颅内动脉瘤破裂危险因素的血液动力学数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:病人特异性颅内动脉瘤数值模型建立及血液动力学分析
     目的:基于脑血管三维旋转造影资料,建立病人特异性颅内动脉瘤数值模型,应用计算流体力学的方法分析颅内动脉瘤的多种血液动力学特征。
     方法:选取一例破裂颅内动脉瘤患者的脑血管三维旋转造影资料,初步剪切、加工后,经3DMAX软件转换、定标,再通过GEOMAGIC进一步切割、截取和光滑处理,所得结果在ANSYS CFD中建立有限元网格,即数值模型。在一定的假设前提下,有限元网格在ANSYS CFX配置边界条件后并进行计算,得出颅内动脉瘤的壁面切应力、流线、速度场、压力场等多种结果,并对这些动脉瘤血液动力学特征进一步分析。
     结果:根据计算结果可以分析颅内动脉瘤的多种血液动力学特征:壁面切应力分布特点、最大壁面切应力、流线及流场基本特征、速度场、动脉瘤内血流方式、射入流速度及宽度、冲击域位置及大小。从而更直观清晰的认识颅内动脉瘤的血液动力学特点。
     结论:动脉瘤3DRA影像资料可以成功的进行转换,并用于病人特异性颅内动脉瘤血液动力学数值模拟研究。颅内动脉瘤的血液动力学特征主要包括壁面切应力、血流方式、速度场、射入流、冲击域等参数。数值模拟这一方法可以使我们更深入和更直观的认识动脉瘤区域的血液动力学特点。
     第二部分:破裂与未破裂颅内动脉瘤血液动力学数值模拟配对研究
     目的:通过数值模拟的方法,研究大样本异体配对的破裂与未破裂颅内动脉瘤的血液动力学差异,得出破裂颅内动脉瘤的血液动力学特点。
     方法:选取连续12例未破裂动脉瘤患者,并选取12例破裂动脉瘤患者作为对照,对照标准主要为:性别一致、年龄差<10岁、发病时间差距在1月之内、动脉瘤位置相仿,大小接近。两组24例动脉瘤患者的3DRA资料进行数值模型建立并血液动脉学特征分析,主要包括动脉瘤最大壁面切应力、射入流最大流速及宽度、冲击域位置及大小和瘤内血流方式。两组患者动脉瘤的血液动力学进行比较并得出统计学结果。
     结果:两组动脉瘤中宽颈动脉瘤比例均为83.3%(10/12)。异体配对破裂与未破裂动脉瘤组最大壁面切应力无统计学差异(P=0.791),但大多数破裂动脉瘤较未破裂者壁面切应力分布更不均匀。两组射入流宽度无统计学差异(P=0.716),破裂动脉瘤组射入流的最大速度大于未破裂动脉瘤组(P=0.031)。破裂动脉瘤组冲击域小于未破裂动脉瘤组(P=0.001),但两组冲击域位置无统计学差异(P接近1)。破裂与未破裂动脉瘤组瘤内的血流方式无统计学差异,(P=0.195)。
     结论:颅内动脉瘤破裂与动脉瘤及载瘤动脉的血液动力学特征有关,破裂颅内动脉瘤较未破裂颅内动脉瘤具有更大的射入流最大速度、更小的冲击域。
     第三部分:颅内多发动脉瘤破裂危险因素的血液动力学数值模拟配对比较
     目的:通过数值模拟的方法,研究大样本同体配对的破裂与未破裂颅内动脉瘤的血液动力学差异,得出破裂颅内动脉瘤的血液动力学特点。
     方法:在连续87例多发颅内动脉瘤伴蛛网膜下腔出血的患者中,筛选出可明确判断破裂与未破裂动脉瘤20例,并行同体一对一配对,20例动脉瘤患者的40枚动脉瘤3DRA资料进行数值模型建立并血液动脉学特征分析,主要包括动脉瘤最大壁面切应力、射入流最大流速及宽度、冲击域位置及大小和瘤内血流方式。两组动脉瘤的血液动力学进行比较并得出统计学结果。
     结果:两组动脉瘤中宽颈动脉瘤比例均为95%(19/20)。同体配对破裂与未破裂动脉瘤组最大壁面切应力无统计学差异(P=0.985),但大多数患者破裂动脉瘤较未破裂者壁面切应力分布更不均匀。两组射入流宽度无统计学差异(P=0.917),破裂动脉瘤组射入流的最大速度大于未破裂动脉瘤组(P=0.002)。破裂动脉瘤组冲击域小于未破裂动脉瘤组(P<0.0001),但两组冲击域位置无统计学差异(P=0.795)。破裂动脉瘤组瘤内的血流方式较未破裂动脉瘤组更复杂,(P=0.0007)。
     结论:破裂颅内动脉瘤较未破裂颅内动脉瘤具有更大的射入流最大速度、更小的冲击域和更复杂的瘤内血流方式。颅内动脉瘤壁面切应力的高低交替及剧烈的梯度变化,可能是动脉瘤破裂的相关因素。配对研究破裂与未破裂颅内动脉瘤的血液动力学差异具有一定价值和前景。
Part one:Establishment of patient-specific numerical intracranial aneurysm model and analysis of hemodynamics
     Objective: To establish a numerical model of patient-specific intracranial aneurysm based on 3D rotation angiography image and analyze the hemodynamic characters of the aneurysm .
     Methods: The 3DRA image of one rupture intracranial aneurysm was transferred into 3DMAX then GEOMAGIC for being segmented and smoothed surface data. The surface data was imported into ANSYS CFD in order to create finite element grids. After meshing, we applied ANSYS CFX to create configuration files for fluid field computations and structural mechanics computations respectively, which include the setting of material properties, boundary condition and time step. At last we obtained the hemodynamic parameters including wall shear stress, streamline, velocity profile and pressure profile.
