz band. Microwave and Optical Technology Letters. 2004(42): 463-466
    [16] Zhi Ning Chen. Novel bi-arm rolled monopole for UWB applications. IEEE Transactions on Antennas and Propagation. 2005(53): 672-677
    [17] W.J.Lui, C.H.Cheng, Y.Cheng, H.Zhu. Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub. Electronics Letters. 2005(41): 9-10
    [18] Young Jun Cho, Ki Hak Kim, Dong Hyuk Choi. A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation. 2006(54): 1453-1456
    [19] Seok H.Choi, Jong K.Park. A new ultra-wideband antenna for UWB applications. Microwave and Optical Technology Letters. 2004(40): 399-401
    [20] Y.Kim, D.H.Kwon. CPW-fed planar ultra wideband antenna having a frequency band notch function. Electronics Letters. 2004(40): 403-405
    [21]钟顺时,梁仙灵,延晓荣.超宽带平面天线技术.电波科学学报. 2007(22): 308-315
    [22] M.A.Peyrot-Solis, H.Jardon-Aguilar. Ultra-wideband planar monopole antenna foroperation in the 3-20 GHz Band. VIth. International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology (EMC-2005), St. Petersburg, Russia. June 2005: 97-100
    [23] Ehud Gazit. Improved design of the Vivaldi antenna. IEE Proceedings. 1988(135): 89-92
    [24] T.Dissanayake, K.P.Esselle. Prediction of the notch frequency of slot loaded printed UWB antennas. IEEE Transactions on Antennas and Propagation. 2007(55): 3320-3325
    [25] J.I.Kim, Y.Jee. Design of ultrawideband coplanar waveguide-fed L-shape planar monopole antennas. Antennas and Wireless Propagation Letters. 2007(6): 383-387
    [26]屠振,李明星,张广求.分形天线的IFS实现与特性分析.测控技术. 2004(19): 32-34
    [27] Werner H.Douglas, Ganguly Suman. An overview of fractal antenna engineering research. IEEE Antennas and Propagation. 2003(1): 38-57
    [28] John Gianvit, Yahya Rahmat Samii. Fractal antennas: A novel antenna miniaturization technique and applications. IEEE Antennas and Propagation. 2002(44): 20-36
    [29] D.H.Werner, P.I.Werner, K.H.Church. Genetically engineered multiband fractal antennas. Electronics Letters. 2001( 37): 150-151
    [30] C.Puente, J.Romeu, R.Pous. Fractal multiband antenna based on the sierpinski gasket. IEEE Electronics Letters. 1996(32): 1-2
    [31] P. Dehkhoda, A. avakoli. A crown square microstrip fractal antenna. IEEE Antennas and Propagation Society International Symposium Digest 2004(3): 2396-2399
    [32] Edward Lule, Tadeusz Babij, TimeDerivative. Koch island fractal ultra wideband dipole antenna. IEEE Antennas and Propagation Society International Symposium Digest 2004(3): 2516-2519
    [33] Jianxin Liang, Lu Guo, C.Chiau. CPW-fed circular disc monopole antenna for UWB application. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 2005: 505-508
    [34] Seang-Youp Suh, Warren Stutrmmtt, William Davistt. A novel CPW-fed discantenna. IEEE Antennas and Propagation Society International Symposium Digest 2004(3): 2919-2922
    [35] A.Saitou, H.Aoki, N.Satomi, K.Honjo. Ultra-wideband differential mode bandpass filters embedded in self-complementary antennas. Microwave Symposium Digest, IEEE MTT-S. 2005: 4
    [36] Kyungho Chung, Jaemoung Kim, Jaehoon Choi. Wideband microstrip-fed monopole antenna having frequency band-notch function. IEEE Microwave and Wireless Components Letters. 2005(15): 766-768
    [37] Wooyoung Choi, Jihak Jung, Kyungho Chung, Jaehoon Choi. Compact microstrip-fed antenna with band-stop characteristic for ultra-wideband applications. Microwave and Optical Technology Letters. 2005(47): 89-92
    [38] Kin-Lu Wong, Yun-Wen Chi, Chih-Ming Su, Fa-Shian Chang. Band-notched ultra-wideband circular-disk monopole antenna with an arc-shaped slot. Microwave and Optical Technology Letters. 2005( 45): 188-191
    [39] Ki-Hak Kim, Seong-Ook Park. Design of the band-rejected UWB antenna with the ringshaped parasitic patch. Microwave and Optical Technology Letters. 2006(48): 1310-1313
    [40] Shun-Yun Lin, Kuang-Chih Huang. Printed pentagon monopole antenna with a band-notched function. Microwave and Optical Technology Letters. 2006( 48): 2016-2018
    [41] Xinan Qu, Shun-Shi Zhong, Wei Wang. Study of the band-notch function for a UWB circular disc monopole antenna. Microwave and Optical Technology Letters. 2006(48): 1667-1670
