掺杂GaAs电子结构和光学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷化镓材料作为Ⅲ-Ⅴ族化合物半导体中最重要、用途最广泛的半导体材料,它具有禁带宽、直接带隙、载流子迁移率高、消耗功率低、抗辐射,耐高温等优点,以其优良的光电特性被广泛应用于微电子和光电子领域。近年来,为了进一步改善砷化镓材料的性能,拓宽其应用领域,进行合理有效的掺杂是目前最常用的途径之一。随着计算材料科学的兴起和快速发展,对掺杂体系进行电子结构和光学性质的理论研究已经成为挖掘GaAs材料应用的重要手段,对发展新型GaAs光电子材料具有极其重要的意义。
     文中利用基于密度泛函理论框架下的第一性原理平面波赝势方法,对本征闪锌矿GaAs锑(Sb)掺杂GaAs体系和3d过渡金属M(M=Mn,Cr,Fe)掺杂GaAs体系的电子结构和光学性质进行了一系列的研究,主要研究内容如下:
     首先对本征闪锌矿GaAs的能带结构、态密度和光学性质进行了计算分析,结果表明闪锌矿GaAs是一种直接带隙半导体材料,计算得到的带隙为0.61eV,比实验值1.424eV偏小,这是利用密度泛函理论计算时普遍存在的问题;计算光学性质时,采用“剪刀”算符对带隙进行修正,修正后得到的光学性质结果与实验基本符合,从而验证了计算方法的正确性。
     随后计算了不同浓度Sb掺杂闪锌矿GaAs体系GaAs1-xSbx (x=0,0.25,0.5,0.75,1)的电子结构和光学性质,包括能带、态密度、复介电函数和吸收系数。计算结果表明:Sb掺杂导致体系晶格常数线性增大,并使得体系导带和价带组成发生改变,禁带宽度呈二次多项式变化。随着掺杂浓度的增加,体系静态介电常数线性增大,吸收带边出现了明显的红移现象,结合电子结构,对掺杂Sb诱发GaAs1-xSbx体系的光学性质改变进行了定性的解释。
     最后研究了3d过渡金属M(M=Mn,Cr,Fe)掺杂闪锌矿GaAs体系,对体系的磁性、半金属性和光学性质进行了研究和分析。3d过渡金属掺杂之后,由于过渡金属的3d电子与As4p电子的杂化作用,使得体系表现出铁磁性。Mn和Cr掺杂之后,体系表现出明显的半金属性,而Fe掺杂GaAs体系呈现金属性;Mn、Cr掺杂体系的吸收系数在低能端均产生了新的吸收峰,体系的吸收带边基本在同一位置,与本征GaAs相比,出现了明显的红移。对3d过渡金属诱发的磁性和光学性质改变进行了分析,为掺杂闪锌矿GaAs在光电子领域的实际应用提供一定理论依据。
GaAs is the most important and the most extensive use Ⅲ-Ⅴ compound semiconductor materials with wide gap, direct band gap, high carrier mobility, low power consumption, radiation resistance, and high temperature resistance. It's widely applied in the field of microelectronics and optoelectronics because of its excellent optoelectronic characteristics. In recent years, in order to improve its properities and broaden its application field, the reasonable and effective doping is one of the most commonly used methods. With the rapidly development of computational materials science, the theoretical study on electronic and optical properties of doped systems has been an important means. It's very significant to develop new typical optoelectronic materials.
     In this paper, the electronic structure and the optical properties of the pure GaAs, Sb-doped GaAs systems and3d transition metals doped GaAs were investigated by using the first-principles pseudopotential approach of the plane wave based on the Density Functional Theory. The main contents are presented as follows:
     Firstly, we calculate the band structure, density of state and optical properties of the pure zinc blende GaAs. The results indicate that zinc blende GaAs is a direct band gap semiconductor material. The calculation of the band gap0.61eV, compared with the experimental value of1.424eV, has a larger deviation. It's a common problem existing in the calculations of band gap by DFT method. The calculated band gap is revised by the "scissors" operator and the optical properties obtained after revised agree with the experimental result, which convinced us that our calculation is reliable enough.
