改性苯并噁嗪树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯并噁嗪树脂是一种在传统酚醛树脂的基础上发展起来的新型杂环热固性树脂,它继承了酚醛树脂的优良性能如热性能、阻燃性、良好的电性能,同时它还具有固化时无小分子释放、体积近似零收缩等特性。但是随着科技的发展,苯并噁嗪树脂的耐热性显然不能满足其在各个领域发展的需要,故需对其改性以提高耐热性。
     本文采用悬浮法在80℃的条件下合成了双酚A型苯并噁嗪树脂(BA-a),观察其外在形貌,可见生成的苯并噁嗪树脂呈现淡黄色均一的粒状物;采用红外光谱(FTIR)对其结构进行分析,可明显观察到945cm~(-1)处为苯并噁嗪的特征吸收峰;对苯并噁嗪树脂的溶解性进行了测定,结果表明,它可较好地溶解在一般的有机溶剂中,如丙酮、氯仿等。
     为了进一步提高苯并噁嗪树脂的耐热性,采用具有优良热性能的钼酚醛(Mo-PF)、RTM型双马来酰亚胺(BMI)、模压型双马来酰亚胺(BMI)分别改性苯并噁嗪树脂,并研究了不同种类和不同含量的改性剂对苯并噁嗪树脂的固化反应和热分解性能的影响。
     采用平板小刀法测定了改性苯并噁嗪树脂的凝胶特性,结果显示,钼酚醛和模压型双马来酰亚胺能有效地降低改性苯并噁嗪树脂的凝胶时间,并且根据凝胶点计算了各改性苯并噁嗪树脂的表观活化能,结果为钼酚醛改性苯并噁嗪树脂的活化能低于苯并噁嗪树脂,其他改性苯并噁嗪树脂的活化能均高于苯并噁嗪树脂,最后计算得到了各改性苯并噁嗪树脂的温度—时间关系式和关系图。
     采用非等温差示扫描量热法(DSC)对改性苯并噁嗪树脂的固化动力学进行了研究。通过Kissinger方程、Ozawa方程和Crane方程,计算得到了改性苯并噁嗪树脂固化反应动力学三因子,结果表明,钼酚醛和RTM型双马来酰亚胺(含量为20%)改性苯并噁嗪树脂的活化能小于苯并噁嗪树脂,其他改性苯并噁嗪树脂的活化能均大于苯并噁嗪树脂。改性苯并噁嗪树脂均为1级反应,同时根据Tβ曲线外推法得到了各自的固化工艺参数。
     在非等温的情况下采用热重分析法(TGA)对改性苯并噁嗪树脂在氮气中的热分解进行了研究。结果表明,各改性苯并噁嗪树脂的残炭率均得到了不同程度的提高,其中模压型双马来酰亚胺含量为30%时,残炭率为38%,较苯并噁嗪树脂提高了35%。改性苯并噁嗪树脂的耐热温度指数均较苯并噁嗪树脂(180.516℃)高,钼酚醛改性苯并噁嗪树脂的耐热温度指数最高为206.486℃。
Benzoxazine resin is a new kind of heterocycle thermosetting resin, which developed onthe basis of traditional phenolic, and carries on the excellent properties of phenolic, such asthermal properties, flame resistence and electrical performance. At the same time benzoxazinehas no release of small molecules when curing and volume contraction is nearly zero.However, with the development of technilogy, the heat resistance of benzoxazine can notsatisfy the development of various fields, so the benzoxazine needs to be modified to improveits heat resistance.
     In this paper, a bisphenol-A based benzoxazine (BA-a) which assumed faint yellow andwell-proportioned particulate matter was synthesized at 80℃by the suspension method.945cm-1is the characteristic peak of BA-a by the fourier transform infrared spectroscopy(FTIR). The solubility of BA-a was measured and the experiment result suggests that theBA-a can dissolve well in general organic solvent such as acetone, trichloromethane and soon.
     In order to improve the heat resistance of BA-a further, Molybd-phenolic (Mo-PF), RTMbismaleimide (BMI) and moulded bismaleimide (BMI) which have excellent thermalproperties were employed to modify BA-a. The effect of different content and kind ofmodifier on the curing characteristics and thermal decomposition characteristics of themodified BA-a were researched.