     Results: We analyzed hemodynamic characters of the intracranial aneurysm including WSS distribution, maximum WSS, streamline, intra-aneurysmal flow pattern, velocity profile, velocity and width of inflow jet, location and size of impaction zone.
     Conclusion: The 3DRA image of intracranial aneurysm can be used to create finite element grids. With computational fluid dynamics we can tell the hemodynamic characters of the intracranial aneurysm more directly and clearly.
     Part two:Comparison of hemodynamics characteristics in rupture and unrupture intracranial aneurysms in different patients with computational fluid dynamics: a paring research
     Objective: To investigate the different hemodynamic characters in rupture and unrupture intracranial aneurysms in various patients and to characterize possible associations with rupture.
     Methods: We studied 12 consecutive patients with unrupture intracranial aneurysms and other 12 pairing patients with rupture intracranial aneurysms. Based on 3D rotation angiography images, 24 numerical models of patient-specific intracranial aneurysms were created then analyzed the hemodynamic characters respectively. We focused on the WSS distribution, maximum WSS, width and maximum velocity of inflow jet, location and size of impaction zone, intra-aneurysmal flow pattern.
     Results: In both group, there were 10 wide-neck aneurysms in the total 12 ones. In the different patients paring research, there was significant statistic difference in the maximum velocity of inflow jet, size of impaction zone between the rupture aneurysms group and the unrupture aneurysms group (P=0.031;P=0.001). There was no significant statistic difference in the maximum WSS, width of inflow jet, location of impaction zone and intra-aneurysmal flow pattern between the two groups (P=0.791;P=0.716;P=1.000;P=0.195).
     Conclusion: Aneurysms with higher inflow rates and small impaction zones are associated with a clinical history of rupture.
     Part three:Comparison of hemodynamics characteristics in rupture and unrupture intracranial aneurysms in same patient with computational fluid dynamics: a paring research
     Objective: To investigate the different hemodynamic characters in rupture and unrupture intracranial aneurysms in various patients and to characterize possible associations with rupture.
     Methods: We studied 87 consecutive patients with multiple intracranial aneurysms and subarachnoid haemorrhage then focused on the 20 patients among them, whose aneurysm could be defined with rupture or unrupture. The rupture and unrupture aneurysms in the same patient were pairing. Based on 3D rotation angiography images, 40 numerical models of patient-specific intracranial aneurysms were created then analyzed the hemodynamic characters respectively. We studied on the WSS distribution, maximum WSS, width and maximum velocity of inflow jet, location and size of impaction zone, intra-aneurysmal flow pattern.
