抗原肽/HLA-A2复合物诱导和调节同种反应性T细胞的应答
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
T细胞TCR识别的配体是抗原肽/MHC复合物(pMHC),MHC型别不同的供/受者间进行移植后会发生强烈的排斥反应,其机制主要是同种反应性T细胞(简称同种T细胞)识别同种异体组织抗原(简称同种抗原)并产生应答。关于同种T细胞直接识别的可能模式,以及同种T细胞是否具有pMHC特异性,一直存在争论。本论文拟从单个pMHC(即T细胞识别的抗原表位)角度分析,通过诱导单一pMHC特异性同种T细胞,证实同种T细胞的识别也具有pMHC特异性,并利用同种T细胞识别的特异性探索打破耐受或诱导耐受的方法。论文共分为三部分,其主要内容与结果如下:
     一、同种T细胞对抗原的识别具有pMHC特异性
     为了研究同种T细胞是否存在对pMHC的特异性,本研究选择Tyr/HLA-A2作为pMHC的代表,利用仅表达HLA-A2、TAP缺陷的T2细胞作为刺激细胞,提呈Tyr/HLA-A2,通过与HLA-A2阴性个体(HLA-A2-ve)的PBLs进行长期混合淋巴细胞培养(LTMLC),诱生Tyr/HLA-A2特异性的同种T细胞,用特异性细胞毒试验和pMHC四聚体染色检测经过LTMLC诱生的同种T细胞。结果显示结合于同种HLA分子上的自身抗原肽与结合于自身HLA分子上的病毒肽一样,可在体外有效的诱导产生特异性的T细胞,显示同种T细胞对抗原的识别亦具有pMHC特异性。
     二、pMHC二聚体加载到HLA-A2-ve单核细胞表面诱导单表位特异性的同种T细胞
     细胞表面存在种类繁多的pMHC,导致传统实验手段制备的同种T细胞为针对众多pMHC的多克隆T细胞的集合,过继该多克隆T细胞难以避免发生同种T细胞造成的移植物抗宿主反应。本研究利用pMHC二聚体分子中的Fc段与单核细胞的FcR结合,将单一pMHC(Tyr/HLA-A2)加载到HLA-A2-ve个体单核细胞表面,诱导PBLs产生针对该表位的同种T细胞。结果显示短期混合培养体系中,加载Tyr/HLA-A2的HLA-A2-ve单核细胞可刺激自体来源的PBLs明显增殖,并诱导产生针对该表位的同种T细胞,这种经过短期体外扩增的特异性同种反应性T细胞具有更好的细胞活力与功能,有望过继应用打破病理性耐受。
     三、可溶性pMHC二聚体特异性抑制同种T细胞应答
     在移植免疫研究中,诱导移植物特异性的外周耐受是尚未实现的目标。本研究通过建立HLA-A2-ve PBLs与T2/Tyr混合培养的同种反应体系,研究可溶性抗原肽/HLA-A2二聚体对同种T细胞应答的调节作用。结果显示,Tyr/HLA-A2二聚体特异性抑制HLA-A2-ve PBLs被T2/Tyr刺激后的增殖效应,并特异性抑制同种杀伤性T细胞的功能。Tyr/HLA-A2特异性T细胞频率检测结果提示,Tyr/HLA-A2二聚体可抑制Tyr/HLA-A2特异性同种T细胞的产生或诱导其无能,从而抑制同种反应,为诱导移植受者对移植物特异性免疫耐受提供了新的手段。
     本研究的创新点和意义:
     1.本研究从单个表位角度证明了长期混合淋巴细胞培养(LTMLC)方法能够诱生pMHC特异性的同种T细胞,同种反应性T细胞与普通抗原反应性T细胞一样具有pMHC特异性。为同种T细胞直接识别机制提供了直接的实验依据,也为后续研究提供了理论基础。
     2.本研究利用HLA-A2二聚体,将单一pMHC加载到HLA-A2-ve个体的单核细胞表面,能够有效诱导该个体来源的PBLs产生针对单一pMHC的同种T细胞,为制备单一pMHC特异性的同种T细胞、及其过继治疗提供了可能。
     3.本研究从单一pMHC的层次证实可溶性HLA-A2二聚体可有效的抑制同种反应的强度,并且这种抑制作用具有pMHC特异性,为诱导移植受者对移植物特异性免疫耐受提供新的思路。
Alloreactive T cells recognize intact allogeneic MHC molecules expressed on foreign cells and mount vigorous responses as graft rejection in vivo. The role of the bound peptide in alloreactive T cell recognition is controversial, ranging from peptide-independent to peptide-specific. In this study, a single peptide epitope was present to induce alloresponse through mix lymphocyte culture in vitro and prove the pMHC specific character of alloreactive T cells. Meanwhile, novel approaches to induce or inhibit antigen specific allreactive T cells were exploited to aim for tumor tolerance or graft rejection.