    [1]王凌.智能优化算法及其应用.清华大学出版社. 2001
    [2] Jeongpyo Kim, Taeyeoul Yoon, Jaemoung Kim. Design of an ultra wide-band printed monopole antenna using FDTD and genetic algorithm. IEEE Microwave and Wireless Components Letters. 2005(15): 395-397
    [3] Nikolay Telzhensky, Yehuda Leviatan. Novel method of UWB antenna optimization for specified input signal forms by means of genetic algorithm. IEEE Transactions on Antennas and Propagation. 2006(54): 2216-2225
    [4] Nikolay Telzhensky, Yehuda Leviatan. Planar differential elliptical UWB antenna optimization. IEEE Transactions on Antennas and Propagation. 2006(54): 3400-3406
    [5] L.Lizzi, F.Viani, R.Azaro, A.Massa. Optimization of a spline-Shaped UWB antenna by PSO. Antennas and Wireless Propagation Letters. 2007 (6): 182-185
    [6] J.Martinez-Fernandez, J.M.Gil, J.Zapata. Ultrawideband optimized profile monopole antenna by means of simulated annealing algorithm and the finite element method.IEEE Transactions on Antennas and Propagation. 2007(55): 1826-1832
    [7] Z. Altman. New designs of ultra-broadband antennas using genetic algorithms. IEEE Antenna Propagation Soc.Int.Symp. Seattle, WA. 1994: 2054-2057
    [8] D.S.Linden, E.E.Altshuler. Automating wire antenna design using genetic algorithms. Microwave Journal. 1996(39): 74-86
    [9] Matthias John, Max J. Ammann. Wideband printed monopole design using a genetic algorithm. Antennas and Wireless Propagation Letters. 2007(6): 447-449
    [10] Aaron J. Kerkhoff, Hao Ling. Design of a band-notched planar monopole antenna using genetic algorithm optimization. IEEE Transactions on Antennas and Propagation. 2007, 55(3): 604-610
    [11]姚风薇,钟顺时.超宽带印刷缝隙和空气介质天线的研究[博士论文].上海:上海大学. 2006
    [12]葛德彪,闫玉波.电磁波时域有限差分方法.西安:电子科技大学出版社. 2003
    [13] Goldberg.D.E. Genetie algorithm search, optimization, machine learning. Addison Wisley Publishing ComPany. 1989
    [14]唐文艳,顾元宪.结构优化中的遗传算法研究和应用[博士论文].大连:.大连理工大学. 2002
    [15]周明,孙树栋.遗传算法原理及应用.国防工业出版社.2002
    [16]王小平,曹立明.遗传算法理论、应用与软件实现.西安交通大学出版社. 2002
    [17] J. Robinson, Y. Rahmat-Samii. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag.. 2004(52): 397-407
    [18] J. Robinson, S. Sinton, Y. Rahmat-Samii. Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna. IEEE Antennas Propagat. Soc. Int. Symp. Dig.. 2002(1): 314-317
    [19] Beng-Kiong Yeo, Yilong Lu. Array failure correction with a genetic algorithm. IEEE Trans Antennas Propagat 1999(49): 823-828
    [20] Nanbo Jin, Yahya Rahmat-Samii. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Antennas Propag.. 2007(15): 556-567
    [21] M.Benedetti, R.Azaro, D.Franceschini. PSO-based real-time control of planar uniform circular arrays. IEEE Antennas Wireless Propag. Lett.. 2006(5): 545-548
    [22] M.M.Khodier, C.G.Christodoulou. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans. Antennas Propag.. 2005(53): 2674-2679
    [23] Nanbo Jin, Yahya Rahmat-Samii. Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag.. 2005(53): 3459-3468
    [24] Leonardo Lizzi, Federico Viani, Renzo Azaro, Andrea Massa. Optimization of a spline-shaped UWB antenna by PSO. IEEE Antennas Wireless Propag. Lett.. 2007(6): 182-185
    [25] Chia-Feng Juang. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst., Man, Cybern. B,Cybern.. 2004(34): 997-1006
    [26] D.W.Boeringer, D.H.Werner. Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Trans. Antennas Propag.. 2004(52): 771-779
    [27] Francesco Grimaccia, Marco Mussetta, Riccardo E. Zich. Genetical swarm optimization: self-adaptive hybrid evolutionary algorithm for electromagnetics. IEEE Trans. Antennas Propag.. 2007(55): 781-785
    [1] J.Bahl, P.Bhartia, S.S.Stuchly. Design of microstrip antennas covered with a dielectric layer. IEEE Trans Antennas Propag AP 1982(30): 314-318
    [2] Q.Lee, K.F.Lee, J.Bobinchak. Characteristics of a two-layer electromagnetically coupled rectangular patch antenna. Electron Lett 1987(23): 1070-1072
    [3] R.Q.Lee, K.F.Lee. Effects of parasitic patch sizes on multi-layer electromagnetically coupled patch antenna. Proc IEEE Int Symp Antennas Propag Soc 1989(2): 624–627