     Results: In both group, there were 19 wide-neck aneurysms in the total 20 ones. In the same patients paring research, there was significant statistic difference in the maximum velocity of inflow jet, size of impaction zone and intra-aneurysmal flow pattern between the rupture aneurysms group and the unrupture aneurysms group (P=0.002;P<0.0001;P=0.0007). There was no significant statistic difference in the maximum WSS, width of inflow jet and location of impaction zone between the two groups (P=0.985;P=0.917; P=0.795). We also found the WSS distribution was more complicated in the rupture aneurysms than in the unrupture ones.
     Conclusion: Aneurysms with higher inflow rates, small impaction zones and disturbed intra-aneurysmal flow patterns are associated with a clinical history of rupture. The WSS distribution may be a possible association with rupture. Paring research shows great role in assessing risk of rupture on intracranial aneurysms.
引文
1、张星,刘建民,黄清海,脑动脉瘤血流动力学数值模拟研究及其临床意义。介入放射学杂志,2008,12: 898-902。
    2、黄庆,李铁林,凌锋,颅内动脉瘤血流动力学。国外医学脑血管疾病分册,2004,12: 768-770。
    3、Charles V.,Jeremiah V.K., Sean D.L. Intracranial Aneurysms: Current Evidence and Clinical Practice. American Family Physican, 66: 601-608, 2002.
    4、Canton G, Levy I, Lasheras JC.. Flow changes caused by the sequential placement of stents across the neck of sidewall cerebral aneurysms. J Neurosurg, 2005, 103: 891–902.
    5、Krisztina B, Francis C, Jean H,et al. Influence of stent properties on the alteration of cerebral intra-aneurysmal haemodynamics:flow quantification in elastic sidewall aneurysm models. Neurological Research,2005, 27:120-128.
    6、戴建华,丁光宏,龚剑秋,杨新建,张晓龙,颅内动脉瘤血液动力学数值模拟。复旦大学学报(自然科学版),43(3): 392-396, 2004.
    7、赵军伟,殷文义,丁光宏,杨新建,史万超,张晓龙,二维弹性动脉瘤模型的血液动力学数值模拟与分析。中国生物医学工程,26:730-738,2007.
    8、温功碧,李俊修,陈伟,颅内动脉旁瘤的血液动力学的三维数值模拟。北京大学学报(自然科学版),39:649-654,2003.
    9、黄清海,张星,施洋,不同类型脑动脉瘤内流体力学的三维数值模拟研究。中华神经外科疾病研究杂志,2009,2: 69-72。
    10、张星,刘建民,黄清海,支架孔率对脑动脉瘤血流动力学影响的三维数值模拟研究。介入放射学杂志,2009,3: 213-216。
    11、Jou L. D., Wong G., Dispensa B., et al, Correlation between luminal geometry changes and hemodynamics in fusiform intracranial aneurysms, AJNR, 26:2357-2363, 2005.
    12、Hassan T., Tieofeev E. V., Saito T., et al, Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography, AJNR, 25:1356-1365, 2004.
    13、Cebral J. R., Hernandez M., and Frangi A. F., Computational analysis of bloodflow dynamics in cerebral aneurysms from CTA and 3D rational angiography image data. Proc. SPIE Med. Imag. vol . 5369:319-329, 2004.
    14、Cebral J. R., Castro M. A., Burgess J. E., and Putman C. M., Cerebral aneurysm hemodynamics modeling from 3D rational angiography. Presented at the ISBI 2004, Arlington, VA, Apr. 15-18, 2004.
    15、Cebral J. R., Castro M. A., Appanaboyina S., et al, Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. on Medical Imaging, 24:457-467, 2005.
    16、Castro MA, Putman CM, Cebral JR, Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics. AJNR, 27:1703-09, 2006
    17、穆士卿,杨新健,张莹,颅内动脉瘤的三维数值模拟分析。中国微侵袭神经外科杂志,2008,(10):459-462。
    1、Cebral JR,Castro MA,Burgess JE,et al. Characterization of Cerebral Aneurysms for Assessing Risk of Rupture By Using Patient-Specific Computational Hemodynamics Models. AJNR Am J Neuroradiol,2005,26:2550–2559.