     1. alloreactive T cell recognize allogeneic peptide/MHC complex (pMHC) in peptide dependent way.
     The aim of this part is to find the evidence that there exist pMHC-specific CTLs among alloreactive T cells generated with long-term mixed lymphocytes culture (LTMLC). A single pMHC was manipulated by loading the TAP-defective, HLA-A2 expressing T2 cells with a self-peptide (Tyr369-377). The PBLs samples from 4 HLA-A2 negative (HLA-A2-ve) donors were included in this study. The cultural bulk of HLA-A2-ve PBLs with the T2/Tyr showed a more active cytotoxicity against the specific target cell (T2/Tyr) and a higher frequency of Tyr/HLA-A2 specific CD8+ T cell was detected by specific tetramer. Our results indicated the LTMLC was able to expand the viral antigen-specific CTLs as well as allogeneic antigen-specific CTLs.
     2. Peptide-specific allogeneic T cell response induced by monocytes-bound HLA-A2 dimer
     The allogeneic stimulator cells present a different set of endogenous peptides, leading to potential stimulation of CTLs for the various allogeneic epitopes, which may mount graft-versus-host reaction. In this study, a soluble divalent HLA-A2/IgG molecule (HLA-A2 dimer) was constructed and loaded with a self-protein origin peptide (Tyr368-376) to form Tyr/HLA-A2 dimer, which allowed for exploiting autologous monocytes as single peptide epitope presenting cells to generate Tyr/HLA-A2 specific CTLs from HLA-A2 negative (HLA-A2-ve) donors. The studies described here demonstrate that allogeneic divalent peptide/HLA-A2 presented by autologous monocytes can stimulate and expand peptide-specific allo-restricted CTLs in vitro. It provides a novel approach to enrich peptide-specific donor lymphocytes for the treatment of patients with tumor following HLA-mismatched transplantation.
     3. Peptide-dependent inhibition of alloreactive T-cell response by soluble divalent HLA-A2/IgG molecule in vitro
     Induction of peripheral tolerance in an Ag-specific manner is currently an unrealized but critical goal of transplant biology. In this study, the soluble divalent HLA-A2/IgG molecule which allowed for specific targeting to Ag-specific alloreactive CTL was used as tolerogen to specific allo-restricted T cells. The Tyr/HLA-A2 dimer suppressed alloreactive T-cell responses by inhibiting its proliferation identified and cytotoxicity against specific target T2/Try in vitro, and it was interesting that the suppression was peptide-specific. The specific Tyr/HLA-A2 tetramer staining results suggested the impaired function of CD8+ T cell was due to deletion of specific alloreactive T cells in 3 subjects. Moreover, the existence of epitope-specific but functional-negative T cells in other two subjects indicated there maight exist other mechanism involved in silencing alloreactive responses by the HLA-A2 dimer. Peptide-loaded dimers offer a novel approach to induce peptide-specific immunosuppression, which may be useful in promoting graft survival.
