动态目标极化特性测量与极化雷达抗干扰新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极化信息可以显著提高雷达的目标检测、目标识别与抗干扰性能,在现代防空、反导雷达中具有广阔的应用前景。随着新型高速机动目标的出现,以及战场电磁环境的日趋复杂,雷达极化信息的有效应用面临诸多挑战:一方面,新型导弹、飞机等目标的高速机动会使极化特性起伏更加剧烈,传统分时极化测量体制的固有不足已成为制约该类目标极化特性获取的主要瓶颈;另一方面,随着各种先进的相参、宽带电子干扰技术不断涌现,现有极化抗干扰方法由于受到应用条件限制,难以应对复杂多变的干扰样式。本论文以防空、反导为应用背景,以瞬态极化理论为基础,深入研究了动态目标极化特性测量和极化抗干扰方法,主要内容包括:
     在动态目标的极化特性测量方面,以导弹、飞机等高速运动目标的极化特性获取为需求,深入研究了动态目标的同时极化测量方法,显著提高了测量性能。
     (1).以导弹目标为对象,通过分析其在运动状态下的窄带、宽带极化特性,揭示了目标高速运动对极化特性的调制机理,并针对分时、同时两种极化测量体制,定量分析了目标极化特性起伏对测量性能的影响。理论分析和仿真实验结果均表明,对于极化特性快起伏目标,同时极化测量体制具有突出优势,这为极化雷达体制的选择提供了重要参考。
     (2).针对动态目标的窄带极化特性测量问题,对比分析了频移脉冲和正负斜率线性调频(LFM)两种典型同时极化测量波形的隔离度性能,结果表明,当多普勒频移补偿误差较小时,选择频移脉冲波形会得到更好的测量性能。利用瞬态极化雷达(KD-IPR)开展的外场测量实验,验证了相关结论。
     (3).针对动态目标的宽带极化特性测量问题,基于正交频分复用(OFDM)原理设计了全极化OFDM波形,并提出了宽带极化散射矩阵测量、一维/二维全极化散射中心特征提取等处理方法。分析结果表明,与传统的宽带正负斜率LFM波形相比,在速度补偿后,该波形具有更好的隔离度性能,能够更加准确的提取目标全极化高分辨信息,且有效消除了“多普勒–时延”耦合误差。
     在极化雷达抗干扰方面,面向对空监视、跟踪制导及宽带成像的应用背景,针对转发式多假目标干扰、自卫式有源干扰及宽带干扰,提出了几种实用的极化雷达抗干扰新方法。
     (1).针对转发式多假目标干扰,利用目标回波和干扰信号的瞬态极化特性差异,提出了相应的假目标抑制方法。与现有方法相比,该方法无需估计干扰极化状态,具有更好的实用性。基于实测目标回波数据的实验结果表明,该方法在较低信噪比/干噪比情况下仍能取得有效的抗干扰效果。
     (2).针对自卫式有源干扰,建立了正交极化二元阵雷达天线的空域极化特性理论模型,提出了两种空域极化抗干扰新方法:一是提出了空域虚拟极化滤波方法,该方法仅利用接收信号幅值来实现干扰极化状态估计,可有效抑制自卫式压制干扰;二是提出了假目标空域极化鉴别方法,该方法利用目标回波和干扰信号的空域极化特性差异来设计处理算法,可有效对抗自卫式欺骗干扰。仿真实验结果验证了这两种方法的有效性。
     (3).针对逆合成孔径雷达(ISAR)面临的宽带有源干扰,提出了两种宽带极化抗干扰方法:一是以径向距离维输出干扰平均功率最小为准则,提出了宽带极化对消方法,可有效抑制宽带压制干扰;二是利用真实目标和假目标的一维距离像(HRRP)极化相关特性差异,提出了相应的极化鉴别方法,可有效对抗宽带HRRP欺骗干扰。这两种方法能够显著提高ISAR系统在干扰背景下的成像能力。
     本文研究成果有助于推动瞬态极化信息处理技术从理论走向实用,对于提高防空、反导雷达的目标特性获取和抗干扰能力具有重要参考价值。
Polarization information can remarkably improve radar performances of target detection, target recognition and anti-jamming, and has wide application perspectives in modern surveillance and missile defence radars. However, with the appearance of novel maneuvering targets and the more and more complicated electromagnetic (EM) environment, the effective applications of radar polarization information face many challenges. On the one hand, the fast movement of such targets as missiles and airplanes make their polarization characteristics fluctuate more acutely, so the inherent drawback of tradiational alternative polarization measurement scheme has become the main obstacle for acquiring their polarization information. On the other hand, with the appearance of various advanced coherent and wideband electronic counter measures (ECM), available polarization anti-jamming methods are unable to counter sophisticated jamming types due to their limited application conditions. Under the background of air surveillance and missile defence, the polarization characteristic measurement methods of moving targets as well as the polarization radar anti-jamming methods are deeply studied based on the instantaneous polarization theory. The main contents of this dissertation include:
     In the aspect of target polarization characteristic measurement: To acquire the polarization characteritics of fast moving targets such as missiles and airplanes, the simultaneous polarization measurement method is deeply studied, which can remarkably improve measurement performance.
     (1). Taking missile targets as an example, their narrowband and wideband polarization characteristics under movement condition are analyzed, and then the modulation mechanism of fast movement on target polarization characteristics is revealed. For alternative polarization measurement shcheme and simultaneous polarization measurement scheme, the effect of target polarization characteristic fluctuation on their measurement performance is quantively analyzed. The results of theorectical analysis and simulations show that simultaneous polarization measurement scheme have prominent advantage for targets with fast fluctuating polarization characteristics. This conclusion provides valuable reference for the choice of polarization radar schemes.
     (2). To measure the narrowband polarization characteristics of moving targets, the isolation performances of frequency shifted pulse waveform and up-down slope LFM waveform are comparatively analyzed. The results show that better measurement performance can be achieved for frequency shifted pulse waveform when the doppler shift compensation error is small. Field measurement experiments using instantaneous polarization radar (KD-IPR) are performed to prove corresponding conclutions.