    2、Perktold K., Peter R., Resch M., Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm, Biorheology, 26:1011-1030, 1989.
    3、Low M., Perktold K.,Raunig R.Hemodynamics in Rigid and Distensible Saccular Aneurysms :A Numerical Study of Pulsatile Flow Characteristics. Biorheology, 1993,30 :287-298.
    4、Liepsch D.W.,Steiger H.J.,Poll A.Hemodynamic Stress in Lateral Saccular Aneurysms. Biorheology ,1987,24 :689-710.
    5、Aenis M.,Stancampiano A.P. ,Wakhloo A.K.,et,al.Modeling of Flow in A Straight Stented and Nonstented Side Wall Aneurysm Model. J of Biomech Eng ,1997, 119:206-212.
    6、Castro MA,Putman CM,Sheridan MJ,Cebral JR.Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am J Neuroradiol. 2009 Feb;30(2):297-302.
    7、Cebral J. R., Hernandez M., and Frangi A. F., Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rational angiography image data. Proc. SPIE Med. Imag. vol . 5369:319-329, 2004.
    8、Cebral J. R., Castro M. A., Burgess J. E., and Putman C. M., Cerebral aneurysm hemodynamics modeling from 3D rational angiography. Presented at the ISBI 2004, Arlington, VA, Apr. 15-18, 2004.
    9、Castro MA, Putman CM, Cebral JR, Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics. AJNR, 27:1703-09, 2006
    10、Valencia A., Botto S., Sordo J., et al, Comparison of haemodynamics in cerebral aneurysms of different sizes located in the ophthalmic artery, Int. J. Numer. Mech. Fluids, 53:793-809, 2007.
    11、穆士卿,杨新健,张莹,颅内动脉瘤的三维数值模拟分析。中国微侵袭神经外科杂志,2008,(10):459-462。
    12、Ferguson GG.Physical factors in the initiation, growth, and rupture of humanintracranial saccular aneurysms.J.Neurosurg,1972,37:666–677.
    13、Masaaki Shojima,Marie Oshima,Magnitueude and Role of Wall Shear Stress on Cerebral Aneurysm Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms[J].Stroke.2004,35:2500.
    14、Burleson AC,Strother CM,Ttlritto VT.Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery,1995,37:774-784.
    15、Steiger HJ,Reulen HJ.Low frequency flow fluction in aneurysm.Acta Neurochir,1986,83:131-137.
    16、陈旭东,付方雪,杨新建,等.顶端动脉瘤的血流动力学数值模拟速度分析.吉林大学学报.2005;31(4):498.500.
    17、赵从海,李淼,史万超,等.颅内动脉瘤涡流的血流动力学研究.中华实验外科杂志.2006;23(12):1447-1449.
    18、Vanninen R,Manninen H, Ronkainen A.Broad-Based Intracranial Aneurysms: Thrombosis Induced by Stent Placement. AJNR Am J Neuroradiol, 2003,24:263–266
    19、Krex D, Schackert HK, Schackert G. Genesis of cerebral aneurysms–an update. Acta Neurochir (Wien),2001,143:429–448.
    20、Shojima M,Oshima M,Takagi K. Role of the Bloodstream Impacting Force and the Local Pressure Elevation in the Rupture of Cerebral Aneurysms. Stroke, 2005, 36:1933-1938.
    1、Cebral JR,Castro MA,Burgess JE,et al. Characterization of Cerebral Aneurysms for Assessing Risk of Rupture By Using Patient-Specific Computational Hemodynamics Models. AJNR Am J Neuroradiol, 2005, 26:2550–2559.
    2、Valencia A, Morales H, Rivera R, Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index。Med Eng Phys. 2008 Apr;30(3):329-40.
    3、Ferguson GG.Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms.J.Neurosurg,1972,37:666–677.
    4、Krings T,Harmann WM,Hans FJ.A refined method for creating saccular aneurysms in the rabbit, Neuroradiology,2003,45:423–429.