引文
[1]Hornick P. Direct and indirect allorecognition. Methods Mol Bio, 2006, 333:145-56
    [2]Benichou G, Valujskikh A, heeger P S. Contributions of direct and indirect T cell alloreactivity dudring allograft rejection in mice. J Immunol, 1999,162:352-8.
    [3]Whitelegg A and Barber L D. The structural basis of T-cell allorecognition. Tissue antigens, 2004, 63:101-108.
    [4]Suchin E J, Langmuir P B, palmer E, et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol, 2001, 166:973-81.
    [5]Bevan MJ. High determinant density may explain the phenomenon of alloreactivity. Immunol Today, 1984: 5: 128–30.
    [6]Brock R., Wiesmuller K.H., Jung G., Walden P. Molecular basis for the recognition of two structurally different major histocompatibility complex/peptide complexes by a single T-cell receptor. Proc. Natl Acad. Sci. USA, 1996, 93: 13108–13113
    [7]Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today, 1998,19: 395–404
    [8]Detours V. Mehra R. Perelson S. A Quantitative Theory of Avinity-driven T Cell Repertoire Selection .J. theor. Biol, 1999, 200: 389-403
    [9]Matzinger P and Bevan M J. Why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol, 1977, 29:1-5.
    [10]Smith P A, Brunmark A, Jackson M R, Potter T A. Peptide-independent recognition by alloreactive cytotoxic T lymphocytes (CTL). J Exp Med, 1997, 185:1023-33.
    [11]Jankovic V, Jankovic V, Remus K, et al. T cell recognition of an engineerd MHC class I molecule: implication for peptide-independent alloreactivity. J Immunol, 2002, 169:1887-92.
    [12]Wang W, Man S, Gulden P H, et al. Class I-restricted alloreactive cytotoxic T lymphocytes recognize a complex array of specific MHC-Associated peptides. JImmunol,1998, 160:1091-7
    [13]Moris A., Teichraber V, Gauthier L, et al. Cutting edge: Characterization of Allorestricted and Peptide-Selective Alloreactive T Cells Using HLA-Tetramer Selection. J Immunol, 2001, 166:4818-4821.
    [14]Childs R, et al: Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Eng J Med, 2000, 343:750.
    [15]Gao LQ, et al. Allo-major histocompatibility complex-restricted cytotoxic T lymphocytes engraft in bone marrow transplant recipients without causing graft-versus-host disease. Blood, 1999, 94:2999.
    [16]Cerundolo V, Alexander J, Anderson K, et al. Presentation of viral antigen controlled by a gene in the major histocompatibility complex.Nature,1990,345:449.
    [17]Hosken NA,Bevan MJ.Defective presentation of endogenous antigen by a cell line expressing class I molecules.Science, 1990,248:367.
    [18]Mosse C A, Meadows L, Luckey C J,et al. The class I antigen-processing pathway for the membrane protein tyrosinase involves translation in the endoplasmic reticulum and processing in the cytosol. J Exp Med, 1998, 187(1):37-48.
    [19]Paczesny S, Banchereau J, Wittkowski K M, et al. Expansion of Melanoma-specific Cytolytic CD8+ T Cell Precursors in Patients with Metastatic Melanoma Vaccinated with CD34+ Progenitor-derived Dendritic Cells. J Exp Med, 2004, 199(11):1503-1511
    [20]陈浩,翁秀芳,吴雄文等.人Β2m基因克隆及表达.华中科技大学学报(医学版),2004, 33:1-4
    [21]翁秀芳吴雄文梁智辉等. sHLA_A0201_抗原肽四聚体的构建与功能检测.中国免疫学杂志,2006,54-57
    [22]Parham P and Brodsky F M. Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Human Immunol, 1981, 3(4):277-299
    [23]Murray G P, Constandinon C M, Crocker J, et al. Analysis of major histocompatibility complex class I, Tap expression, and LMP2 epitope sequence inEpstein-Barr virus positive hodgkin’s disease. Blood, 1998, 92(7):2477-2483
    [24]June K M, Bryida B, Flossie W S, et al. The HIV-1 HLA-A2-veSLYNTVATL Is a Help-Independent CTL Epitope. J Immunol, 2004, 172: 5249-5261
    [25]Rener M, Claesson MH, Bregenholt S, et al. An improved method for detection of peptide-induced upregulation of HLA-A2 molecules on TAP-deficient T2 cells. Exp Clin Immunogenet, 1996, 13:30-35
    [26]吴雄文,梁智辉.实用免疫学实验技术. 2001.湖北:湖北科学技术出版社.