     (3). To measure the wideband polarization characteristics of moving targets, fully polarimetric OFDM waveform is designed based on the principle of orthogonal frequency diversity multiplex (OFDM), and its processing methods are given, including wideband polarization scattering matrix (PSM) measurement and one dimensional/two dimensional full polarization characteristic extraction. The analytical results show that this waveform has better isolation performance compared with traditional wideband up-down slope LFM waveform after velocity compensation, so it can extract target full polarization information more accurately, and can eliminate the“doppler-delay”coupling error as well.
     In the aspect of polarization radar anti-jamming: For the applications of surveillance, guidance and imaging, several practical polarization radar anti-jamming methods are studied for typical jamming types such as active decoy, self-defence active jamming and wideband jamming.
     (1). To counter active decoy jamming, the suppression algorithm is put forward based on the instantaneous polarization characteristic differences between target echoes and jamming signals. Compared with available methods, the new method doesn’t need to estimate jamming polarization state, so it is more practical. The results of experiments based on the measured target echoes show that this method can also obtain effective anti-jamming performance under relatively low signal to noise ratios (SNR)/jamming to noise ratios (JNR).
     (2). To counter self-defence active jamming, the spatial polarization theoretical model of orthogonal polarized dual array radar antenna is established, and then two novel spatial polarization anti-jamming methods are put forward. Firstly, the spatial virtual polarization filtering process is given, which can estimate jamming polarization state by only using the received signal amplitude and counter self-defence suppressive jamming effectively. Secondly, the spatial polarization discrimination method for active decoy is studied. Based on the spatial polarization characteristic differences between target echoes and jamming signals, the processing algorithm is designed to counter self-defence deceptive jamming. The simulation results prove the effectiveness of above two anti-jamming methods.
     (3). To counter the wideband active jamming of inverse synthesis aperture radar (ISAR), two wideband polarization anti-jamming methods are put forward. Firstly, according to the criterion of minimizing the average jamming signal power in radial range dimension, wideband adaptive polarization canceling (WAPC) algorithm is given, which can effectively counter wideband suppressive jamming. Secondly, using the high resolution range profile (HRRP) polarization correlation characteristic differences between real targets and false targets, the polarization discrimination algorithm is advanced, which can effectively counter wideband HRRP deceptive jamming. These two methods can improve the imaging ability of ISAR under jamming background.
     The research results of this dissertation are useful for promoting the instantaneous polarization information applications from theory to practice, and are of important reference value for advancing the performances of defence radars in target characteristic acquisition and anti-jamming.
引文
[1]王小谟,张光义.雷达与探测(第2版)—信息化战争的火眼金睛[M].北京:国防工业出版社, 2008.
    [2] Merrill I.Skolnik (著),左群声等(译).雷达系统导论(第三版)[M].北京:电子工业出版社, 2006.
    [3] Shirman Y D. Computer Simulation of Aerial Target Radar Scattering, Recognition, Detection, and Tracking. Artech House, Boston, 2002.
    [4]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社, 2005.3.
    [5]赵国庆等.雷达对抗原理[M].西安:西安电子科技大学出版社, 1999.
    [6] D.Curtis Schleher. Electronic warfare in the information age [M]. Artech House Inc, 1999.
    [7]赵飞.美国防空雷达发展现状[J].地面防空武器, 2006,1(1): 45-50.
    [8]丁建江.防空雷达目标识别技术[M].北京:国防工业出版社, 2008.5
    [9]黄培康,闫锦.弹道导弹(BM)对抗中的识别与反识别技术[J].航天电子对抗, 2005, 21(3): 1-3.
    [10]舍曼.弗兰克尔.用有源假目标挫败战区导弹防御雷达[J]. 863先进防御技术通讯(A类), 1997.11.
    [11] Tan Tun-Hou. Effectiveness of off-board active decoys against anti-shipping missiles [M]. Naval Postgraduate School, 1996.
    [12]刘忠.基于DRFM的线性调频脉冲压缩雷达抗干扰新技术[D].长沙:国防科技大学研究生院, 2008.12.
    [13]代大海,王雪松,肖顺平. SAR有源假目标干扰实施方案研究[J].航天电子电子对抗, 2007, 23(1): 24-27.
    [14]吴晓芳. SAR-GMTI的动目标干扰技术研究[D].长沙:国防科技大学研究生院, 2009.10
    [15] Fan L H, Pi Yiming, Huang S J. A comparison of some electronic countermeasures on inverse synthetic aperture radar [J]. Journal of electronics, 2006, 23(1): 132-135.
    [16] Han Zhou-an, PI Yi-ming Yang Jian-yu. Analysis of Jamming on Inverse Synthetic Aperture Radar [J], Proceedings of SPIE, 2005, 5808: 462-469.
    [17] Pace.P.E, Fouts.D.J, Ekestorm.S. Digital false-target image synthesizer for countering ISAR, IEE Proc on Radar Sonar Nabig, 2006, 149(5): 248-257.
    [18] Fouts D, Pace PE, Karow C. A single-chip false target radar image generator for countering wideband imaging radars [J]. IEEE. Solid-State Circuits, 2002, 37(6): 751-759.
    [19] LI Yuan, CHEN Hui-lian. Deception jamming against stepped-frequency ISAR using image synthesis technology[C]. IEEE Asia-pacific microwave conference proceedings, Suzhou, China, 2005: 751-759.
    [20]李源,陈惠连.基于相关系数的ISAR干扰效果评估方法[J].电子科学大学学报, 2006, 35(4): 468-470.
    [21]李源,陈惠连.用于欺骗ISAR的多(两)假目标合成技术研究[J].信号处理, 24(5), 2008: 725-729.
    [22]冯德军,陶华敏,刘忠等.对宽带高分辨成像雷达的转发式干扰方法[J]. 2005, 27(11): 19-23.
    [23]庄钊文,肖顺平,王雪松.雷达极化信息处理及应用[M],北京:国防工业出版社, 1999.1.
    [24]王雪松.宽带极化信息处理的研究[D].长沙:国防科技大学研究生院, 1999.6.
    [25] W.M.Boerner. Direct and Inverse Methods in Radar Polarimetry (Proc. Of DIMRP’88). Netherlands: Kluwer Academic Publishers, 1992.
    [26] G.Sinclair. The transmission and reception of elliptically polarized radar waves [J]. Proc.IRE-38, 1950: 148-151.