    5、Feng YX,Wada S,Tsubota KI. The application of computer simulation in the genesis and development of intracranial aneurysms. Technology and Health Care,2005,13:281–291.
    6、Cebral JR,L?hner R. From medical images to anatomically accurate finite element grids. Int J Num Meth Eng,2001,51:985–1008.
    7、Ku D.N. Blood flow in arteries. Ann Rev Fluid Mechanics,1997,29:399–434.
    8、Lehoux S,Tronc F,Tedgui A.Mechanisms of blood flow-induced vascular enlargement. Biorheology,2002,39:319–324.
    9、Hashimoto T,Meng H and Young WL.Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurological Research, 2006,28:372-380
    10、Kondo S, Hashimoto N, Kikuchi H, et al.Cerebral aneurysms arising at nonbranching sites. An experimental study. Stroke,1997,28:398–404.
    11、Masaaki Shojima,Marie Oshima,Magnitueude and Role of Wall Shear Stress on Cerebral Aneurysm Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms[J].Stroke.2004,35:2500.
    12、Gibbons GH,Dzau VJ.The emerging concept of vascular rimodeling[J N Engl J Med,1994,330:1431.
    13、Malek AM,Alper SL,Izumo S.Hemodynamic shear stress and its role in atherosclerosis[J].JAMA,1999,282:2035-2042.
    14、Castro MA,Putman CM,Sheridan MJ,Cebral JR.Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am J Neuroradiol. 2009 Feb;30(2):297-302.
    15、Vanninen R,Manninen H, Ronkainen A.Broad-Based Intracranial Aneurysms: Thrombosis Induced by Stent Placement. AJNR Am J Neuroradiol, 2003,24:263–266
    16、Hoi Y., Meng H., Woodward S., et al, Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. Journal of Neurosurgery, 101:676-681, 2004.
    17、Burleson AC,Strother CM,Ttlritto VT.Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery,1995,37:774-784.
    18、Cebral JR,Castro MA, Appanaboyina S, et al. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics:Technique and sensitivity. IEEE Trans Med Imaging,2004,24:457–467.
    19、Steiger HJ,Reulen HJ.Low frequency flow fluction in aneurysm.Acta Neurochir,1986,83:131-137.
    20、陈旭东,付方雪,杨新建,等.顶端动脉瘤的血流动力学数值模拟速度分析.吉林大学学报.2005;31(4):498.500.
    21、赵从海,李淼,史万超,等.颅内动脉瘤涡流的血流动力学研究.中华实验外科杂志.2006;23(12):1447-1449.
    22、Amal JF,Dinh-Xuan AT,Pueyo M,et a1.Endothelium-derived nitric oxide and vascular physiology and pathology.Cell Mol Life Sci.1999 Jul,55(8-9):1078-1087.
    1、戴建华,丁光宏,龚剑秋,杨新建,张晓龙:颅内动脉瘤血液动力学数值模拟,复旦大学学报(自然科学版),43(3): 392-396, 2004.
    2、赵军伟,殷文义,丁光宏,杨新建,史万超,张晓龙:二维弹性动脉瘤模型的血液动力学数值模拟与分析,中国生物医学工程,26:730-738,2007.
    3、温功碧,李俊修,陈伟:颅内动脉旁瘤的血液动力学的三维数值模拟,北京大学学报(自然科学版),39:649-654,2003.
    4、Raghavan M., Ma B., Harbaugh R., Quantified aneurysm shape and rupture risk, Journal of Neurosurgery, 102:355-362, 2005.
    5、Hoi Y., Meng H., Woodward S., et al, Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. Journal of Neurosurgery, 101:676-681, 2004.
    6、Meng H., Feng Y., Woodward S., et al, Mathematical model of the rupture mechanism of intracranial saccular aneurysms through daughter aneurysm formation and growth. Neurol Res. , 27 (5):459-65 , 2005.
    7、Tateshima S., Murayama Y., Villablanca J. P., et al, In vitro measurements of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs, stroke, 34:187-192, 2003.
    8、Jou L. D., Wong G., Dispensa B., et al, Correlation between luminal geometry changes and hemodynamics in fusiform intracranial aneurysms, AJNR, 26:2357-2363, 2005.