     The gelation properties of BA-a and its modified system were measured. It was shownthat Mo-PF and moulded BMI decreased the gel time of the modified system effectively. Theapparent activation energy of every system was calculated based on the gel point. The resultswas following: the activation energy of the resin system modified by Mo-PF was lower thanthat of the pure benzoxazine resin and the activation energy of the other modified BA-a werehigher than that of the pure benzoxazine resin. The temperature-time equation and figure were obtained.
     The differential scanning caborimetry (DSC) was used to research the curing kinetics ofmodified benzoxazine resin. Kinetic triplet were calculated by Kissinger equation, Ozawaequation and Crane equation. The result shows that the activation energy of the BA-amodified by Mo-PF and RTM BMI (20%) were lower than that of the pure benzoxazine resinand the activation energy of the other modified BA-a were higher than that of the purebenzoxazine resin. The reaction order of modified benzoxazine were 1. At the same time thecuring process parameters were calculated by extrapolating T~βmethod.
     The thermal decomposition of modified BA-a was researched by thermogravimetricanalysis (TGA) with the non-isothermal model at nitrogen atmosphere. The result shows thatall modified system improved the char yield, thereinto the moulded BMI (content 30%)improved the char yield maximally (38 wt.%) and was 35% higher than pure BA-a resin. Theheat index of the modified system were higher than that of the pure BA-a resin (180.516℃),moreover the heat index of the modified BA-a by Mo-PF (206.486℃) was highest.
引文
[1] Seong-Woo Choi, Sharon Ohba, Zdenka Brunovska, et al. Synthesis, characterization andthermal degradation of functional benzoxazine monomers and polymers containingphenylphosphine oxide [J]. Polymer Degradation and Stability, 2006, 91(5): 1166-1178.
    [2] Dingsheng Yu, Hong Chen, Zixing Shi, et al. Curing kinetics of benzoxazne resin bytorsional braid analysis [J]. Polymer, 2002, 43(11): 3163-3168.
    [3] Yuan-Jyh Lee, Shiao-Wei Kuo, Chih-Feng Huang, et al. Synthsis and characterization ofpolybenzoxazine networks nanocomposites containing multifunctional polyhedral oligomericsilsesquioxane(POSS) [J]. Polymer, 2006, 47(12): 4378-4386.
    [4] Papinporn Chutayothin, Hatsuo Ishida. 31P NMR spectroscopy in benzoxazine modelcompounds and benzoxazine chemistry-main chain and end group studies [J]. EuropeanPolymer Journal, 2009, 45(5): 1493-1505.
    [5] Kasinee Hemvichian, Hatsuo Ishida. Thermal decomposition processes in aromaticamine-based polybenzoxazines investigated by TGA and GC-MS [J]. Polymer, 2002, 43(16):4391-4402.
    [6] Chia Wei Chang, Ching Hsuan Lin, Hong Tze Lin, et al. Develpoment of an aromatictriamine-based flame-retardant benzoxazine and its high-performance copolybenzoxazines [J].European Polymer Journal, 2009, 45(3): 680-689.
    [7] Ishida H, Low HI. A study on the volumetric expansion of benzoxazine-based phenolicresin [J]. Macromolecules, 1997, 30(4): 1099-1106.
    [8] Shahla Bagherifam, Tamer Uyar, Hatsuo Ishida, et al. The use of pyrolysis massspectrometry to investigate polymerization and degradation processes of methyl amine-basedbenzoxazine [J]. Polymer Tseting, 2010, 29(4): 520-526.
    [9] X. Ning, H. Ishida. Phenolic materials via ring-opening polymerization:synthesis andcharacterization of bisphenol-A based benzoxazines and their polymers [J]. Polym. Sci.Polym. Chem. Ed, 1994, 32(6): 1121-1129.
    [10]门薇薇.高性能聚苯并噁嗪的合成与表征[D].山东:山东大学,2008.
    [11] J.A. Macko, H. Ishida. Structural effects of phenols on the photooxidative degradation ofpolybenzoxazines [J]. Polymer, 2001, 42(1): 227-240.
    [12] C.P. Reghunadhan Nair. Advances in addition-cure phenolic resins [J]. Prog. Polym. Sci.,2004, 29(5): 401-498.
    [13] J. Dunkers, H. Ishida. Reaction of benzoxazine-based phenolic resins with strong andweek carboxylic acids and phenols as catalysts [J]. Polym. Sci. A: Polym. Chem., 2000,37(13): 1913.