    [27]Givan AL, Fisher JL, Waugh M, et al. A flow cytometric method to estimate the precursor frequencies of cells proliferating in response to specific antigens. J. Immunol. Methods. 1999, 230:99-112.
    [28]Bercovici N, Givan AL, Waugh MG, et al. Multiparameter precursor analysis of T-cell responses to antigen.J Immunol Methods, 2003, 276:5-17
    [29]Altman J, PAH Moss P, Goulder D, et al. Phenotypic analysis of antigen-specific T lymphocytes [J]. Science, 1996, 274(5284):94-96
    [30]McMichael AJ, Callaghan CA. A new look at T cells [J]. J Exp Med, 1998,187(9):1367-1371
    [31]汪家政,范明.蛋白质技术手册(第一版).北京:科学出版社. 2000. 212-231
    [32]Jong-seok L,Seungmoak K,Hee GL et al. Selection of peptides that bind to the HLA-A2.1 molecule by molecular modeling. Molecular Immunology, 1996, 33(2):221.
    [33]Luft T, Rizkalla M,Tsin Y T,et al.Exogenous Peptides Presented by Transporter Associated with Antigen Processing (TAP)-Deficient and TAP-Competent Cells: Intracellular Loading and Kinetics of Presentation1.The Journal of Immunology, 2001, 167: 2529-2537
    [34]Man S, Salter R D and Engelhard V H.Role of endogenous peptide in human alloreactive cytotoxic T cell responses.International Immunology, 1992, 4:367-375
    [35]Kabelitz D, Herzog W R, Heeg K, et al.Human cytotoxici T lymphocytes. III. Large numbers of peripheral blood T cells clonally develop into allorestricted anti-viral cytotoxic T cell populations in vitro.J Mol Cell Immunol, 1987, 3(1):49-60.
    [36]Heath W R, Kane K P, Mescher M F, et al. Alloreactive T cells discriminateamoung a diverse set of endogenous peptides. Proc Natl Acad Sci U S A, 1991, 88(12): 5101–5105.
    [37]Obst R, Netuschil N, Klopfer B. The role of peptides in T cell alloreactivity is determined by self-major histocompatibility complex molecules. J Exp Med, 2000, 191:805-812
    [38]Powis S J, Townsend A R, Deverson E V, et al. Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature, 1991, 354(6354):528-31
    [39]Gabathuler R, Reid G, Kolaitis G, et al. Comparison of cell lines deficient in antigen presentation reveals a functional role for TAP-1 alone in antigen processing. J Exp Med,1994,180(4):1415-25
    [40]Winkel J G and Caple P J. Human IgG Fc receptor heterogeneity:molecular aspects and clinical implications. Immunol Today,1993,14(5) :215– 221
    [41]Valerius T, Repp R, de Wit TP, et al. Involvement of the high-affinity receptor for IgG (Fc gamma RI; CD64) in enhanced tumor cell cytotoxicity of neutrophils during granulocyte colony-stimulating factor therapy. Blood, 1993, 82(3): 931-939
    [42]Anderson C L and Abraham G N. Characterization of the Fc receptor for IgG on a human macrophage cell line, U937. J Immunol, 1980,125(6):2735-2741
    [43]Wang Y D and Chen W F. Detecting specific dcytotoxic T lymphocytes against SARA-coronavirus with Dimer X HLA-A2:Ig fusion proteins. Clinical Immunology, 2004, 113(2):151-154
    [44]Fahmy T M, Bieler J G and Schneck J P. Probing T cell membrane organization using dimeric MHC-Ig comples. J Immunol Methods, 2002,268:93-106
    [45]Ladasky JJ, Shum BP, Canavez F, et al. Residue 3 of beta2-microglobulin affects binding of class I MHC molecules by the W6/32 antibody[J]. Immunogenetics, 1999, 49(4):312-320
    [46]Tran TM, Ivanyi P, Hilgert I, et al. The epitope recognized by pan-HLA class I-reactive monoclonal antibody W6/32 and its relationship to unusual stability of the HLA-B27/beta2-microglobulin complex[J]. Immunogenetics, 2001, 53(6):440-446