    9、Hassan T., Tieofeev E. V., Saito T., et al, Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography, AJNR, 25:1356-1365, 2004.
    10、Perktold K., Peter R., Resch M., Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm, Biorheology, 26:1011-1030, 1989.
    11、Steinman D. A., Milner J. S., Norley C. J. et al, Image-based computational simulation of flow dynamics in a Giant Intracranial Aneurysm. AJNR, 24:559-566, 2003.
    12、Valencia A., Zarate A., Galvez M., Badilla L., Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm, InternationalJournal of Numerical Methods in Fluids, 50:751-764, 2006.
    13、Valencia A., Botto S., Sordo J., et al, Comparison of haemodynamics in cerebral aneurysms of different sizes located in the ophthalmic artery, Int. J. Numer. Mech. Fluids, 53:793-809, 2007.
    14、Cebral J. R., Hernandez M., and Frangi A. F., Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rational angiography image data. Proc. SPIE Med. Imag. vol . 5369:319-329, 2004.
    15、Cebral J. R., Castro M. A., Burgess J. E., and Putman C. M., Cerebral aneurysm hemodynamics modeling from 3D rational angiography. Presented at the ISBI 2004, Arlington, VA, Apr. 15-18, 2004.
    16、Cebral J. R., Castro M. A., Appanaboyina S., et al, Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. on Medical Imaging, 24:457-467, 2005.
    17、Castro MA, Putman CM, Cebral JR, Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics. AJNR, 27:1703-09, 2006
    18、Low M., Perktold K., Raunig R., Hemodynamics in a rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics. Biorheology, 30:287-298, 1993
    19、Torii R., Oshima M., Kobayashi T., et al, Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures, Comput. Mech. 38:482-490, 2006.
    20、Torii R., Oshima M., Kobayashi T., et al, Influence of wall elasticity in patient-specific hemodynamic simulations, Computers & Fluids, 36:160-168, 2007.
    21、Cebral JR,Castro MA,Burgess JE,et al. Characterization of Cerebral Aneurysms for Assessing Risk of Rupture By Using Patient-Specific Computational Hemodynamics Models. AJNR Am J Neuroradiol,2005,26:2550–2559.
    22、Castro MA,Putman CM,Sheridan MJ,Cebral JR.Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am J Neuroradiol. 2009 Feb;30(2):297-302.
    23、Valencia A, Morales H, Rivera R, Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysmarea index。Med Eng Phys. 2008 Apr;30(3):329-40.
    24、Hademenos GJ, Massoud TF, Turjman F, Sayre JW. Anatomical and morphological factors correlating with rupture of intracranial aneurysms in patients referred for endovascular treatment. Neuroradiology. 1998 Nov; 40(11):755-60
    25、Raghavan ML, Ma B, Harbaugh RE. Quantified aneurysm shape and rupture risk. J Neurosurg. 2005 Feb; 102(2):355-62
    26、Gobin YP,Counord JL,Flaud P, et a1.In vitro study of heamodynamics in a giant saccular aneurysm model:influence of flow dynamics in the parent vessel and effects of coil embolisation.Neuroradiology 1994;36(7):530-536.
    27、张莹,杨新健,李海云,等。带子瘤颅内动脉瘤的二维血流动力学数值模拟分析。中国脑血管病杂志。2007,4(9):392-296。
    28、Ferguson GG.Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms.J.Neurosurg,1972,37:666–677.
    29、Mitsos AP,Nikolaos MP K,Yiannis P,et al. Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics modeltechnical note. Neuroradiology. 2008 Apr;50(4):341-7.
    30、Shojima M,Oshima M,Takagi K. Role of the Bloodstream Impacting Force and the Local Pressure Elevation in the Rupture of Cerebral Aneurysms. Stroke, 2005,36:1933-1938.
    31、Vorp D.A.;Wande Geest J.P.Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture.Arteriosclerosis,Thrombosis,and Vaseular Biology. 2005;25(8):1558-1566.
    32、Nystrom SH. On factors related to growth and rupture of intracranial aneurysms. Acta Neuropathol (Berl). 1970; 16(1):64-72
    33、Frosen J, Piippo A, Paetau A, Kangasniemi M, Niemela M, Hernesniemi J, Jaaskelainen J. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004 Oct; 35(10):2287-93.