    [14] Jun Zhang, Riwei Xu, Dingsheng Yu. A novel poly-benzoxazinyl functionalizedpolyhedral oligomeric silsesquioxane and its nanocomposite with polybenzoxazine [J].European Polymer Journal, 2007, 43(3): 743-752.
    [15] H. Ishida, D.P. Sanders. Regioselectivity of the ring-opening polymerization ofmonofunctional alkyl-substituted aromatic amine-based benzoxazines [J]. Polymer, 2001,42(7): 3115-3125.
    [16] Yi-Che Su, Shiao-Wei Kuo, Ding-Ru Yei, et al. Thermal properties and hydrogenbonding in polymer blend of polybenzoxazine/poly(N-vinyl-2-pyrrolidone) [J]. Polymer, 2003,44(8): 2187-2191.
    [17] Banu Koz, Baris Kiskan, Yusuf Yagci. A novel benzoxazine monomer with methacrylatefunctionality and its thermally curable (co) polymers [J]. Polym. Bull. , 2011, 66(2): 165-174.
    [18] Ishida H., Rodriguez Y. Curing kinetics of new benzoxazine-based phenolic resin bydieffrential scanning calorimetry [J]. Polymer, 1995, 36(16): 3151-3158.
    [19] Wang Y.X., Ishida H. Cationic ring-opening polymerization of benzoxazines [J]. Polymer,1999, 40(16): 4563-4570(8).
    [20]赵庆来.含马来酰亚胺和烯丙基醚苯并噁嗪的合成及热性能研究[D].成都:四川大学,2007.
    [21] TA KEICHI T, KANO T, AGAG T. Synthesis and thermal cure of high molecular weightpolybenzoxazine precursors and the properties of the thermosets [J]. Polym, 2005, 46(26):12172-12180.
    [22] Sorina-Alexandra Garea, Horia Iovu, Alina Nicolescu, et al. Thermal polymerization ofbenzoxazine monomers followed by GPC, FTIR and DETA [J]. Polymer Testing, 2007, 26(2):162-171.
    [23] Xiong Wu, Yun Zhou, Shu-Zheng Liu, et al. Highly branched benzoxazine monomerbased on cyclotriphosphazene:Synthesis and properties of the monomer and polybenzoxazines[J]. Polymer, 2011, 52(4): 1004-1012.
    [24] Ghosh NN, Kiskan B, Yagci Y. Polybenzoxazines-new high performance thermosettingresins: synthesis and properties [J]. Prog Polym Sci, 2007, 32(11): 1344-1391.
    [25] Nair CPR. Advances in addition-cure phenolic resins[J]. Prog Polym Sci, 2004, 29(5):401-498.
    [26] Espinosa MA, GaliàM, Cádi V. Novel phosphorilated flame retardantthermosets:epoxy-benzoxazine-novolac systems [J]. Polymer, 2004, 45: 6103-6109.
    [27] Kiskan B, Colak D, Muftuoglu A, et al. Synthesis and characterization of thermallycurable benzoxazine-functionalized polystyrene macromonomers [J]. Macromol RapidCommun, 2005, 26(10): 819-824.
    [28] Velez-Herrera P, Doyama K, Abe H, et al. Synthesis and characterization of highlyfluorinated polymer with the benzoxazine moiety in the main chain [J]. Macromolecules,2008, 41(24): 9704-9714.
    [29] Yagci Y, Kiskan B, Ghosh NN. Recent advancement on polybenzoxazine-a newlydeveloped high performance thermoset [J]. Polym Sci A:Polym Chem, 2009, 47(21):5565-5576.
    [30] Chanchira Jubsilp, Kanokwan Punson, Tsutomu Takeichi, et al. Curing Kinetics ofbenzoxazine-epoxy copolymer investigated by non-isothermal differential scanningcalorimetry [J]. Polymer Degradation and Stability, 2010, 95(6): 918-924.
    [31]和亚莉,李玲,董凤云.一种新型酚醛树脂——苯并噁嗪树脂的研究进展[J].中国胶粘剂,2006,15(6):42-66.
    [32] Hatsuo Ishida, Sharon Ohba. Synthesis and characteration of maleimide and norbornenefunctionalized benzoxazines [J]. Polymer, 2005, 46(15): 5588-5595.
    [33] K.S. Santhosh Kumar, C.P. Reghunadhan Nair, T.S. Radhakrishnan, et al. Bis allylbenzoxazine: Synthesis, polymerization and polymer properties [J]. European PolymerJournal, 2007, 43(6): 2504-2514.
