数控电火花线切割机床工作液智能控制系统的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控电火花低速走丝线切割加工在汽车、航空航天与其它精密机械的模具加工中正发挥着越来越重要的作用。目前,低速走丝线切割加工正向着高精度和高效率方向发展。在高精度线切割加工过程中,工作液的电导率影响放电效果,其温度影响工件的受热变形。工作液的电导率和温度影响切割加工精度和表面质量的问题已成为高精度线切割加工的一个技术瓶颈。因此,对工作液电导率和温度的实时、在线精确控制问题的研究变的十分重要。
     本课题针对切割机床工作液电导率测量和控制存在的问题,通过对工业水电导率的测量方法,以及影响切割机床工作液电导率测量因素的研究分析,基于创新思想,提出了一种线切割机床工作液电导率测量、转换、传输、处理的新方法。本课题以苏州三光科技有限公司DK7632型低速走丝线切割机床为研究对象,进行了理论与实验研究,完成了数控线切割机床工作液智能控制系统的设计。并通过实验研究证明了本研究内容的先进性和可行性。本论文共分六章主要研究内容如下:
     第一章概述。首先通过对电火花线切割技术发展的介绍,阐述了课题来源;通过对国内外线切割机床与工作液控制技术研究现状的分析,结合我国当前线切割机床工作液的控制技术,提出了数控数控线切割机床工作液智能控制系统设计研究课题,并确立了课题的主要研究内容。
     第二章工作液智能控制系统模型。通过对工作液电导率测量机理的分析,与系统的加工模式,加工要求、工作液系统的运行状态等相结合,构建了一种新型线切割机床工作液测量、转换、传输、处理的工艺方案。依据工艺方案,构建了工作液的电学测量模型;在测量模型的基础上,采用模糊控制理论构建了基于模糊理论的工作液智能控制系统模型。
     第三章硬件设计。依据构建的工艺方案和智能控制系统模型,针对系统的采样、传输、抗干扰性和执行机构性能等实际要求,研究设计了工作液智能控制系统的硬件平台。
     第四章软件设计。根据工作液采样信号的控制要求,结合系统的智能控制模型和已设计的硬件平台,使用C++语言在Visual C++编译环境下设计模糊控制算法、开发了工作液智能控制系统软件。
     第五章实验研究。将智能系统的软硬件系统结合起来,安装到DK7632机床上,对工作液进行实验研究控制,通过实验研究对系统参数进行优化和改进,最后圆满的完成了既定研究目标。研究课题正在转向产业化生产中。
     第六章总结与展望。对本文所做的主要研究和设计内容进行了总结和概括,并对实验研究的结果进行分析,提出了课题的不足之处和未来改进的方向。
     本论文主要有以下创新点:
     1、提出了一种电火花线切割机床工作液电导率信号采集和处理、抗干扰传输的新方法。
     2、针对工作液电导率测量和控制过程存在着模糊现象的问题,采用模糊控制理论与电导率测量相结合的方法,建立工作液系统智能控制模型。
     3、在系统的智能控制模型基础上,用Protel软件设计了系统的硬件平台,并使用C++语言在Visual C++编译环境下开发控制系统软件,并进行调试运行,为该课题的深入研究提供了理论与实验基础。
NC WEDM has played an important role in the automotive, aerospace and other precision machinery mold processing. At present, the LS-WEDM is going towards the direction of the development of high precision and speed. Working with high-precision wire-cutting process, the conductivity of working fluid affects the discharge effect, the temperature affects the deformation of the work piece, and thereby the problem has become a technical bottleneck which combined effects of cutting accuracy and quality of high-precision EDM. Therefore, it is very important to do the research which in the field of the working fluid conductivity and temperature in real time, on-line precision control research.