    1、黄庆,李铁林,凌锋:颅内动脉瘤血流动力学,国外医学脑血管疾病分册,12: 768-770, 2004.
    2、Charles V.,Jeremiah V.K., Sean D.L. Intracranial Aneurysms: Current Evidence and Clinical Practice. American Family Physican, 66: 601-608, 2002.
    3、戴建华,丁光宏,龚剑秋,杨新建,张晓龙:颅内动脉瘤血液动力学数值模拟,复旦大学学报(自然科学版),43(3): 392-396, 2004.
    4、赵军伟,殷文义,丁光宏,杨新建,史万超,张晓龙:二维弹性动脉瘤模型的血液动力学数值模拟与分析,中国生物医学工程,26:730-738,2007.
    5、温功碧,李俊修,陈伟:颅内动脉旁瘤的血液动力学的三维数值模拟,北京大学学报(自然科学版),39:649-654,2003.
    6、Raghavan M., Ma B., Harbaugh R., Quantified aneurysm shape and rupture risk, Journal of Neurosurgery, 102:355-362, 2005.
    7、Hoi Y., Meng H., Woodward S., et al, Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. Journal of Neurosurgery, 101:676-681, 2004.
    8、Meng H., Feng Y., Woodward S., et al, Mathematical model of the rupturemechanism of intracranial saccular aneurysms through daughter aneurysm formation and growth. Neurol Res. , 27 (5):459-65 , 2005.
    9、Tateshima S., Murayama Y., Villablanca J. P., et al, In vitro measurements of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs, stroke, 34:187-192, 2003.
    10、Jou L. D., Wong G., Dispensa B., et al, Correlation between luminal geometry changes and hemodynamics in fusiform intracranial aneurysms, AJNR, 26:2357-2363, 2005.
    11、Hassan T., Tieofeev E. V., Saito T., et al, Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography, AJNR, 25:1356-1365, 2004.
    12、Perktold K., Peter R., Resch M., Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm, Biorheology, 26:1011-1030, 1989.
    13、Steinman D. A., Milner J. S., Norley C. J. et al, Image-based computational simulation of flow dynamics in a Giant Intracranial Aneurysm. AJNR, 24:559-566, 2003.
    14、Valencia A., Zarate A., Galvez M., Badilla L., Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm, International Journal of Numerical Methods in Fluids, 50:751-764, 2006.
    15、Valencia A., Botto S., Sordo J., et al, Comparison of haemodynamics in cerebral aneurysms of different sizes located in the ophthalmic artery, Int. J. Numer. Mech. Fluids, 53:793-809, 2007.
    16、Cebral J. R., Hernandez M., and Frangi A. F., Computational analysis of blood flow dynamics in cerebral aneurysms from CTA and 3D rational angiography image data. Proc. SPIE Med. Imag. vol . 5369:319-329, 2004.
    17、Cebral J. R., Castro M. A., Burgess J. E., and Putman C. M., Cerebral aneurysm hemodynamics modeling from 3D rational angiography. Presented at the ISBI 2004, Arlington, VA, Apr. 15-18, 2004.
    18、Cebral J. R., Castro M. A., Appanaboyina S., et al, Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. on Medical Imaging, 24:457-467, 2005.
    19、Castro MA, Putman CM, Cebral JR, Computational Fluid Dynamics Modelingof Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics. AJNR, 27:1703-09, 2006
    20、Low M., Perktold K., Raunig R., Hemodynamics in a rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics. Biorheology, 30:287-298, 1993
    21、Torii R., Oshima M., Kobayashi T., et al, Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures, Comput. Mech. 38:482-490, 2006.
    22、Torii R., Oshima M., Kobayashi T., et al, Influence of wall elasticity in patient-specific hemodynamic simulations, Computers & Fluids, 36:160-168, 2007.
    23、Ferguson GG.Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms.J.Neurosurg,1972,37:666–677.
    24、Krings T,Harmann WM,Hans FJ.A refined method for creating saccular aneurysms in the rabbit, Neuroradiology,2003,45:423–429.