    [34]赵锦成,盛兆碧,顾宜.一种新型烯丙基苯并噁嗪树脂的合成与表征[J].合成树脂及塑料,2009,26(4):21-24.
    [35] Jianxiang Huang, Wei Du, Jian Zhang, et al. Study on the copolymers ofsilicon-containing arylacetylene resin and acetylene-functional benzoxazine [J]. Polym. Bull,2009, 62(2): 127-138.
    [36]曹宏伟.杂环化合物/POSS复合材料的设计和制备研究[D].北京:北京化工大学,2007.
    [37] G.P. Cao, W.J. Chen, X.B. Liu. Synthesis and thermal properties of the thermosettingresin based on cyano functionalized benzoxazine [J]. Polymer Degradation and Stability, 2008,93(3): 739-744.
    [38] Po Yang, Yi Gu. Synthesis of a novel benzoxazine containing benzoxazole structure [J].Chinese Chemical Letters, 2010, 21(5): 558-562.
    [39]王军,吴明清,刘文彬,等.芴基苯并噁嗪单体的合成及热性能研究[J].湖南大学学报(自然科学版),2010,37(6):67-70.
    [40] Jun Wang, Ming-qing Wu, Wen-bin Liu, et al. Synthesis, curing behavior and thermalproperties of fluorine containing benzoxazines [J]. European Polymer Journal, 2010, 46:1024-1031.
    [41] Sheng Fang Li. Synthesis of benzoxazine-based phenolic resin containing furan groups[J]. Chinese Chemical Letters, 2010, 21(7): 868-871.
    [42] Po Yang, Yi Gu. Synthesis and curing behavior of a benzoxazine based onphenolphthalein and its high performance polymer [J]. Polym Res, 2011, 18(6):1725-1733.
    [43] M. Spontón, G. Lligadas, J.C. Ronda, et al. Development of a DOPO-containingbenzoxazine and its high-performance flame retardant copolybenzoxazines [J]. PolymerDegradation and Stability, 2009, 94(10): 1693-1699.
    [44]龚光泽,王晶,陈桥,等.聚苯并噁嗪/凹凸棒土复合材料的制备与性能[J].化工新型材料,2010,38(1):64-66.
    [45]李曹,高念,高惠芳,等.全国高分子学术论文报告会论文摘要集(下册),2007.
    [46]叶朝阳,顾宜.苯并噁嗪树脂插层蛭石纳米复合材料的制备与表征[J].四川大学学报(工程科学版),2002,34(4):71-75.
    [47] Tarek Agag, Hajime Tsuchiya, Tsutomu Takeichi. Novel organic-inorganic hybridsprepared from polybenzoxazine and titania using sol-gel process [J]. Polymer, 2004, 45(23):7903-7910.
    [48] Hong Yee Low, Hatsuo Ishida. Improved thermal stability of polybenzoxazines bytransition metals [J]. Polymer Degradation and Stability, 2006, 91(4): 805-815.
    [49]高念,朱永飞,顾宜.氯化镧对苯并噁嗪热稳定性的影响及机理研究[J].热固性树脂,2009,24(3):39-42.
    [50] Yi-Chen Wu, Shiao-Wei kuo. Synthesis and characterization of polyhedral oligomericsilsesquioxane (POSS) with multifunctional benzoxazine groups through click chemistry [J].Polymer, 2010, 51(17): 3948-3955.
    [51] Tsutomu Takeichi, Yuki Saito, Tarek Agag, et al. High-performance polymer alloys ofpolybenzoxazine and bismaleimide [J]. Polymer, 2008, 49(5): 1173-1179.
    [52] Tsutomu Takeichi, Rachib Zeidam, Tarek Agag. Polybenzoxazine/clay hybridnanocomposites: influence of preparation method on the curing behavior and properties ofpolybenzoxazines [J]. Polymer, 2002, 43(1): 45-53.
    [53] Qiao Chen, Riwei Xu, Dingsheng Yu. Multiwalled carbon nanotube/polybenzoxazinenanocomposites: Preparation, characterization and properties [J]. Polymer, 2006, 47(22):7711-7719.
    [54] T. Agag, T. Takeichi. Polybenzoxazine-montmorillonite hybrid nanocomposites:synthesis and characterization [J]. Polymer, 2000, 41(19): 7083-7090.