     Afterwards, electronic structure and optical properties of GaAs1-xSbx(x=0,0.25,0.5,0.75,1)have been calculated and the band structure, density of states, complex dielectric function and absorption coefficient have been calculated. The results indicate that Sb doping leads to linearly increasing lattice constants and changing the components of valence and conduction bands of GaAs. The band gap of doped system appears a quadratic polynomial variation tendency. With the increase of the Sb content, the static dielectric constant increased linearly and the absorption wavelength appears an obvious red-shift. The changes of optical properties are qualitatively interpreted in combination with the calculated electronic structure.
     Finally, the systems of3d transition metals doped GaAs are investigated. The magnetism, half-metallicity and optical properties have been discussed and analysed. By doping3d transition metals in GaAs, the systems show ferromagnetic feature because of the orbital hybrid of3d state of the transition metals and As4p state. The systems of Mn and Cr monodoped GaAs appear obvious half-metallicity, while Fe-doped GaAs shows metallicity. The absorption coefficient of GaAs mono-doped with Mn and Cr produces a new absorption peak at low energy area and the absorption edge are almost in the same position. Comparing with the pure GaAs, the absorption wavelength appears an obvious red-shift. These offer a theoretical basis for the application of doped GaAs in photoelectronics and microelectronics fields.
引文
[1]邓志杰,郑安生.半导体材料[M].化学工业出版社,2004.
    [2]陈坚邦.砷化镓材料发展和市场前景[J].稀有金属,2000,24(3):208-217.
    [3]余金中.半导体光电子技术[M].北京:化学工业出版社,2003
    [4]Brozel M R, Stillman G E. Properties of gallium arsenide.3th ed. London:INSPEC Press, 1996:8
    [5]邓志杰,郑安生,俞斌才.中国集成电路(CIC).2002,6:97-100
    [6]刘宜华,张连生.稀释磁性半导体[J].物理学进展,1994,14(1):82-120
    [7]Furdyna J K. Diluted Magnetic Semiconductors[J]. J. Appl. Phys,1988,64(4):29-64.
    [8]Ohno H. Making Nonmagnetic Semiconductors Ferromagnetic[J]. Science,1998, 281:951-956.
    [9]Munekata H, Ohno H, et al. Diluted magnetic Ⅲ-Ⅳ semiconductors[J]. Phys. Rev. Lett, 1989,63:1849-1852.
    [10]Munekata H, Ohno H, Ruf R R,Gambino R J, and Chang L L, P-type diluted magnetic III-V semiconductors[J]. J. Cryst. Growth,1991,111:1011-1015.
    [11]Ohno H, Munekata H, Penney T, Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semi conductors[J]. Phys.Rev. Lett,1992,68: 2664-2667.
    [12]Edmonds K W, Wang K Y, Campion R P, et al.High Curie temperature Ga1-xMnxAs obtained by resistance-monitored annealing arxiv.org, Condensed Matter,2002,0209554, http://arxiv.org/pdf/cond-mat/0209554.
    [13]Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides [J]. Nature Materials,2010,9:965-974.
    [14]Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science,2000,287:1019-1022.
    [15]Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshikara S, Koshihara S, Koinuma H. Magnetic properties of Mn-doped ZnO[J]. Appl. Phys. Lett,2001,78:958.
    [16]Jin Z, Hasegawa K, Fukumura T, Yoo Y Z, Hasegawa T, Koinuma H, Kawasaki M. Magnetoresistance of 3d transition-metal-doped epitaxial ZnO thin films[J]. Physica E,2001,10:256.
    [17]Matsumoto Y, Murakami M, Shono T, et al. Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide[J]. Science,2001,291:854.
    [18]John S. Strong localization of photon in certain disordered dielection superlattice[B]. Phys.Rev.Lett.,1987,58 (23):2486-2489.
    [19]Blakemopre J S. Semiconducting and other major properties of gallium arsenide [J]. J. Appl. Phys.,1982,53:123.
    [20]Arabi H, Pourghazi A, Ahmadian F, et al. First-principles study of structural and electronic properties of different phases of GaAs[J]. Physica B,2006,373:16-22.