    [27] Brickel S H. Some invariant properties of the polarization scattering matrix [J]. Proceedings of IEEE, 1965, 53(8): 1070-1072.
    [28] Albert Guissard. Mueller and Kennaugh Matrics in Radar Polarimetry [J]. IEEE Trans on GRS, 1994, 32(3): 590-597.
    [29] J.C.Hubbert. A Comparison of Radar, Optic and Specular Null Polarizaton Theories [J]. IEEE Trans on GRS, 1994, 32(3): 658-671.
    [30] D.Giuli. Polarization Diversity in Radars [J]. Proceedings of the IEEE, 74(2), 1986: 245-269.
    [31]陈强.雷达极化基础理论及应用研究[D].长沙:国防科技大学研究生院, 2010.4.
    [32] J.Richard Huynen. Measurement of the Target Scattering Matrix [J]. Proceedings of the IEEE, 1965: 936-946.
    [33] Andrew L.Pazmany, Robert E.MeIntosh. The Use of Estimation Techniques to Reduce Noncoherent Polarmetric Measurement Errors [J]. IEEE Trans on AP, 1994, 42(9): 1325-1329.
    [34] D.Giuli, L.Facheris, A.Freni. Simultaneous Scattering Matrix Measurement through Signal Coding[C]. IEEE International Radar Conference, 1990: 258-262.
    [35] D.Giuli, M.Fossi, L.Facheris. Radar Target Scattering Matrix Measurement through Orthogonal Signals [J]. IEE Proceedings-F, 1993, 140(4), 1993: 233-242.
    [36] V.Santalla, Yahia M.M.Antar. A Comparison between Different Polarimetric Measurement Schemes [J]. IEEE Trans on GRS, 2002, 40(5): 1007-1017.
    [37]常宇亮.瞬态极化雷达测量、检测与抗干扰技术研究[D].长沙:国防科技大学研究生院, 2010. 9.
    [38] Welsh Boyron M, et al. Full Polarimetric Calibration for Radar Cross-Section Measurements: Performance Analysis. IEEE Trans.on AP, 2004, 52(9): 2357-2365.
    [39] Adib Nashashibi, Kamal Sarabandi, Fawwaz T.Ulaby. A Calibration Technique for Polarimetric Coherent-on-Receive Radar Systems [J]. IEEE Trans on AP, 1995, 43(4): 396-404.
    [40] L.M.Novak, M.B.Sechtin, M.J.Cardullo. Studies of target detection algorithms that use polarimetric radar data [J]. IEEE Trans on AES, 1989, 25(2): 150-165.
    [41] L. M. Novak, et al. Optimal polarimetric processing for enhanced target detection [J]. IEEE Trans on AES, 1993, 29(1): 234-243.
    [42] A.D.Maio. Polarimetric adaptive detection of range-distributed targets [J]. IEEE Trans on SP, 2002, 50(9):2152-2158.
    [43] D.A.Garren, et al. Full-polarization matched-illumination for target detection and identification [J]. IEEE Trans on AES, 2002, 28(3): 835-842.
    [44]李永祯,王雪松,徐振海等.基于强散射点径向积累的高分辨极化检测研究[J].电子学报, 2001, 29(3):307-310.
    [45]王雪松,李永祯,徐振海.高分辨雷达信号极化检测研究[J].电子学报, 2005, 33(6), 307-310.
    [46]李永祯,王雪松,肖顺平.基于ISVS的微弱目标检测算法[J].电子学报, 2005, 33(6): 1028-1031.
    [47]曾勇虎,王雪松,肖顺平等.基于时频联合域极化滤波的高分辨极化雷达信号检测[J].电子学报, 2005, 33(3): 524-526.
    [48] J.R.Copeland. Radar Target Classification by Polarization Properties[J]. Proceedings of the IRE, 1960: 1290-1296.
    [49] I.D.Olin, F.D.Queen. Measurements using a polarization instrumentation radar on selected target, NRL Report 5755, 1962.
    [50] Huynen, J.R. Phenomenological theory of Radar Targets [D]. University of Technology, Delft, The Netherland, 1970.
    [51] W.M.Boerner, M.B.El-Arini. Polarization Dependence in Electromagnetic Inverse Problem [J]. IEEE Trans on AP, 29(2), 1981: 262-271.
    [52] N.F.Chamberlain, E.K.Walton, F.D.Garger. Radar Target Identification of Aircraft Using Polarization Diverse Features [J]. IEEE Trans on AES, 1991, 27(1): 58-67.
    [53]郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别[M].长沙:国防科技大学出版社, 1996.3.
    [54]肖顺平.宽带极化雷达目标识别的理论与应用[D].长沙:国防科技大学研究生院, 1995.12.
    [55]肖顺平,郭桂蓉,庄钊文,陈曾平.基于散射中心的目标建模与识别[J].系统工程与电子技术, 1994, 6: 55-61.
    [56]肖顺平,庄钊文,王雪松,郭桂蓉.目标动态极化结构特征提取与识别[J].电子学报, 1998, 26(3): 48-52
    [57]肖顺平,王雪松,庄钊文.基于极化不变量的飞机目标识别[J].红外与毫米波学报, 1996, 15(6): 439-444.
    [58] L.M. Novak, Halversen S D. Effects of polarization and resolution on SAR ATR [J]. IEEE Trans on AES, 1997, 33(1): 102-116.
    [59] Masafumi Nakamura, Yoshio Yamaguchi, Hiroyoshi Yamada. Real-Time and Full Polarimetric FM-CW Radar and its Application to the Classification of Targets [J]. IEEE Trans on Instrumentation and Measurement, 1998, 47(2): 572-577.
    [60]肖怀铁.宽带极化毫米波雷达目标特征信号测量与识别算法研究[D].长沙:国防科技大学研究生院, 2000.4.
    [61] FIROOZ SADJADI. Improved Target Classification Using Optimum Polarimetric SAR Signature [J]. IEEE Trans on AES, 2002, 38(1): 38-50.
    [62]曾勇虎.瞬态极化时频分析与目标识别的研究[D].长沙:国防科技大学研究生院, 2004.6.
    [63] Marco Martorlla, Elisa Giusti, Amerigo Capria, et al. Automatic Target Recognition by means of Polarimetric ISAR Images and Eeural Networks [J]. IEEE Trans on GRS, 2009, 47(11): 3786-3794.