    [55] Hosta Ardhyananta, Takehiro Kawauchi, Hanafi Ismail, et al. Effect of pendant group ofpolysiloxanes on the thermal and mechanical properties of polybenzoxazine hybrids [J].Polymer, 2009, 50(25): 5959-5969.
    [56] Hosta Ardhyananta, Mohd. Haniff Wahid, Masahiro Sasaki, et al. Performanceenhancement of polybenzoxazine by hybridization with polysiloxane [J]. Polymer, 2008,49(21): 4585-4591.
    [57] Yuan-Jyh Lee, Shiao-Wei Kuo, Yi-Che Su, et al. Synthesis, thermal properties, and phasemorphologies of novel benzoxazines functionalized with polyhedral oligomericsilsesquioxane (POSS) nanocomposites [J]. Polymer, 2004, 45(18): 6321-6331.
    [58] S. Devaraju, M. R. Vengatesan, A. Ashok kumar, et al. Polybenzoxazine-silica(PBZ-SiO2) hybrid nanocomposites through in situ sol-gel method [J]. Sol-Gel Sci Technol,2011, 60(1): 33-40.
    [59] K.S. Santhosh Kumar, C.P. Reghunadhan Nair, R. Sadhana, et al.Benzoxazine-bismaleimide blends: Curing and thermal properties [J]. European PolymerJournal, 2007, 43(12): 5048-5096.
    [60] Tsutomu Takeichi, Yong Guo, Sarawut Rimdusit. Performance improvement ofpolybenzoxazine by alloying with polyimide: effect of preparation method on the properties[J]. Polymer, 2005, 46(13): 4909-4916.
    [61] YING-LING LIU,JUIN-MENG YU. Cocuring Behaviors of Benzoxazine and MaleimideDerivatives and the Thermal Properties of the Cured Products [J]. Journal of Polymer Science:Part A: Polymer Chemistry, 2006, 44(6): 1890-1899.
    [62]王超,苏韬,王静.共聚法改性苯并噁嗪/环氧树脂体系的性能[J].高分子材料科学与工程,2008,24(9):64-67.
    [63]刘富双,凌鸿,张华,等.双酚A型苯并噁嗪与酚醛型环氧树脂共混体系的固化反应与热性能[J].高分子材料科学与工程,2009,25(10):84-86.
    [64]赵培,朱蓉琪,顾宜.苯并噁嗪/PEI共混体系性能的初步研究[J].材料工程,2009,(S2):458-460.
    [65]雷雅杰,陈文瑾,赵睿,等.聚芳醚腈增韧改性苯并噁嗪树脂性能研究[J].热固性树脂,2010,25(2):11-14.
    [66] Lin Jin, Tarek Agag, Hatsuo Ishida. Bis (benzoxazine-maleimide) s as a novel class ofhigh performance resin: Synthesis and properties [J]. European Polymer Journal, 2010, 46(2):354-363.
    [67] M. Spontón, J.C. Ronda, M. Galià, et al. Cone calorimetry studies of benzoxazine-epoxysystems flame retarded by chemically bonded phosphorus or silicon [J]. Polymer Degradationand Stability, 2009, 94(1): 102-106.
    [68] Yi-Che Su, Feng-Chih Chang. Synthesis and characterization of fluorinatedpolybenzoxazine material with low dielectric constant [J]. Polymer, 2003, 44(26): 7989-7996.
    [69] Pedro velez-Herrera, Kazuo Doyama, Hiroshi Abe, et al. Synthesis and Characteration ofHighly Fluorinated Polymer with the Benzoxazine Moiety in the Main Chain [J].Macromolecules, 2008, 41(24): 9704-9714.
    [70] Kubra Dogan Demir, Baris Kiskan, Yusuf Yagci. Thermally CurableAcetylene-containing Main-Chain Benzoxazine Polymers via Sonogashira Coupling Reaction[J]. Macromolecules, 2011, 44(7): 1801-1807.
    [71] Andrey Chernykh, Tarek Agag, Hatsuo Ishida. Effect of Polymerizing DiacetyleneGroups on the lowering of Polymerization Temperature of Benzoxazine Groups in the HighlyThermally Stable, Main-Chain-Type Polybenzoxazines [J]. Macromolecules, 2009, 42(14):5121-5127.
