电晕放电与光催化协同净化室内空气研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了以线极为高压极的电晕放电伏安关系,确定采用以针板式直流电晕放电为核心技术研制成空气净化单元。以室内空气净化为研究目标,针对空气中的颗粒物、细菌与病毒及气态污染物三大污染进行去除实验及应用试验研究。通过条件实验确定优化的电极结构及运行参数、探索分析各污染物的去除机理;并在此基础上进行封闭空间内的净化试验。研制成可实用的空气净化器,使得最终能够在室内空气净化中同时、一体、且高效净化颗粒物、致病细菌和病毒、及气态污染物。
     室内空气污染物呈多元性,主要包括颗粒物污染,微生物污染、挥发性有机化合物污染及其他化学污染,这些污染物之间还具有交叉作用。目前主要净化技术包括过滤、静电收尘、臭氧等,但在可处理污染物颗粒大小、处理效率、处理毒害气体及杀菌的广普性和一体性方面,已无法满足要求。电晕放电非热等离子体和光催化剂结合被视为在空气净化中具有更多优势,分别对这两种技术进行综述,提出发展以电晕放电引发的等离子体技术和光催化技术联合为核心的净化器。
     系统研究以线极为发射极的不同构型直流电晕放电的伏安关系,根据实验得到的外加电压及放电电流值,对各构型下的电晕放电伏安关系式进行推导得到线发射极电晕放电伏安关系式为I=AV2(V-Vc)/L[R/ln(R/r0)]2。对结果进行理论分析,认为电晕放电的迁移区中形成电流的是正离子和/或负离子;且由c-V曲线可区分电晕放电的阶段:起始阶段、稳定阶段及预击穿过渡阶段。相对于单极电晕放电,双极电晕放电的迁移区中离子密度均倍增,且推知其电离区中电子密度也相应倍增;迁移区中正负离子的复合可以忽略,且双极电晕放电中正负电晕放电间存在相互电离作用。考虑到在可注入能量密度及放电稳定性方面针极电晕放电优于线极电晕放电,选择优化的针极电极结构作为空气净化的放电反应器。
     以可吸入颗粒物为研究对象,采用研制的空气净化单元进行一次通过处理实验,得到电晕放电捕集可吸入颗粒物的效率η随颗粒物粒径Dp的增大而增大,随风量Q的减小而增大;CADR随Q和Dp的增大显著提高。通过理论分析,定性揭示高效捕集可吸入颗粒物的规律。在此基础上,进行悬浮颗粒物和可吸入颗粒物捕集的室内应用试验,结果表明能快速有效的将较高初始浓度的悬浮颗粒物净化至达到国家标准;较低浓度的情况下下降一个数量级;对不同粒径的可吸入颗粒物具有高效捕集率及洁净空气量值。针板式电晕放电双极电晕放电净化装置对粒径≤1μm的细小颗粒物比单级放电具有更好的处理效果。证明该净化单元具有快速高效去除室内空气中的悬浮颗粒物及可吸入颗粒物、高洁净空气量等优点。
     以空气中细菌为研究对象,采用研制的空气净化单元进行一次通过处理实验,结果表明杀菌效率随消毒时间延长和放电电压增高而增高;处理风量越小,杀菌效果越好。得到放电场中的最优风速及单位放电体积对应最优风量。探讨细菌的消毒机理,认为电晕放电杀灭空气自然菌的过程中,高能电子和活性粒子起主导作用。细菌消毒的室内应用试验结果表明在室内自然菌严重污染的条件下,非热放电净化器处理30min后达到国家标准;处理60min后达到卫生部版标准Ⅲ类区域的洁净度要求。对常见的副流感病毒及单纯疱疹病毒进行灭活实验,证实针阵列对板电晕放电能快速、高效灭活空气中PIV和HSV-I病毒。认为放电产生的紫外光、高能电子和自由基的共同作用是灭活PIV和HSV-I病毒的主因。
     分别发生较高浓度的多种气态污染物,模拟封闭室内气态污染物污染,采用针阵列对板电晕放电发生装置为核心的空气净化单元进行净化试验。结果显示,本净化装置对气态污染物具有广普的净化作用;净化效率和速率优于目前同类的优质空气净化器产品,其净化作用具有高效性。较细致研究本净化装置对典型室内甲醛污染的净化效果,运行风量和放电功率较大时有利于甲醛去除;正电晕放电效果优于负电晕放电。定性解释甲醛去除机理、分析自由基反应过程。最后采用提出的非热放电结合光催化作用方式PPC,以燃烟燃烧产生的污染气体为研究对象,一次通过净化装置,通过比较NTP和PPC作用方式的实验结果,分析作用规律。确证PPC方式具有协同净化效应,原因为在高压强电场、电子、离子和紫外的共同作用下同时发生等离子体化学反应和光催化反应。
This thesis systematically studied the voltage-current relationship in DC corona discharge with wire electrode as the emitting electrode and adopted an indoor air cleaning unit having its core technology characterized by needle-plate DC corona discharge. Taking indoor air purification as the principal goal, removal experiments and application tests aiming at suspended particles/inhalable particles capture, airborne bacteria and virus sterilization, and harmful chemical pollutant gases purification were carried out respectively. According to the conditional experiments results, optimized electrode structure and running parameters were determined, the rules were discussed and the mechanisms were analyzed. Based on the above results, the purification tests were carried out in closed rooms. Finally the air cleaner has advantages of simultaneous, integrated and efficiently removal of particles, pathogenic bacteria and virus, and harmful gases.