    [64] M.Martorella, E.Giusti, L.Demi, et al. Automatic Target Recognition by means of Polarimetric ISAR Images: a Model Matching Based Algorithm [C]. International Radar Conference, 2008: 27-30.
    [65]施龙飞.雷达极化抗干扰技术研究[D].长沙:国防科技大学研究生院, 2007.6.
    [66]李永祯,肖顺平,王雪松等.雷达极化抗干扰技术[M].背景:国防工业出版社, 2011.3.
    [67] F.E.Nathanson. Adaptive circular polarization [C]. IEEE International Radar Conference, Arlington, VA, USA, 1975: 221-225.
    [68] Poelman A J. Virtual polarization adaptation, a method of increasing the detection capabilities of a radar system through polarization-vector processing [J]. IEE Proc Communications, Radar and Signal Processing, 1981, 128(5): 261-270.
    [69] Poelman A J, Guy J R F.Multinotch logic-product polarization suppression filters: A typical design example and its performance in a rain clutter environment [J]. IEE Proc.-F, 1984, 131(7): 383-396.
    [70] Poelman A J, Guy J R F. Nolinear polarization-vector translation in radar systems:a promising concept for Real-time polarization-vector signal processing via a single-notch polarization suppression filter [J]. IEE Proceedings, 1984, 131(5): 451-464.
    [71] D.Giuli, Fossi M, Gherardelli M. A technique for adaptive polarization filtering in radars [C]. Proceedings of IEEE Int. Radar Conf., 1985: 213-219.
    [72] M.Gherardelli, D.Giuli, M.Fossi. Suboptimum polarization cancellers for dual polarization radars [J]. IEE proceedings, 1988, 135: 60-72.
    [73] Chui Jai Lee, Hong Wang. An adaptive multiband clutter polarization canceler [J]. IEEE Trans on AP, 1992: 1011-1014.
    [74]张国毅.高频地波雷达极化抗干扰技术研究[D].哈尔滨:哈尔滨工业大学研究生院, 2002.10.
    [75]张国毅,刘永坦.高频地波雷达多干扰的极化抑制[J].电子学报, 2001, 29(9): 1206-1209.
    [76]李永祯,王雪松,王涛等.有源诱饵的极化鉴别研究[J].国防科大学报, 2004, 26(3):83-88.
    [77]李永祯,肖顺平,王雪松等.地基防御雷达的有源假目标极化鉴别性能[J].系统工程与电子技术, 2005, 27(7): 1164-1168.
    [78]李永祯,王雪松,肖顺平等.基于IPPV的真假目标极化鉴别算法[J].现代雷达, 2004, 26(9): 38-42.
    [79]李永祯,王雪松,肖顺平等.有源假目标的高分辨极化鉴别研究[J].兵工学报, 2005, 26(6): 754-760.
    [80]施龙飞,王雪松,肖顺平.转发式假目标干扰的极化鉴别[J].中国科学(F辑:信息科学), 2004, 4(39): 468-475.
    [81]王涛,王雪松,肖顺平.随机调制单极化有源假目标的极化鉴别研究[J].自然科学进展, 2006, 26(5): 611-617.
    [82]代大海,王雪松,肖顺平. PolSAR有源假目标干扰的鉴别与对消[J].电子学报, 35(9), 2007: 1779-1783.
    [83] JIN Tao, QI Xiaohui, QIAO Xiaolin, et al. Anti-Full Polarization Active Jamming [C]. 2007 second IEEE Conference on Industrial Electronics and Applications, 2007: 2718-2722.
    [84] QIAO Xiaolin, JIN Tao, QI Xiaolin, et al. Anti-Millimeter Wave Polarizataion Agile Active Jamming [C]. International Conference on Microwave and Millimeter wave technology, 2007: 18-21.
    [85] Song Lizhong, Qiao Xiaolin, Meng Xiande. Study on the Angle Glint Suppression Technology for High resolution Dual Polarization Radar Seeker [C]. ICSP’04 Proceedings, 2004: 2057-2060.
    [86]王涛,王雪松,肖顺平.一种极化测量雷达的角闪烁抑制方法[J].电波科学学报, 2004, 19(6): 702-707.
    [87] H. Zebker, J.J.van Zyl. Imaging Radar Polarimetry: a Review [J]. Proceedings of the IEEE, 1991, 79: 2583-1606.
    [88] W.M.Boerner.Recent advances in extra-wide-band polarimetry, interferometry and polarimetric interferometry in synthetic aperture remote sensing, and its applications [J]. IEE Procs.-Radar Sonar Navigation, 2003, 150(3)2: 113-125.
    [89] W.M.Boerner. Recent Advancements of Multi-modal Radar & SAR Imaging [C]. IEEE 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies For Wireless Communications, 2007: 1485-1489.
    [90] W.M.Boerner. Basics of SAR Polarimetry I [C]. Radar Polarimetry and Interferomety, Washangton, DC, USA, 2004.
    [91] W.M.Boerner. Basics of SAR Polarimetry II [C]. Radar Polarimetry and Interferomety, Washangton, DC, USA, 2004.
    [92] H.MOTT(著),杨良汝等(译).极化雷达遥感[M].北京:国防工业出版社, 2008.1.
    [93] L.M.Novak, M.C.Burl, Optimal Speckle Reduction in Polarimetric SAR Imagery [J], IEEE Trans on AES, 1990, 26(2): 293-305.
    [94] R.Touzi, S.Goze, et al., Polarimetric Discrimintors for SAR Images [J], IEEE Trans on GRS, 1992, 30(5): 973-980.
    [95]徐牧.极化SAR图像人造目标提取与几何结构反演研究[D].长沙:国防科技大学研究生院, 2008.12.
    [96] V.Santalla, Yahia M.M.Antar, A.G.Pino. Polarimetric Radar Covariance Matrix Algorithms and Applications to Meteorological Radar Data [J]. IEEE Trans on GRS, 1999, 37(2): 1128-1137.
    [97] V.Santalla del Rio. Least Squares Estimation of Doppler and Polarimetric Parameters for Weather Targets [J].IEEE Trans on GRS, 2007, 45(11): 3760-3772.