    [4] C.You, M.M.Tentzeris, W. Hwang. Multilayer effects on microstrip antennas for their integration with mechanical structures. IEEE Trans Antennas Propag AP-55 2007: 1051-1058
    [5] H.Legay, L.Shafai. A new stacked microstrip antenna with large bandwidth and high gain. Proc IEEE AP-S Int Symp 1993: 948-951
    [6] S.D.Targonski, R.B.Waterhouse, D.M.Pozar. Design of wideband aperture-stacked patch microstrip antennas. IEEE Trans Antennas Propag 1998(46): 1245-1251
    [7] R.B.Waterhouse. Stacked patches using high and low dielectric constant material combinations. IEEE Trans Antennas Propag 1999(47): 1767-1771
    [8] R.Li, G.Dejean, M.Maeng, K.Lim, S.Pinel, M.M.Tentzeris, and J.Laskar. Design of compact stacked-patch antennas in LTCC multilayer packaging modules for wireless applications. IEEE Trans Adv Packag 2004(27): 581-589
    [9] E.Nishiyama, M.Aikawa, S.Egashira. Three-element stacked microstrip antenna with wide-band and high-gain performances. Int IEEE AP-S Symp Dig 2003(2): 900-903
    [10] R.Q.Lee, K.F.Lee. Experimental study of two layer electromagnetically coupled rectangular patch antenna. IEEE Trans Antennas Propag 1990(38): 1298-1302
    [11] S.Egashira, E.Nishiyama. Stacked microstrip antenna with wide bandwidth and high gain. IEEE Trans Antennas Propag 1996(44): 1533-1534
    [12] N.Hasebe, R.Hiramatsu, N.Masuda. A disk coupled resonant antenna excited by acircular patch. Int IEEE AP-S Symp Dig 1985:122-125
    [13] R.C.Hansen. Microwave scanning antennas. New York: Ac2 ademic Press. 1964: 251-252
    [14] Han Chulmin, John Huang. AC/ Ka dual f requency dual layer circularly polarized reflectarray antenna wit h microst rip ring elements. IEEE Trans. on A ntennas and Propagation. 2004(52): 2871-2875
    [15] Jose A.Encinar, Zornoza J.Agustin. Broadband design of t hree2 layer printed reflectarrays [J]. IEEE Trans. on Antennas and Propagation, 2003(51) : 1662-1664
    [16] Agustin J.Zornoza, Ralf Leberer, Encinar A.Jose. et al. Folded multilayer microst rip reflectarray wit h shaped pattern[J] . IEEE Trans. on Antennas and Propagation. 2006(54): 510-518
    [17] R.Chaharmir, J.Shaler, M.Cuhaci. Development of dual-band circuarly polarised reflectarray [J]. IEEE Proc. Microw. Antenna Proag.. 2006(153): 49-54
    [18]王云秀,王秉中,李华,刘会来.平面反射阵列天线的研究进展.系统工程与电子技术. 2008(30): 388-392
    [19]吴知航,章文勋,刘震国,沈薇.一种新型宽频带高增益的变极化微带反射阵天线.电波科学学报. 2006, 21(6): 820-824
    [20] R.K.Gupta, J.Mukherjee. Low cost efficient high gain antenna using array of parasitic patches on a superstrate layer. Microwave and Optical Technology Letters. 2009(51): 733-739
    [21] C.J.Panagamuwa, A.Chauraya, J.C.Vardaxoglou. Frequency and beam reconfigurable antenna using photoconducting switches. IEEE Trans. Antennas Propag.. 2006(54): 449-454
    [22] S.Zhang, G.H.Huff, J.Feng, J.T.Bernhard. A pattern reconfigurable microstrip parasitic array. IEEE Trans. Antennas Propa. 2004(52): 2773-2776
    [23] J.C.Chiao, S.Y.Cheng, J.J.L.Chang. MEMS reconfigurable antennas. Int J RF Microw CAE. 2001(11): 301-309
    [24] M.A.Jensen, J.W.Wallace. A review of antennas and propagation for MIMO wireless communications. IEEE Trans. Antennas Propagat.. 2004(54): 2810-2824
    [25] L.Petit, L.Dussopt, J.M.Laheurte. MEMS-switched parasitic-antenna array for radiation pattern diversity. IEEE Trans Antennas Propagat 2006(24): 2624-2631
    [26] L.Low, R.J.Langley. Single feed antenna with radiation pattern diversity. Electron Lett, 2004(40): 975-976
    [27] A.Khaleghi, J.C.Bolomey, A.Azoulay. A pattern diversity antenna with parasitic switching elements for wireless LAN communications. Wireless Communication Systems Symposium 2005(2): 611-615
    [28] S.L.S.Yang, Kwai-Man Luk. Design of a wide-band L-probe patch antenna for pattern reconfiguration or diversity applications. IEEE Trans. Antennas Propag. 2006(54): 433-438
    [29]余勇军,杨士中,杨力生.应用于卫星广播电视接收的微带平面阵列天线设计[硕士论文].重庆:重庆大学. 2006
    [30] M.C.D.Maddocks, M.S.Smith. Flat-plate steerable antennas for satellite communications and broadcast reception.IEE Proc..1991(2): 159-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700