    [21]Ben Sedrine N, Gharbi T, Harmand J C, et al. Optical constants and critical-point parameters of GaAs1-xSbx alloy films grown on GaAs[J]. Phys. Stat. Sol,2008,205:833-836.
    [22]Hannu-Pekka Komsa, Eero Arola. Beryllium doping of GaAs and GaAsN studied from first principles[J]. Physical Review B,2009,79:115208.
    [23]Amft M, Burkert T. First-principles calculations of optical and magneto-optical properties of Ga1-xMnxAs and MnAs[J]. Physica B,2009,404:3782-3788
    [24]李树盛GaAs结构在单轴加压下的光致发光特性测试[J].山西:测试技术学报,2006.
    [25]陈余,关玉琴.3d过渡金属掺杂GaAs的居里温度研究[J].内蒙古工业大学学报,2009,28(3).
    [26]陈启,雷天民.GaAs第一性原理研究[J].电子科技,2009,22(4).
    [27]杨维清,朱兴华.高压下GaAs电子结构的从头计算[J].四川大学学报,2009,46(5).
    [28]张跃,谷景华等.计算材料学基础[M].北京航空航天大学出版社,2007.
    [29]Segall M D, Lindan P J D, Probert M J. First-principles simulation:ideas, illustrations and the castep code[J]. J.Phys.Cond. Matt.,2002,14(11):2717.
    [30]Parr R G, Yang W. Density Functional Theory of Atoms and Molecules[M]. NewYork: Oxford,1989.
    [31]Dreizler R M, Gross E K U. Density Functional Theory[M]. Berlin:Springer-Vertag.1990
    [32]Pickett W E, Pseudopotential methods in condensed matter applications[J]. Comput Phys Rep.,1989,9:115.
    [33]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [34]Szabo A, Ostlun N S. Modern quantum chemistry - introduction to advance electronic structure theory. New York:McGraw-Hill,1989.
    [35]Fock V Z. Physik,1930,61:209.
    [36]Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys. Rev. B,1964,13:864-871.
    [37]People J A, Beveridge D L, Dobosh P A. J. Chem. Phys.,1967,47:2026.
    [38]熊志华,孙振辉,雷敏生.基于密度泛函理论的第一性原理赝势法.江西科学[J].2005,23(1).
    [39]谢希德,陆栋主编.固体能带理论[M].上海:复旦大学出版社,1998.12.
    [40]李正中.固体理论[M].北京:高等教育出版社,2002.12.
    [41]Kohn W, Sham L J. Self-consistant equations including exchange ang correlation effects. Phys.Rev.,1965,140:A1133-1138.
    [42]Langreth C, Perdew J P. Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works[J]. Phys. Rew. B,1980,21: 5469-5493
    [43]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, moleeules, solids, and surfaces: Applications of the generalized gradient approximation for exehange and correlation[J]. Phys. Rev. B,1992,46:6671.
    [44]Perdew J P, Burke K. Matthias Ernzerhof. Generalized Gradient Approximation Made SimPle[J]. Phys. Rev. Lett.,1996,77:3865.
    [45]Phillpe J C. Energy-Band Interpolation Scheme Based on a Pseudopotential [J]. Phys. Rev. 1958,112:685-695.
    [46]Yin M T, Cohen M L. Theory of ab initio pseudopotential calculations[J]. Phys. Rev. B, 1982,25:7403-7412.
    [47]Hamann D R, Schluter M, Chiang C. Phys. Rev. Lett,1979,43:1494.
    [48]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B,1990,41(11):7892.
    [49]沈学础.半导体光谱和光学性质[M].第2版.北京:科学出版社,2002.
    [50]Fischer T H, Almlof J. General methods for geometry and wave function optimization[J]. The Journal of Physical Chenistry,1992,96(24):9768.
    [51]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Physical Review B,1976 13:5188-5192.
    [52]刘其军,刘正堂.闪锌矿型GaX (X=P, As,Sb)电子结构和光学性质的第一性原理计算[J].苏州科技学院学报,2010,27(3):35.
    [53]刘恩科,朱秉升,罗晋生.半导体物理学[M].第7版.北京:电子工业出版社,2008:427.