    [98] Michele Galletti, David H.O.Bebbington, Madhu Chandra, et al. Measurement and Characterization of Entropy and Degree of Polarization of Weather Radar Targets [J].IEEE Trans on GRS, 2008, 46(10): 3196-3207.
    [99]李永祯.瞬态极化统计特性及其处理的研究[D].长沙:国防科技大学研究生院, 2004.12.
    [100]刘涛.瞬态极化统计理论及应用研究[D].长沙:国防科技大学研究生院, 2007.12.
    [101]罗佳.天线空域极化特性及其应用[D].长沙:国防科技大学研究生院, 2008.12.
    [102] A.P.Agrawal, W.M.Boerner. Redevelopment of Kennaugh’s target characteristic polarization state theory using the polarization transformation ratio formalism for the coherent case [J]. IEEE Trans on GRS, 1989, 27(1): 2-13.
    [103] Pottier. On Dr J.R.Huynen’s main contributions in the Development of polarimetric radar techniques and how the radar targets phenomenological concept becomes a theory [J]. SPIE, 1992, 1748: 72-85.
    [104] W.M.Boerner, Wei-Ling Yan, AN-Qing Xi, Yoshio Yamaguchi. On the Baisc Principles of Radar Polarimetry: the Target Characteristic Polarization State Theory of Kennaugh, Huynen’s Polarization Fork Concept, and its Extension to the Partially Polarized Case [J]. Proceedings of the IEE, 1991, 79(10): 1538-1550.
    [105] Yoshio Yamaguchi, W.M.Boerner, Hyo J.Eorn, et al. On the Characteristic Polarization States in the Cross-Polarized Radar Channel [J]. IEEE Trans on GRS, 1992, 30(5): 1078-1080.
    [106] Cameron.W.L, L.K.Leung. Feature-motivated scattering matrix decomposition [C]. IEEE International Radar Conference, 1990: 549-557.
    [107] Krogager.E. A new decomposition of radar target scattering matrix [J]. Electronic Letters, 1990, 26(18): 1525-1526.
    [108] Krogager.E, W.M.Boerner, S.N.Madsen. Feature-motived Sinclair Matrix (sphere/deplane/helix) Decomposition and Its Application to Target Sorting for Land Feature Classification [J]. SPIE, 1997, 3120: 144-154.
    [109] Freeman.A, S.T.Durden. A Three-Component Scattering Model for Polarimetric SAR Data [J]. IEEE Trans on GRS, 1998, 36(3): 963-973.
    [110] S.R.Cloude, E.Pottier. A review of target decomposition theorems in radar polarimetry [J]. IEEE Trans on GRS, 1996, 34(2): 498-518.
    [111] S.R.Cloude, E.Pottier. An Entropy-Based Classification Scheme for Land Applications of Polarimetric SAR [J].IEEE Trans on GRS, 1997, 35(1): 68-78.
    [112] Holm W A, Barnes R M. On radar polarization mixed target state decomposition techniques [C]. IEEE Radar Conference, 1988: 249-254.
    [113]李莹.基于目标分解的极化雷达飞机识别法[J].清华大学学报, 2001, 41(7): 32-35.
    [114] R.Paladini, M.Martorella, F.Berizzi. Incoherent Polarimetric ISAR Decomposition for Target Classification [J]. Proceedings of the 5th European Radar Conference, 2008: 33-37.
    [115] Jong-Sen Lee, Ernst Krogager, Thomas L. Ainsworth, et al. Polarimetric Analysis of Radar Signature of a Manmade Structure [J]. IEEE Trans on GRS Letters, 2006, 3(4): 555-559.
    [116] Armando Marino, Shane R.Cloude, Iain H.Woodhouse. A Polarimetric Target Detector Using the Huynen Fork [J]. IEEE Trans on GRS, 2010, 48(5): 2357-2366.
    [117] Richard D.McCoy, James N.O’Sullivan. Three-class Turntable ISAR Polarimetric Analysis and Decomposition [J]. SPIE, 1992, 1630: 247-257.
    [118] Yoshio Yamaguchi, Toshifumi Moriyama, Motoi Ishido. Four-ComponentScattering Model for Polarimetric SAR Image Decomposition [J]. IEEE Trans on GRS, 2005, 43(8): 1699-1076.
    [119] Jordi Inglada, Jean-Claude Souyris, Caroline Henry, et al. Incoherent SAR Polarimetric Analysis over Point Targets [J]. IEEE Trans on GRS Letters, 2006, 3(2): 206-209.
    [120] Van Zyl, J.J. Application of Cloude’s Target Decomposition Theorem to Polarimetric Imaging Radar Data [J]. SPIE, 1992, 1748: 23-24.
    [121] Ferro-Famil, E.Pottier, J.S.Lee. Unsupervised Classification of Multifrequency and Fully Polarimetric SAR Images Based on H/A/Alpha-Wishart Classifier [J].IEEE Trans on GRS, 2001, 39(11): 2332-2342.
    [122] Ingwersen P A, Lemnoos W Z. Radars for Ballistic Missile Defense Research [J]. Lincoln Laboratory Journal, 2000, 12(2): 245-266.
    [123] Close S, Hunt S M, Minardi M, et al. Analysis of Perseid meteor head echo data collected using the Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR) [J]. Radio Science, 2000, 35(5): 1233-1240.
    [124] Ninoslav MAJUREC, Davor BONEFACIC. Analysis and Implementation of Polarization Schemes for Polarimetric Radar Systems [J]. Radio engineering, 2007, 16(3): 54-61.
    [125] R.Keith Raney. Comments on Hybrid-Polarity SAR Architecture [C]. IEEE International Radar Conference, 2007: 2229-2231.
    [126] R.Keith Raney. Hybrid-Polarity SAR Architecture [J]. IEEE Trans on GRS, 2007, 45(11): 3397-3404.
    [127] Jean-Claude Souyris, Patrick Imbo, Roger Fjortoft, et al. Compact Polarimetry Based on Symmetry Properties of Geophysical Media: Theπ/4 Mode [J]. IEEE Trans on GRS, 2005, 43(3): 634-646.
    [128] Pascale C. Dubois-Fernandez, Jean-Claude Souyris, et al. The Compact Polarimetry Alternative for Spaceborne SAR at Low Frequency [J]. IEEE Trans on GRS, 2008, 46(10): 3208-3222.