    [47]Burlingham W J, Ceman S S and DeMars R.Secretion and cell surface expressionof IgG1 are impaired in human B lymphoblasts that lack HLA-A, -B, and–C antigens. Proc Natl Acad Sci U S A, 1989 , 86(20): 8005-8009
    [48]Solheim J C, Harris M R, Kindle C S, et al. Prominence of beta 2-microglobulin, class I heavy chain conformation, and tapasin in the interactions of class I heavy chain with calreticulin and the transporter associated with antigen processing. J Immunol, 1997, 158(5):2236-2241
    [49]Jones D H, Nusbacher J, Anderson C L, et al, Fc receptor-mediated binding and endocytosis by human mononuclear phagocytes: monomeric IgG is not endocytosed by U937 cells and monocytes, J.Cell.Biol, 1985 100:558-564
    [50]Harrison P T, Davis W, Norman J C, et al. Binding of monomeric immunoglobulin G triggers FcγRI-mediated endocytosis. J Biol Chem, 1994, 269(30):24396-24402
    [51]Cullen C M, Jameson S C, Delay M, et al. A divalent major histocompatibility complex/ IgG1 fusion protein induces antigen-specific T cell activation in vitro and in vivo. Cell. Immunol, 1999, 192:54-62
    [52]Hirsch R, Archibald J, Gress R E et al, Differential in vivo T cell hyporesponsiveness induced by intact or F(ab')2 fragments of anti-CD3 monoclonal antibody: F(ab')2 fragments induce a selective T helper dysfunction, J. Immunol, 1991,147:2088-2093
    [53]Sadovnikova E and Stauss H J. Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumor immunotherapy. Proc Natl Acad Sci USA, 1996, 93:2198-2203
    [54]Gao L, Bellantuono I, Elsasser A, et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood, 2000, 95:2198-2203
    [55]Gansuvd B, Hagihara M, Munkhbat B, et al. Inhibition of Epstein-Barr virus (EBV)-specific CD8+ cytotoxic T lymphocyte(CTL) activity by soluble HLA class I in vitro. Clin Exp Immunol,2000,119(1): 107-114
    [56]Behrens D, Lange K, Fried A, et al. Donor-derived soluble MHC antigens plus low-dose cyclosporine induce transplantation unresponsiveness independent of thethymus by down-regulating T cell-mediated alloresponses in a rat transplantation model. Transplantation. 2001,72(12):1974-82
    [57]Arnold BO, Dill G, Kublbech L, et al. alloreactive immune responses of transgenic mice expressing a foreign transplantation antigen in a soluble form. Proc Natl Acad Sci U S A. 1988, 85(7): 2269–2273
    [58]Wang M, Stepkowski SM, Wang ME, et al. Induction of specific allograft immunity by soluble class I MHC heavy chain protein produced in a baculovirus expression system. Transplantation. 1996,61(3):448-57
    [59]Altman J D, Moss P A, Goulder P J, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science, 1996, 274(5284):94-96
    [60]Fahmy TM, Bieler JG and Schneck JP. Probing T cell membrane organization using dimeric MHC-Ig complexes. J Immunol Methods, 2002, 268(1): 93-106
    [61]Schwartz R H. Costimulation of T lymphocytes: the role of CD28, CTLA-4 and B7/BB1 in interleukin-2 production and immunotherapy. Cell, 1992, 71:1065-1068
    [62]Hausmann R, Zavazava N, Steinmann J, et al. Interaction of papain-digested HLA class I molecules with human alloreactive cytotoxic T lymphocytes(CTL). Clin Exp Immunol, 1993, 91:183-188
    [63]Spencer S C and Fabre J W. Water-soluble form of RT1.A class I MHC molecules in the kidney and liver of the rat. Immunogentics. 1987,25(2):91-98