    [72]魏俊基,刘孝波.含二茂铁的双邻苯二甲腈—苯并噁嗪树脂的合成[J].热固性树脂,2010,25(3):6-9.
    [73]凌鸿,叶小舟,顾宜. DOPO对苯并噁嗪树脂的阻燃改性[J].高分子材料科学与工程,2010,26(11):86-89.
    [74]凌鸿,孙丹,顾宜.ODOPB改性苯并噁嗪树脂提高阻燃性[J].热固性树脂,2010,25(1):15-20.
    [75]刘峰,赵西娜,冯雪梅.酚醛改性苯并噁嗪树脂耐烧蚀材料的研究[J].热固性树脂,2007,22(6): 4-8.
    [76]信春玲,余鼎声,杨小平.苯并噁嗪及其碳纤维复合材料固化动力学研究[J].热固性树脂,2005,20(3):1-5.
    [77]廖栋,颜春,潘利剑,等.非等温DSC法研究苯并噁嗪树脂固化反应动力学[J].热固性树脂,2011,26(1):1-5.
    [78]史子兴,王一中,余鼎声.聚苯并噁嗪单体固化行为的非等温DSC法研究[J].玻璃钢/复合材料,2000,(2):14-17.
    [79]宋霖,向海,朱蓉琪,等.咪唑催化苯并噁嗪树脂固化的研究[J].热固性树脂,2005,20(4):17-20.
    [80]李艳亮,唐邦铭,梁子青,等.苯并噁嗪/环氧树脂共聚固化过程研究[J].热固性树脂,2008,23(2):15-19.
    [81]李艳亮,益小苏.苯并噁嗪树脂基复合材料湿热老化性能研究[J].装备环境工程,2010,7(6):220-224.
    [82]史子兴.苯并噁嗪和苯并噁嗪树脂/蒙脱土混杂材料的合成与表征及其固化行为的研究[D].北京:北京化工大学,2000.
    [83]黄静.苯并噁嗪/蒙脱土纳米复合材料的制备及性能研究[D].武汉:华中农业大学,2006.
    [84]李艳亮,益小苏.RTM改性苯并噁嗪树脂及复合材料性能研究[J].材料工程,2010,(S1),356-360.
    [85]张寒琦等.仪器分析[M].北京:高等教育出版社,2009:357-365.
    [86]刘志广,张华,李亚明.仪器分析(第二版)[M].大连:大连理工大学出版社,2007:394-402.
    [87]胡荣祖,高胜利,赵凤起等.热分析动力学(第二版)[M].北京:科学出版社,2008:6-15.
    [88]李金莲.铁氧化物/碳混合物还原的热分析质谱研究及热分析动力学解析[D].鞍山:辽宁科技大学,2008.
    [89] Bimlesh Lochab, Indra K. Varma, Jayashree Bijwe. Cardanol-based bisbenzoxazinesEffect of structure on thermal behaviou [J]. Therm Anal Calorim, 2011, 107(2):661-668.
    [90] Hatsuo Ishida, Shaker Heights, Ohio. Process for preparation of benzoxazine compoundsin solventless system. US: Pat, 5543516, 1996.
    [91] Burke WJ, Bishop JL, Glennie ELM, et al. A new aminoalkylation reaction.Condensation of phenols with dihydro-1,3-aroxazines [J]. Org Chem, 1965, 30(10):3423-3427.
    [92] N.N. Ghosh, B. Kiskan, Y. Yagci. Polybenzoxazines—New high performancethermosetting resins: Synthesis and properties [J]. Porg. Polym. Sci., 2007, 32(11):1344-1391.
    [93] Mymoona Akhter, Shaikh Habibullah, Syed Misbahul Hasan, et al. Synthesis of somenew 3,4-dihydro-2H-1,3-benzoxazines under microwave irradiation in solvent-free conditionsand their biological activity [J]. Med Chem Res, 2011, 20(8): 1147-1153.
    [94] Parkpoom Lorjai, Thanyalak Chaisuwan, Sujitra Wongkasemjit. Porous structure ofpolybenzoxazine-based organic aerogel prepared by sol-gel process and their carbon aerogels[J]. Sol-Gel Sci Technol, 2009, 52(1): 56-64.
    [95] Cherkupally Sanjeeva Reddy, Mekala Raghu. Synthesis of some newN,N’-diarylsubstituted methylene-bis-dihydro-2H-1,3-benzoxazines [J]. Chinese ChemicalLetters, 2008, 19(12): 1407-1410.