    [129] W.M.Boerner, B.Y.Foo, H.J.Eorn. Interpretation of the Polarimetric Co-Polarization Phase Term in High Resoultion SAR Imaging Using the JPL CV-990 Polarimetric L-Band SAR Data [J]. IEEE Trans on GRS, 1987, 25(1): 77-82.
    [130] Henry J C. The Lincoln Laboratory 35 GHz airborne SAR imaging radar system [C], Proceeding of Telesystems Conference, Atlanta, USA, 1991: 353-358.
    [131] Jordan RL, Huneycutt BL, Werner M. The SIR-C/X-SAR synthetic aperture radar system [J]. IEEE Trans on GRS, 1995, 33(4): 829-839.
    [132] Dreuillet P, Paillou P, Cantalloube H, et al. P band data collection and investigations utilizing the RAMSES SAR facility [C], IGARSS2003, 2003: 4262-4264.
    [133] Christensen E L, Skou N, Dall J, et al. EMISAR: an absolutely calibrated polarimetric L- and C-band SAR [J]. IEEE Trans on GRS, 1998, 36 (6): 1852-1865.
    [134] Christensen E L, Dall J. EMISAR: a dual-frequency, polarimetric airborne SAR[C]. IGARSS2002, 2002: 1711-1713.
    [135] http://www.RADARSAT2.info.
    [136] Kimura H and Ito N. ALOS PALSAR: The Japanese second generation spaceborne SAR and its applications[C]. Proc. SPIE Conference on Microwave Remote Sensing of the Atmosphere and Environment II, 2000, 4152: 110-119.
    [137] Boel S M, Chandrasekar V. Quantitative Cross Validation of Space-Based and Ground Based Radar Observations [J]. Journal of Applied Meteorology, 2000, 39(39):2071-2079.
    [138]徐宝祥,叶宗秀,王致君.双线偏振雷达的气象应用[J].气象学报, 1987, 45(4):86-91.
    [139]王涛.弹道中段目标极化域特征提取与识别[D].长沙:国防科技大学研究生院,2007.6.
    [140] S.H.Heijen, L.P. Ligthart, V.Khlusov. COMESA: Concurrent Measurements of The Elements of The Scattering Matrix [C].the International conference on microwaves, radar and wireless connunications, 2002: 179-182.
    [141] A. I. Zakharov. Comparison of Multipolarization SAR Systems Depending on the Way of the Full Scattering Matrix Measurements [C]. IGARSS2003, 2003,7: 4419-4421.
    [142] Dai Bowei, Wang Xiaolan, Yang Ruliang. The Study of New Operation Modes for Spaceborne Polarimetric SAR System [C]. IGARSS2000, 2000, 5:2316-2318.
    [143] V.A.Khlusov. Joint Estimation of Coordinate and Polarization Parameters of Radar Objects [J], AD20041208: 67-79.
    [144] D.M.Nosov. Use of Orthogonal LFM and PSK Signals in Polarization Radars with Simultaneous Measurement of Backscattering Matrix [J], AD20041208: 171-181.
    [145] D.Purik, L.P.Ligthart, V.A.Khlusov. Polarmetric SAR with Simultaneous Backscattering Matrix Estimation [C]. 2005 European microwave conference, 2005: 2103-2106.
    [146] G.P.Barbur, L.P.Ligthart. Wideband Ambiguity Matrix of LFM-signals Used in Polarimetric Radar allowing Simultaneous Measurement of Scattering Matrix Elements [C]. Proceedings of the European Radar Conference, Amsterdam, Netherlands, 2008: 128-131.
    [147] Stephen D.Howard, A. Robert Calderbank, William Mortan. A Simple Signal Processing Architecture for Insntantaneous Radar Polarimetry [J]. IEEE Trans onInformation Theory, 2007, 53(4): 1282-1289.
    [148] A.R.Calderbank, S.D.Howard, W.Moran, et al. Instnataneous Radar Polarimetry with Multiple Dually-polarized Antennas [J]. Fortieth Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, 2006: 757-761.
    [149]王雪松,王剑,王涛等.雷达目标极化散射矩阵的瞬时测量方法[J].电子学报, 2006, 36(6): 1020-1025.
    [150]刘勇,李永祯,王雪松.基于正交频率分集的目标全极化瞬时测量方法[J].系统工程与电子技术, 2009, 31(11): 2587-2591.
    [151] D.Brunkow, V.N.Bringi, P.C. Kennedy, et al. A description of the CSU-CHILL national radar facility [J]. J. Amos.Oceanic Technol,2000, 17: 1596-1608.
    [152] C.Titin-Schnaider, S.Attia. Calibration of the MERIC full-polarimetric radar: theory and implementation [J]. Aerospace Science and Technology, 2003: 633-640.
    [153] C.Titin-Schnaider, P.Brouard. Full-Polarimetric Analysis of MERIC Air Targets Data [C]. RTO SET Symposium on“Target Identification and Recognition using RF System”, 2004, 39: 1-10.
    [154] AdvOleg A.Krasnov, Leo P.Ligthart, Zhijian Li, et al. The PARSAR-Full Polarimetric FMCW Radar with Dual-Orthogonal Signals [C]. Proceedings of the 5th European Radar Conference, 2008: 84-87.
    [155] G.P.Barbur. Processing of Dual-Orthogonal CW Polarimetric Radar Signals [D]. Delft, Netherland: Technology University, 2009.
    [156] Kamal Sarabandi, et al. Calibration of Polarimetric Radar Systems with Good Polarization Isolation [J]. IEEE Trans on GRS, 1990, 28(1): 70-75.
    [157] Tzong-jyh Chen. Calibration of wide-band polarimetric measurement system using three perfectly polarization-isolated calibrators [J]. IEEE Trans on AP, 1992, 40(2): 1573-1577.
    [158] J.R.J.Gau, et al. New polarimetric calibration technique using a single calibration dihedral [J]. IEE Proc.-Microw.Antennas Progag, 1995, 142(1): 19-25.
    [159] Freeman A. SAR calibration: An overview [J]. IEEE Trans on GRS. 1992, 30(6): 1107-1122.