    25、Feng YX,Wada S,Tsubota KI. The application of computer simulation in the genesis and development of intracranial aneurysms. Technology and Health Care,2005,13:281–291.
    26、Cebral JR,L?hner R. From medical images to anatomically accurate finite element grids. Int J Num Meth Eng,2001,51:985–1008.
    27、Ku D.N. Blood flow in arteries. Ann Rev Fluid Mechanics,1997,29:399–434.
    28、Lehoux S,Tronc F,Tedgui A.Mechanisms of blood flow-induced vascular enlargement. Biorheology,2002,39:319–324.
    29、Hashimoto T,Meng H and Young WL.Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurological Research, 2006,28:372-380
    30、Kondo S, Hashimoto N, Kikuchi H, et al.Cerebral aneurysms arising at nonbranching sites. An experimental study. Stroke,1997,28:398–404.
    31、Masaaki Shojima,Marie Oshima,Magnitueude and Role of Wall Shear Stress on Cerebral Aneurysm Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms[J].Stroke.2004,35:2500.
    32、Gibbons GH,Dzau VJ.The emerging concept of vascular rimodeling[JN Engl J Med,1994,330:1431.
    33、Malek AM,Alper SL,Izumo S.Hemodynamic shear stress and its role in atherosclerosis[J].JAMA,1999,282:2035-2042.
    34、Castro MA,Putman CM,Sheridan MJ,Cebral JR.Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am J Neuroradiol. 2009 Feb;30(2):297-302.
    35、Gobin YP,Counord JL,Flaud P, et a1.In vitro study of heamodynamics in a giant saccular aneurysm model:influence of flow dynamics in the parent vessel and effects of coil embolisation.Neuroradiology 1994;36(7):530-536.
    36、张莹,杨新健,李海云,等。带子瘤颅内动脉瘤的二维血流动力学数值模拟分析。中国脑血管病杂志。2007,4(9):392-296。
    37、Ferguson GG.Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms.J.Neurosurg,1972,37:666–677.
    38、Mitsos AP,Nikolaos MP K,Yiannis P,et al. Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics modeltechnical note. Neuroradiology. 2008 Apr;50(4):341-7.
    39、Shojima M,Oshima M,Takagi K. Role of the Bloodstream Impacting Force and the Local Pressure Elevation in the Rupture of Cerebral Aneurysms. Stroke, 2005,36:1933-1938.
    40、Burleson AC,Strother CM,Ttlritto VT.Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery,1995,37:774-784.
    41、Cebral JR,Castro MA, Appanaboyina S, et al. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics:Technique and sensitivity. IEEE Trans Med Imaging,2004,24:457–467.
    42、Steiger HJ,Reulen HJ.Low frequency flow fluction in aneurysm.Acta Neurochir,1986,83:131-137.
    43、陈旭东,付方雪,杨新建,等.顶端动脉瘤的血流动力学数值模拟速度分析.吉林大学学报.2005;31(4):498.500.
    44、赵从海,李淼,史万超,等.颅内动脉瘤涡流的血流动力学研究.中华实验外科杂志.2006;23(12):1447-1449.
    45、Cebral JR,Castro MA,Burgess JE,et al. Characterization of Cerebral Aneurysms for Assessing Risk of Rupture By Using Patient-Specific Computational Hemodynamics Models. AJNR Am J Neuroradiol,2005,26:2550–2559.
    46、Amal JF,Dinh-Xuan AT,Pueyo M,et a1.Endothelium-derived nitric oxide and vascular physiology and pathology.Cell Mol Life Sci.1999 Jul,55(8-9):1078-1087.
    47、Vanninen R,Manninen H, Ronkainen A.Broad-Based Intracranial Aneurysms: Thrombosis Induced by Stent Placement. AJNR Am J Neuroradiol, 2003,24:263–266
    48、Liepsch DW,Steiger HJ,Poll A.Hemodynamic Stress in Lateral Saccular Aneurysms. Biorheology ,1987,24 :689-710..
    49、Vorp D.A.;Wande Geest J.P.Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture.Arteriosclerosis,Thrombosis,and Vaseular Biology. 2005;25(8):1558-1566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700