    [54]Del S R, Girlanda R. Optical properties of semiconductors within the independent-quasiparticle approximation[J]. Physical Review B,1993,48(16):11789.
    [55]Sharma A C. Energy loss function for a GaAs/AlGaAs super lattiee[C].1992 Proeeedings of SPIE, Vol.1523 conference on the Physics and Technology of Semiconductor Devices and Integrated Circuits:616-618.
    [56]Quochi F, Kilper D C, Cunningham J E, et al. Continuous-Wave Operation of a 1.3μm GaAsSb-GaAs Quantum-Well Vertical-Cavity Surface-Emitting Laser at Room Temperature[J]. IEEE Photon. Technol. Lett,2001,13(9):921.
    [57]Kawamura Y, Higashino T, Fujimoto M, et al. Molecular Beam Epitaxial Growth and Characterization of GaAs-ySby Layers on (111)B InP Substrates[J]. Jpn.J.Appl. Phys,2002,41 (2B):1012.
    [58]Nishino F, Takei T, Kato A, et al. Optical Characterization of Heavily Sn-Doped GaAs1-xSbx Epi layers Grown by Molecular Beam Epitaxy on (001) GaAs Substrates [J]. Jpn. J. Appl. Phys, 2005,44 (1B):705.
    [59]Kawamura Y, Higashino T, Fujimoto M, et al. Electroluminescence of In0.53Ga0.47As/GaAs0.5Sb0.5 Type-II Multiple Quantum Well Light-Emitting Diodes Grown on (111)B InP by Molecular Beam Epitaxy[J]. Jpn. J. Appl. Phys,2005,41 (7A):4515.
    [60]Toda T, Nishino F, Kato A, et al. MBE growth and characterization of GaAs1-xSbx epitaxial layers on Si (001) substrates[J]. Physica B,2006,376-377:602.
    [61]Gormana B P, Norman A G, Lukic-Zrnic R, et al. Atomic ordering-induced band gap reductions in GaAsSb epilayers rown by molecular beam epitaxy[J]. Journal of Appled Physics,2005,97:063701.
    [63]Hsua H P, Huang J K, Huang Y S, et al. Optical study of GaAs1-xSbx layers grown on GaAs substrates by gas-source molecular beam epitaxy[J]. Materials Chemistry and Physics,2010,124(1):558.
    [64]Kuo Y K, Liou B T, Yen S H, et al. Vegard's law deviation in lattice constant and band gap bowing parameter of zincblende InxGa1-xN[J]. Optics Communications,2004,237: 363.
    [65]Nahory R E, Pollack M A, DeWinter J C, et al. Growth and properties of liquid-phase epitaxial GaAs1-xSbx[J]. J.Appl.Phys,1977,48(4):1607.
    [66]Moreno M, Trampert A, Jenichen B, et al. Correlation of structure and magnetism in GaAs with embedded Mn(Ga)As magnetic nanoclusters[J]. J. Appl. Phys.,2002,92,4672-4677.
    [67]Jungwirth T, Sinova J, et al. Theory of ferromagnetic (III,Mn)V semiconductors[J]. Rev. Mod. Phys.,2006,78:809-864.
    [68]Da Silva J L F, Dalpian G M, Wei S H. Carrier-induced enhancement and suppression of ferromagnetism in Zn1-XCrxTe and Ga1-xnAs:origin of the spinodal decomposition[J]. N. J. Phys.,2008,10:113007.
    [69]Neumaier D, Turek M, Wurstbauer U, et al. All-electrical measurement of the density of states in (Ga, Mn)As[J]. Phys. Rev. Lett.,2009,103:087203.
    [70]Sawicki M, Chiba D, Korbecka A, et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As[J]. Nature Phys,2010,6:22-25.
    [71]Richardella A, Roushan P, Mack S, et al. Visualizing critical correlations near the metal-insulator transition in Ga1-xMnxAs[J]. Science,2010,327,:665-669.
    [72]Nishitani Y, Chiba D, Endo M, et al. Curie temperature versus hole concentration in field-effect structures of Ga1-xMnAs. Phys. Rev. B,2010,81:045208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700