     This subject is focus on working fluid conductivity measurement and control of WEDM machine, via the measurement method of industrial water conductivity, as well as research and analysis in the industry fluid conductivity measuring machine factors. Based on innovative ideas, I am holding out a new method which used in a working fluid conductivity measurement, conversion, transmission, processing of wire-cutting machine. This subject used the DK7632-type LS-WEDM machine from Suzhou Sanguang Science and Technology Co., Ltd. as the research object. Doing the theoretical and experimental research and completing the design of intelligent control system of the working fluid of the NC WEDM machine. Through experimental study proves that the advanced nature and feasibility of the research. The major research paper is divided into six chapters as follows:
     Chapter I Overview. First of all, through the presentation of WEDM technological development, hold on the sources of subject; through the analysis of research in WEDM and on the aspect of working fluid control technology at home and abroad, Combined with our country current work on WEDM working fluid control technology, hold out the research subject which doing the intelligent control system design of NC WEDM working fluid. And I established a major research topic.
     Chapter II The model of intelligent control system of the working fluid. Based on the mechanism of conductivity measurement analysis about the working fluid, and combined with system processing mode, processing requirements, the state of fluid systems, build a new technology program in WEDM working fluid measurement, conversion, transmission, processing. By the scheme, I have built a fuzzy control method using the working fluid model of intelligent control system.
     Chapter III Hardware design. Build a program based on the technology and intelligent control system model, in view of the sampling system, transmission, anti-jamming performance of the executing agency and the actual requirements of the work, researching and designing the hardware platform for hydraulic intelligent control system.
     Chapter IV Software design. According to the control signal of liquid sample, combined with the intelligent control system model and the hardware platform has been designed, I developed the software of the intelligent control system under the compiler environment of using C + + language in Visual C + +, and run debug.
     Chapter V Experimental Study. Combining hardware and software systems of the intelligent system, installed to DK7632, controlled the working fluid. Through optimize and improve to the system parameters in experimental study, I have established objectives with successful completion. Research is turning to the industrialization.
     Chapter VI Summary and Outlook. Doing the summary of the main research and design about this article, and summary of the results from experimental studies and analysis, put forward the issues of inadequacy and a future direction for improvement.
     In this paper, there has some mainly innovations as follows:
     1. Holding out a new method in WEDM conductivity signal acquisition and processing, anti-transmission.
     2. Facing the problem of fuzzy phenomenon in conductivity measurement and control for the working fluid, using the combination methods of fuzzy control theory and electrical conductivity measurement, I established intelligent control systems model of the working fluid.
     3. Based on the model of the intelligent control system, I designed the hardware platform by using Protel software, developed the software of the intelligent control system under the compiler environment of using C + + language in Visual C + +, and run debug. And it leaded a experimental basis for another in-depth study.
引文
[1]胡宗定,王一平.工程电导测试技术[M].天津:天津大学出版社,1990. 39 -105.
    [2]王至尧.电火花线切割工艺[M].北京:原子能出版社,1998.90-95.
    [3]刘铁军.工程电导测试技术及应用研究[D].杭州:浙江大学,2006.
    [4]兰敬辉.溶液电导率测量方法的研究[D].大连:大连大连理工大学,2002.
    [5]王士良.论电介质交流极化现象的电路模型[J].武汉:华中理工大学学报,1993.
    [6]张乐水.一种描述电极线性极化阻抗的扰动双电层离子极化模型[J].西安:西安交通大学学报
    [7]曹楚南.论不可逆电极过程的法拉第阻抗等效电路类型[J].北京:中国腐蚀与防护学报,1990
    [8]林波.自动换档水电导率仪控制系统的设计[D].天津:河北工业大学,2004.
    [9]傅卫卫,应伯根.工业水处理过程中电导率测量方法的研究[J] .杭州:浙江大学学报,1999
    [10]梅特勒-托利多仪器(上海)有限公司.溶液电导率的测量方法:中国,CN101135705,2008.03.05
    [11]多相仪表公司.用于测量含水多相混合物的水电导率和水体积分数的方法和装置:中国,CN101238367,2008.08.06
    [12]陈小平,陈红仙.水电导率的双频测定方法[J].北京:仪器仪表学报,2006.