    [64]Gansuvd B, Hagihara M, Munkhbat B, et al. Inhibition of Epstein-Barr virus(EBV)-specific CD8+ cytotoxic T lymphocyte(CTL) activity by soluble HLA class I in vitro. Clin Exp Immunol, 2000, 119:107-114
    [65]Porto J D, Johansen T E, Catipovic B, et al. A soluble divalent class I major histocompatibility complex molecule inhibits alloreactive T cells at nanomolar concentration. Proc Natl Acad Sci USA, 1993, 90:6671-6675
    [66]O’Herrin SM, Slansky JE, Tang Q, et al. Antigen-specific blockade of T cells in vivo using dimeric MHC peptide. J Immunol. 2001,167(5):2555-60
    [67]Fried A, Berg M, Sharma B, et al. Recombinant dimeric MHC antigens protect cardiac allografts from rejection and visualize alloreactive T cells. J Leukoc Biol. 2005, 78(3):595-604
    [1]Hornick P. Direct and indirect allorecognition. Methods Mol Bio, 2006, 333:145-56
    [2]Benichou G, Valujskikh A, heeger P S. Contributions of direct and indirect T cell alloreactivity dudring allograft rejection in mice. J Immunol, 1999,162:352-8.
    [3]Whitelegg A, and Barber L D. The structural basis of T-cell allorecognition. Tissue antigens, 2004, 63:101-108.
    [4]Suchin E J, Langmuir P B, palmer E, et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol, 2001, 166:973-81.
    [5]Matzinger P and Bevan M J. Why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol, 1977, 29:1-5.
    [6]Kourilsky P and Claverie J M.MHC-antigen interaction: what does the T cell receptor see.Adv Immunol, 1989,45:107-193.
    [7]Wang W, Man S, Gulden P H, et al.Class I-restricted alloreactive cytotoxic T lymphocytes recognize a complex array of specific MHC-associated peptides. J Immunol, 1998,160:1091-1097
    [8]Elliott T J and Eisen H N. Cytotoxic T lymphocytes recognize a reconstituted class I histocompatibility antigen (HLA-A2) as an allogeneic target molecule. Proc Natl Acad Sci USA., 1990,346:470-480
    [9]Smith P A, Brunmark a, Jackson M R, et al. Peptide-independent recognition by alloreactive cytotoxic T lymphocytes (CTL). J Exp Med, 1997, 185:1023-1033
    [10]Jankovic V, Remus K, Maolano A, et al. T cell recognition of an engineered MHC class I molecule: implications for peptide-independent alloreactivity. J Immunol, 2002,169: 1887-1892
    [11]Heath W R, Kane K P, Mescher M F, et al. Alloreactive T cells discriminate amoung a diverse set of endogenous peptides. Proc Natl Acad Sci U S A, 1991, 88(12): 5101–5105
    [12]Tallquist M D,Yun T J and Pease L R. A single T cell receptor recognizesstructureally distinct MHC/peptide complexes with high specificity. J Exp Med, 1996,184:1017-1026
    [13]Alexander-Miller M A, Burke K, Koszinowski U H, et al. Alloreactive cytotoxic T lymphocytes generated in the presence of viral-derived peptides show exquisite peptide and MHC specificity. J Immunol, 1993, 151:1-10
    [14]Whitelegg A and Barber L D. the structural basis of T-cell allorecognition.Tissue Antigens, 2004, 63:101-108
    [15]Fischer L K and.Wilson DB. Histocompatibility antigen-activated cytotoxic T lymphocytes.Estimates of the absolute frequency of killer cells generated in vitro.J Exp Med, 1977, 145:500-507
    [16]McMichael A.J.and C. A. O’Callaghan.A new look at T cells.J. Exp. Med., 1998, 187:1367-1371
    [17]van Besouw N M, Zuijderwijk J M,Vaessen L M B, et al.The direct and indirect allogeneic presentation pathway during acute rejection after human cardiac transplantation. Clinical & Experimental Immunology, 2005, 141 (3): 534–540.