    [96] Tarek Agag, Lin Jin, Hatsuo Ishida. A new synthetic approach for difficult benzoxazines:Preparation and polymerization of 4.4’-diaminodiphenyl sulfone-based benzoxazine monomer[J]. Polymer, 2009, 50: 5940-5944.
    [97] Pedro Velez-Herrera, Hatsuo Ishida. Synthesis and characterization of highly fluorinateddiamines and benzoxazines derived therefrom [J]. Journal of Fluorine Chemistry, 2009,130(6): 573-580.
    [98] Ching Hsuan Lin, Sheng Lung Chang, Chau Wei Hsieh,et al. Aromatic diamine-basedbenzoxazines and their high performance thermosets [J]. Polymer, 2008, 49(5): 1220-1229.
    [99]顾宜,裴顶峰.粒状多苯并噁嗪中间体及制备方法.中国, pat, ZL 95111413.1,1997.
    [100] Herbert Bartsch. Studies on the Chemistry of 1,4-Oxazines, XV: Synthesis of Ethyl3,4-Dihydro-4-tosyl-2H-1,4-benzoxazine-3-carboxylate [J]. Monatshefte für Chemie, 1987,118(2): 273-276.
    [101] Kim H. J. Brunovska Z., Ishida H. Dynamic mechanical analysis on highly thermallystable polybenzoxazines with an acetylene functional group [J]. Appl. Polvm. Sci., 1999,73(6): 857-862.
    [102] Aiban Ahmed Anam, Zeng Fandi. Synthesis and characterization of benzoxazinecompounds in solventless system [J]. Wuhan Inst. Chem. Tech., 2001, 23(1): 43-46.
    [103] Sarawut Rimdusit, Hatsuo Ishida. Gelation study of high processability and highreliability ternary systems based on benzoxazine, epoxy, and phenolic resins for anapplication as electronic packaging materials [J]. Rheol Acta, 2002, 41(1/2): 1-9.
    [104] Tsutomu Takeichi, Takuya Kano, Tarek Agag. Synthesis and thermal cure of highmolecular weight polybenzoxazine precursors and the properties of the thermosets [J].Polymer, 2005, 46(26): 12172-12180.
    [105] M. Spontón, J.C. Ronda, M. Galia, et al. Develpoment of flame retardant phosphorus-and silicon-containing polybenzoxazines [J]. Polymer Degradation and Stability, 2009, 94(2):145-150.
    [106] Yan Tang, Qing Lai Zhao, Ke Zeng, et al. Synthesis of a benzoxazine monomercontaining maleimide and allyloxy groups [J]. Chinese Chemical Letters, 2007, 18(8):973-976.
    [107] Andrey Chernykh, Tarek Agag, Hatsuo Ishida. Novel benzoxazine monomer containingdiacetylene linkage: An approach to benzoxazine thermosets with low polymerizationtemperature without addad initiators or catalysts [J]. Polymer, 2009, 50(14): 3153-3157.
    [108]裴顶峰.新型酚醛树脂中间体——苯并噁嗪的合成及开环聚合反应的研究[D].成都:四川大学,1999.
    [109] Yuan-Jyh Lee, Jieh-Ming Huang, Shiao-Wei Kuo, et al. Synthesis and characterizationsof a vinyl-terminated benzoxazine monomer and its blending with polyhedral oligomerilsilsesquioxane [J]. Polymer, 2005, 46:2320-2330.
    [110]刘献伟,贾德民.双苯并噁嗪树脂的合成与固化性能研究[J].中国胶黏剂,2008,17(8) :9-12.
    [111] Ishida, H., Low, H. Y. Synthesis of Benzoxazine Functional Silane and AdhesionProperties of Glass-Fiber-Reinforced Polybenzoxazine Composites [J]. Appl. Polym. Sci.,1998, 69(13): 2559-2567.
    [112] S.A. Garea, H. Iovu, A. Nicolescu, et al. A new strategy forpolybenzoxazine-montmorillonite nanocomposites synthesis[J]. Polymer,2009,28(3):338-347.
    [113] Kun Jia, Rui Zhao, Jiachun Zhong, et al. Preparation and properties of hybrid magneticmaterials based on phthalocyanine polymer [J]. Mater Sci: Mater Electron, 2010, 21(11):1125-1131.