    [13]郑联英.水溶液电导率的测量方法研究[D].北京:北京化工大学,2007
    [14]陈志永.自动换档水电导率仪的研制[D].天津:河北工业大学,2004.
    [15] Wang M.,Inverse solutions for electrical impedance tomography basecon conjugate gradients methods.Measurement Science & Technology.2002.
    [16] Yicai Sun et al.,Electric drift of the bridge offset for Pressure sensor and its intilization[J] .Sensors and ActUators.1997.
    [17] Kuh F.T ., van Halderen P.A..Design of an active-differentiator based.capacitance transducer for electrical capacitance tomograp- hyy. Meas.Sci.Technol., 1997.
    [18]仲崇权,兰敬辉,杨素英.一种消除分布电容影响的电阻测量方法[J] .大连:大连理工大学学报,2003.
    [19]朱宁,许庆平,朱伟根等.低速走丝电火花线切割加工工艺研究[J] .苏州:电加工与模具,2008
    [20] Jordana J.,Gasulla M.,Pallàs-Areny R.,Electrical resistance tomography to detect leaks from buried pipes.Measurement Science & Technology,2001.
    [21] Dickin F.J.,Wang M..Electrical resistance tomography for process applications.Measurement Science & Technology,1996
    [22] Hua P.,Woo E..J.,Webster J.G..,et al..Using compound electrodes in electricalimpedance tomography. IEEE Transactions on Biomedical Engineeri- ng.1993
    [23]林波,张效玮,贾科进等.基于双极性脉冲电压的水电导率仪控制系统的设计[J].北京:电子器件,2007.
    [24]邢文凯,尤文,李忠健.一种克服分布电容的双频驱动电导率测量方法[J].北京:仪器仪表用户,2007
    [25] Keller J M.Bipolar-pusle conductivity detector for ion chromato- graphy[J].Anal Chem,1981.
    [26]康华光.电子技术基础模拟部分[M].北京:高等教育出版社,1998.
    [27]康华光.电子技术基础数字部分[M].北京:高等教育出版社,1998.
    [28]蔡自兴.智能控制原理与应用[M].北京:清华大学出版社,2007.
    [29]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2005.
    [30]章卫国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,1999.
    [31]王海燕,朱孟府,宿红波等.在线水质电导率信号采集系统的电路设计[J].北京:医疗卫生装备,2008.
    [32]刘燕群.影响电导率测量准确度的综合因素[J] .石家庄:河北化工,2004.
    [33]项魁辰,潘勇飞.电导率测量的影响因素及电导率、pH值异常与金异常的关系[J] .北京:黄金地质科技,1993.
    [34]杨丽珍,郝燕萍,杨莉.固体颗粒对溶胶系统电导率的影响[J] .北京:北京印刷学院学报,2008.
    [35]钱道荪.交流电与浓差极化_平面电极上的非稳态过程[J] .广州:中山大学学报,1962.
    [36]刘雨棣.两线制节能型双向可控硅触发电路[J] .北京:节能技术,1998.
    [37] Pay S,Baghzouz Y.Effectiveness of battery-supercapacitor combin- ation in electric vehicles[A].IEEE Power Tech Conference Proceedings[C]. Bologna:2003.6.
    [38] Lohner A,Evers W.Intelligent power management of a supercapacitor based hybrid power train for light-rail vehicles and city busses[A].IEEE Power Electronics Specialist Conference[C].Aachen:2004.670-680.
    [39]李海东,祁新春,齐智平.双电层电容器的应用模型[J].北京:电池,2007.
    [40]徐文东,华贲,陈进富.双电层电容器的电容特性分析[J].北京:电工电能新技术,2006.
    [41] Akihiko Yoshida,Seiji Nonaka,Ichiro Aoki,et al.Electric doubler layer capacitors with sheet-type polarizable electrodes and application of the capacitors[J].Journal of Power Sources,1996,60:214-217.
    [42]沙迪克株式会社(中国)有限公司:http://www.sodick.com.cn/
    [43]苏州三光科技股份有限公司:http://www.ssgedm.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700