    [18]Jung T, Schauer U, Heusser C, et al.Detection of intracellular cytokines by flow cytometry.J Immunol Methods, 1993,159:197-207
    [19]Brosterhus H, Brings S, eyendeckers H L,et al. Enrichment and detection of live antigen-specific CD4 and CD8 T cells based on cytokine secretion. Eur J Immunol, 1999,29:4053.
    [20]Givan AL, Fisher JL, Waugh M, et al. A flow cytometric method to estimate the precursor frequencies of cells proliferating in response to specific antigens. J. Immunol. Methods, 1999, 230:99-112.
    [21] Bercovici N, Givan AL, Waugh MG, et al. Multiparameter precursor analysis of T-cell responses to antigen.J Immunol Methods, 2003, 276:5-17
    [22]Altman J D, Moss P A, Goulder P J R, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science, 1996, 274(5284):94-96.
    [23]周晓辉.用Calcein释放实验检测HBsDNA疫苗诱生的特异性CTL活性.中华微生物学和免疫学杂志,2003,23(3):234-247
    [24]Childs R, et al: Regression of metastatic renal-cell carcinoma afternonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Eng J Med, 2000, 343:750.
    [25]Gao LQ, et al. Allo-major histocompatibility complex-restricted cytotoxic T lymphocytes engraft in bone marrow transplant recipients without causing graft-versus-host disease. Blood, 1999, 94:2999.
    [26]Sadovnikova E and Stauss H J. Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules: reagents for tumor immunotherapy. Proc Natl Acad Sci USA, 1996, 93:2198-2203
    [27]Gao L, Bellantuono I, Elsasser A, et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood, 2000, 95:2198-2203
    [28]Sadovnikova E, Jopling L A, Soo K s and Stauss H J. Generation of huamn tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol., 1998, 28:193-200
    [29]Dutoit V, Guillaume P, Romero P, et al. Functional analysis of HLA-A*0201/Melan-A peptide multimer+ CD8+ T cells isolated from an HLA-A*0201-donor: exploring tumor antigen allorestricted recognition. Cancer Immunol, 2002, 2:7
    [30]Falkenburg J H, Wafelman A R, Joosten P, et al. Complete remission of accelerated phase chronic myeloed leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood, 1999, 94:1201-1208
    [31]Stanislawski T, Voss R H, Lotz C, et al. Circumventing tolerance to a human MDM2-detived tumor antigen by TCR gene transfer. Nat Immunol, 2001, 2:962-970
    [32]Kingsley C I, Karim M, Bushell A R, et al. CD25+ CD4+ regulatory T cells prevent graft rejection. CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol, 2002: 168:1081-1086
    [33]Taylor P A, Lees C J and Blazar B R. The infusion of ex vivo activated and expanded CD4(+) CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood, 2002, 99:3493-3499
    [34]Levings M K, Sangregorio R and Roncarolo M G. Human cd25(+) cd4(+) Tregulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med, 2001, 193:1295-1302
    [35]Edinger M, Hoffmann P, ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med, 2003, 9:1144-1150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700