    [160] Fujita M, Masuda T, Fujino Y, et al. Polarimetric calibration of the SIR-C C-band channel using active radar calibration and polarization selective dihedrals [J]. IEEE Trans on GRS, 1998, 36(6): 1872-1878.
    [161] Kamal Sarabandi, Pierce L E, Dobson M C, et al. Polarimetric calibration of SIR-C using point and distributed targets [J]. IEEE Trans on GRS, 1995, 33(4): 858-866.
    [162] Kamal Sarabandi, Leland E. Pierce, et al. Cross-Calbiration Experiment of JPJ AIRSAR and Truck Mouted Polarimetric Scatterometer [J]. IEEE Trans on GRS,1994, 32(5): 975-985.
    [163] Masanobu Shimada, Hiromi Oaku, Masao Nakai. SAR Calibration Using Frequency-Tunable Active Radar Calibrators [J]. IEEE Trans on GRS, 1990, 37(1): 564-573.
    [164] Hong Jun, Zang Bing-rong, Wang Hong-qi. The progress of the airborne SAR calibration techniques in China [C]. IGARSS99, 1999, 1: 422-424.
    [165] Zhu Yongtao, Wang Caiyun, Li Liang, et al. An X Band Polarimetric ARC Prototype[C]. APSAR2007, 2007: 218-220.
    [166]曾勇虎,王雪松,肖顺平等.雷达目标互易性的最小变质修正法[J].电子学报, 29(12), 2001: 1611-1614
    [167]王涛,王雪松,肖顺平.运动目标的时分极化测量研究[J].电子与信息学报, 2006, 28(11): 1989-1993.
    [168]何密,王雪松,李永祯等.运动目标PSM的时分测量方法研究[J].电波科学学报, 2009, 24(5): 955-960
    [169] Kostinski A B, W.M.Boerner. On the Polarimetric Contrast Optimization [J]. IEEE Trans on AP, 1987, 35(8): 988-991.
    [170] Xi A.Q, W.M.Boerner. Determination of the Characteriistic Polarization States of the target scattering matrix for the coherent monostatic and reciprocal propagation space using the polarization transformation ratio formulation [J]. JOSA-A/2, 1992, 9(3): 437-455.
    [171] Wang Xuesong, Zhuang Zhaowen, Xiao Shunping. Nonlinear Programming Modeling and Solution of Radar Target Polarization Enhancement [J]. Progress in Natural Science, 2000, 10(1): 62-67.
    [172] Wang Xuesong, Zhuang Zhaowen, Xiao Shunping. Nonlinear Optimization Method of Radar Target Polarization Enhancement, Progress in Natural Science, 2000, 10(2): 236-240.
    [173] Yang J, Dong G W, Peng Y N.Generalized Optimization of Polarimetric Contrast Enhancement [J]. IEEE Trans on GRS Letters, 2004, 42(3):171-174.
    [174] Yang J, Yamaguchi Y, Boerner W.M. Numerical Methods for Solving the Optimal Problem of Contrast Enhancement [J]. IEEE Trans on GRS, 2000,38(2): 965-971.
    [175] Yang J, Yoshio Yamaguchi, Hiroyoshi Yamada, et al. Optimal problem for contrast enhancement in polarimetric radar remote siensing [J]. J-IEICE Trans on Communication, 1999, 82(1): 174-183.
    [176] A.A.Swartz, H.A.Yueh, L.M.Novak. Optimal Polarizations for Archieving Maximum Contrast in Radar Images [J]. J.Geophys.Res-93(B12), 1988: 15252-15260.
    [177] W.M.Boerner, Mott H. Polarimetric contrast Enhancement Coefficients forPerfecting High Resolution POL-SAR/SAL Image Feature Extraction [J]. SPIE, Wideband Interferometric Sensing and Imaging Polarimetry, 1997, 3120: 106-117.
    [178] Stapor D P. Optimal receive antenna polarization in the presence of interference and noise [J]. IEEE. Trans on AP, 1995, 43(5): 473-477.
    [179]王雪松,代大海,徐振海等.极化滤波器的性能评估与选择[J].自然科学进展, 2004, 14(4):442-448.
    [180] Wang Xuesong, Chang Yuliang, Dai Dahai, et al. Band Characteristics of SINR Polarizatioin Filter[J]. IEEE Trans on AP, 2007, 55(4): 1148-1154.
    [181]王雪松,庄钊文,肖顺平等.极化信号的极化接收理论:完全极化情形[J].电子学报, 1998, 26(6): 42-46.
    [182]王雪松,徐振海,代大海等.干扰环境中部分极化信号的最佳滤波[J].电子与信息学报, 2004, 26(4): 593-597.
    [183]杨运甫,陶然,王越.基于极化椭圆参数的零导数正交搜索最优极化方法[J].电子学报, 2005, 33(10): 1812-1816.
    [184] Yunfu Yang, Ran Tao, Yue Wang. A New SINR Equatioin Based on the Polarizatioin Ellipse Parameters [J]. IEEE Trans on AP, 2005, 53(4): 1571-1577.
    [185]施龙飞,王雪松,肖顺平等.干扰背景下雷达最佳极化的分步估计方法[J].自然科学进展, 2005, 15(11): 1324-1329.
    [186]李金梁,罗佳,常宇亮等.基于天线空域极化特性的虚拟极化接收技术[J].电波科学学报, 2009,24(3): 389-393.
    [187]刘庆普,沈允春.箔条云极化识别方案性能分析[J].系统工程与电子技术. 1996, 18(11): 1-7.
    [188]李金梁.箔条干扰的特性与雷达抗箔条技术研究[D].国防科学技术大学研究生院, 2010.10.
    [189]汤广富.末制导反舰雷达导引头抗无源干扰信号处理技术研究[D].国防科技大学研究生院, 2010.6.
    [190]王涛,王雪松,肖顺平.基于目标全极化信息的弹头及诱饵识别方法研究[C].第九届全国雷达学术年会,2004: 536-540.
    [191]刘英芝,曾勇虎,汪连栋等.动态雷达目标仿真中目标姿态角的计算[J].电光与控制, 2007,14(1): 38-41.
    [192]苏东林,曾国奇,刘焱等.运动目标RCS特性分析[J].北京航空航天大学学报, 2006,32(12): 1413-1417.