    [114] Bimlesh Lochab, Indra K. Varma, Jayashree Bijwe. Thermal behavior of cardanol-basedbenzoxazines [J]. Therm Anal Calorim, 2010, 102(2): 769-774.
    [115]王俏,刘勇,郭延红.苯乙烯悬浮聚合工艺条件研究[J].化学与黏合,2010,32(1):61-63.
    [116]康永,高建峰.新型悬浮法制备低醇解度聚乙烯醇的研究[J].化工技术与开发,2009,38(10): 25-27.
    [117] Kissinger HE. Reaction kinetics in differential thermal analysis [J]. Anal Chem, 1957,29(11): 1702-1706.
    [118] Ozawa T. A new method of analyzing thermogravimetric data [J]. Bull Chem Soc Jpn,1965, 38(11): 1881-1886.
    [119] Flynn JH, Wall LA. A quick direct method for the determination of activation energyfrom thermogravimetric data [J]. Polym Lett, 1966, 4(5): 323-328.
    [120] Friedman HL. Kinetics of thermal degradation of char-forming plastics fromthermogravimetry [J]. Application to a phenolic plastic, Polym Sci Part C, 1965, 6(1):183-195.
    [121] Hsieh TH, Su AC. Cure kinetics of an epoxy-novolac molding compound [J]. ApplPolym Sci, 1990, 41(5-6): 1271-1280.
    [122]宿磊.木塑复合材料热解动力学研究[D].河北:河北大学,2010.
    [123]孙文兵,张超灿.等温DSC法研究聚酰胺与环氧树脂的固化动力学[J].武汉理工大学学报,2009,31(6):28-31.
    [124] Jun Wang, Xue Fang, Ming-qing Wu, et al. Synrhesis, curing kinetics and thermalpropertied of bisphenol-AP-based benzoxazine [J]. European Polymer Journal, 2011, 47(11):2158-2168.
    [125] Shi Z, Yu D, Wang Y, et al. Investigation of isothermal curing behaviour during thesynthesis of polybenzoxazine-layered silicate nanocomposites via cyclic monomer [J]. EurPolym, 2002, 38(4): 727-733.
    [126] Sbirrazzuoli N, Vvazovkin S. Learning about epoxy cure mechanisms fromisoconversional analysis of DSC data [J]. Thermochim Acta, 2002, 388(1-2): 289-298.
    [127]程时定.钼酸铵热分解的相变行为及动力学研究[D].长沙:中南大学,2008.
    [128]苏震宇,邱启艳.改性双马来酰亚胺来酰亚胺树脂的固化特性[J].纤维复合材料,2005,24(3),24-27.
    [129]于伯龄,姜胶东.实用热分析技术[M].北京:纺织工业出版社,1990:11-200.
    [130]欧阳兆辉,伍林,易德莲,等.钼改性酚醛树脂黏结剂的研究[J].化工进展,2005,24(8):901-904.
    [131]张光复,李桂珍.钼酚醛复合材料的热烧蚀性能分析[J].工程塑料应用,1985,(4):1-5.
    [132]强敏,张双庆,林惠珊,等.热固性钼酚醛树脂的表征及其应用[J].耐火材料,2005,39(2):119-122.
    [133]叶晓川,曾黎明,刘涛,等.双马改性酚醛树脂的耐热性即热解动力学分析[J].武汉理工大学学报,2009,31(20):4-7.
    [134]刘涛,曾黎明,叶晓川,等.双马改性酚醛树脂的制备及热性能分析[J].武汉理工大学学报,2010,32(7):12-15.
    [135]赵丽梅,夏华,龚荣洲.双马来酰亚胺改性酚醛型环氧树脂的研究[J].功能材料,2007,38(3):404-407.
    [136]白会超,王继辉,冀运东.耐高温苯并噁嗪的合成与表征[J].宇航材料工艺,2008,(3):45-48.
    [137]刘志雄,王小华,邹晓勇,等.耐高温TTOA-环氧树脂的合成及表征[J].涂料工业,2009,39(10):30-32.
    [138]王劲,顾宜,谢美丽.苯并噁嗪—环氧树脂基玻璃布层压板的研究[J].塑料工业,2001,29(5):6-8.
    [139]赵圩,余若冰,肖丽群,等.二甲苯型苯并噁嗪的合成及其固化行为的研究[J].玻璃钢/复合材料,2010,(5):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700