    [193] J.J.Shacchini. Simulation of a Dynamic Aircraft Radar Signature[D]. Air Force Institute of Technology, Ohio, AFIT/ENG/TR-96-0.2, 1996.
    [194]罗宏.动态雷达目标的建模与识别研究[D].北京:中国航天总公司第二研究院, 1999.
    [195]姜卫东,曹敏,聂镭,付耀文.空间目标动态电磁测量数据仿真方法研究[J].系统工程与电子技术, 2009, 31(9): 2042-2045.
    [196]施龙飞,李盾,李永祯等.弹道导弹动态全极化一维像仿真研究[J].宇航学报, 2005, 26(3): 3444-348.
    [197]郭雷.宽带雷达目标极化特征提取与核方法识别研究[D].长沙:国防科技大学研究生院, 2009.4.
    [198] Berizzi F, Martorella M, Capria A. H/αpolarimetric features for man-made target classification[C]. IEEE Radar Conference, Rome, Italy, 2008: 1596-1601.
    [199] R.Paladini, M.Martorella, F.Berizzi. Incoherent Polarmetric ISAR Decompositioin for Target Classification [C]. Proceedings of the European Radar Conference, 2008: 33-36.
    [200] Mark A.Richards(著),刑孟道,王彤等(译).雷达信号处理基础[M].北京:电子工业出版社, 2008.6.
    [201]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社, 2005.10.
    [202]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.3.
    [203] Pandhaipande A. Principles of OFDM [J]. IEEE potentials 2002, 21(2): 16-19.
    [204] Per Kristian. Fading and Carrier Frequency offset robustness for different pulse Shaping Filters in OFDM [C]. IEEE Vehicular Technology Conference, 1998, 2: 777-781.
    [205] Christian R.Berger, Bruno Demissie, Jorg Heckenach, et al. Signal Processing for Passive Radar Using OFDM Waveforms [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 226-237.
    [206] N.Levanon, E.Mozeson. Multicarrier radar signal–pulse train and CW [J]. IEEE Trans on AES, 2002, 38(2): 707-720.
    [207] E.Mozeson, N.Levanon. Multicarrier radar signals with low peak-to-mean envelope power ratio[J]. IEE Proc.-Radar, Sonor & Navig, 2003, 150(2): 71-77.
    [208] M.A.Sebt, A.Sheikhi, M.M.Nayebi. Orthogonal frequency-division multiplexing radar signal design with optimized ambiguity function and low peak-to-average power ratio [J]. IET Radar, Sonar & Navig, 2009, 3(2): 122-130.
    [209] G.E.A.Franken, et al. Doppler Tolerance of OFDM-coded Radar Signals [C]. Proceedings of the 3rd European Radar Conference, 2006: 108-111.
    [210] Yoann Paichard, Juan Carlos Castelli, Philippe Dreuillet, et al. HYCAM: A RCS Measurement and Analysis System for Time-Varying Targets [C]. Instrumentation and Measurement Technology Conference, 2006: 921-925.
    [211] R.F.Tigrek, W.J.A.deHeij, P.van Genderen. Solving Doppler Ambiguity byDoppler Sensitive pulse compression Using Multi-Carrier Waveform [C]. Proceedings of the 5th European Radar Conference, 2008: 72-75.
    [212] Dmitriy S.Garmatyuk. Simulated Imaging Performance of UWB SAR Based on OFDM [C].IEEE International Conference on Ultra-wideband, 2006: 237-242.
    [213] Branislav M.Popovic. Synthesis of Power Efficient Multitone Signals with Flat Amplitude Spectrum [J].IEEE Trans on Communications, 1991, 39(7): 1031-1033.
    [214] Mathias Friese. Multitone Signals with Low Crest Factor [J]. IEEE Trans on Communications, 1997, 45(10): 1338-1344.
    [215]代大海.极化雷达成像及目标特征提取研究[D].长沙:国防科技大学博士学位论文, 2008.
    [216] William M.Steadly, Randolph L.Moses. High resolution exponential modeling of fully polarized radar returns[J]. IEEE Trans. on AES, 1991, 27(3): 459-468.
    [217] K.T.Kim, S.W.Kim, H.T.Kim. Two dimensional ISAR imaging using full polarization and super-resolution processing techniques [J]. IEE Proc.-Radar, Sonar & Navig, 1998, 145(4): 240-246.
    [218] K.T.Kim, Seo D K, Kim H T. Radar target identification using one-dimensional scattering centres [J]. IEE Proc.-Radar, Sonar Navig. 2001, 148(5):285-296.
    [219] K.T.Kim, Seo D K, Kim H T. Efficient radar target recognition using the MUSIC algorithm and invariant features [J]. IEEE Trans.on P. 2002, 50(3): 325-337.
    [220] R.Efurd, M.Cohen, E.Sjoberg. Advanced intrapulse polarization agile radar nears deployment [J]. MSN, Feb, 1984: 67-76.
    [221]乔晓林,宋立众.极化编码脉压雷达信号的相关检测[J].系统工程与电子技术, 2003, 25(5): 550-553.
    [222]宋立众,乔晓林.圆极化捷变LFM脉冲压缩信号分析[J].现代雷达, 2005, 27(2): 43-47.
    [223]俪能敬,王被德,沈齐.对空情报雷达总体论证-理论与实践[M].北京:国防工业出版社, 2008.
    [224] H.Mott(著),林昌禄等(译).天线和雷达中的极化[M].成都:电子科技大学出版社, 1989.1.
    [225] MEHRDAD SOUMEKH, SUNY Buffalo. SAR-ECCM using Phase-Perturbed LFM Chirp Signals and DRFM Repeat Jammer Penelization [J].IEEE Trans on AES, 2006, 42(1): 191-205.
    [226] Jabran Akhtar. Orthogonal Block Coded ECCM Schemes against Repeat Radar Jammers [J]. IEEE Trans on AES, 2009, 45(3): 1218-1225.
    [227] Donald R.Wehner. High Resolution Radar [M]. Norwood, MA: Artech House, 1987.
    [228]林茂庸,柯有安.雷达信号理论[M].北京:国防工业出版社, 1984.
    [229] Wang J, Kasilingam D. Global Range Alignment for ISAR [J]. IEEE Trans on AES, 2003, 39(1): 351-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700