     It has been summarized that indoor air pollution is complicated, mainly including particle pollution, microorganism pollution, volatile organic compounds and other chemical pollution. What's more, these pollutions have cross actions in ambient air. Current purification technologies mainly include infiltration, electrostatic collection, ozone sterilization, and etc. However, these technologies are undesirable in respect of small-size particle capture, treatment efficiency, extensiveness of harmful gases and bacteria and virus, and integrated capability of removing complicated pollutants. The development tendency shows that non-thermal plasma induced by corona discharge combining photo-catalyst has more advantages in indoor air purification. Thus, these two technologies were introduced, and finally an air cleaner featured with these two technologies was proposed.
     The voltage-current characteristics of corona discharge in emitting wire electrode configuration were studied systematically. According to the current and voltage values under different experiment conditions, the relationship of current and voltage was deduced as I=AV2(V-Vc)/L[R/ln(R/r0)]2 in corona discharge in emitting wire electrode configuration. Theoretical analysis was made and it was believed that the positive and/or negative ions form the current in migration area. The c-V curves provided evidence for distinguish the discharge stages as initial stage, stable stage and transitional stage to pre-breakdown. Compared to unipolar discharges, the ion concentrations of migration area are doubled in bipolar discharges; and the electron concentrations in ionization area are also doubled. The recombination of positive and negative ions can be neglected. Considering greater injective energy density and better discharge stability of corona discharge in emitting needle electrode than in wire electrode, the optimized discharge reactor of needle electrode was determined to be the core unit in the air cleaner.
     This new air cleaning unit was used to capture inhalable particles (Ips) in air when it was passed through the discharge reactor for one time. The results showed that better capture efficiency of IPs by corona discharge was obtained with an increase in the size of particle diameters Dp and decrease in the air flow rates Q. The values of CADR significantly increased with an increase in both Dp and Q. The reasons why this unit possessed higher capture efficiency were revealed by theoretical analysis. Then the indoor applicatio tests for suspended particle capture and IPS removal were carried out based on above study. It was indicated that the concentration of suspended particles would meet the national standard in short treatment time when initial concentration was high; and when initial concentration was low, it also would be decreased by one magnitude. Desirable capture efficiencies and CADR values of IPS with different diameter ranges were obtained. Compared to unipolar discharge, needle-plate bipolar corona discharge had better treatment result for IPs whose size was less than 1μm. It was proved that the cleaning unit was characterized by rapid and efficient capture of suspended particles and IPs and desirable CADR value.
     The airborne bacteria were sterilized by this air cleaning unit when the air was passed through the discharge reactor for one time. Results showed that the sterilization efficiency is increased with an increase in treatment time and applied voltage. The smaller the air flow rate was, the better the sterilization effect would be obtained. The optimal air velocity in discharge field and corresponding optimal air flow rate per unit volume of the reactor was determined. In addition, the sterilization mechanism was discussed and it was concluded that high-energy electrons and active particles play dominant roles in the sterilization process. The application tests results showed that after 30min treatment the bacteria concentration met the national standard of China and after 60min treatment it met the cleanliness requirements ofⅢarea identified by the ministry of health of China. Also, the PIV and HSV-I viruses were killed by this cleaner. The results showed that needle-plate corona discharge is capable to kill these viruses rapidly and efficiently. It was believed that the combination of UV light, high-energy electrons and radicals produced in discharge process is responsible for viruses killing.
     Multiple gas-phase pollutants were generated to simulate the air pollution in closed rooms respectively and the purification tests were carried out. Results showed that this cleaning unit has extensive and universal effect on gas pollutants removal; the efficiency and the effect were both better than other air cleaner. The purification effect of this cleaning unit on typical formaldehyde degradation was studied in detail. Results showed that higher treatment air flow rate and greater discharge power would benefit the formaldehyde removal; positive corona discharge has better effect than negative corona discharge. Qualitative analysis of the formaldehyde degradation mechanism and radical reactions were conducted. Finally non-thermal plasma combining with photo-catalyst technology has been proposed and utilized in purification of pollutant gases produced by burning cigarettes. The results of NTP and PPC treatment on pollutant gas when passed through the unit were compared and the rules were analyzed. It was proved that PPC method possessed synergetic effect in burning cigarette pollutant gas purification and the pollutants were removed by plasma chemical reaction and photo-catalysis reactions induced by high field intensity field, electrons, ions and UV lights.
引文
[1]吴忠标等.城市大气环境概论[M].北京:化学工业出版社,2003,362-375.
    [2]ACGIH. Guidelines for the assessment of bioaerosols in the indoor environment. American Conference
    of Governmental Industrial Hygienists[C],1989.
    [3]于玺华.现代空气微生物学[M].北京:人民军医出版社,2002.
    [4]田伟,陈刚才,陈克军等.室内空气中颗粒物对人体健康的影响[J].重庆环境科学,2002,24(5):58-60.
    [5]任南琪,马放.污染控制微生物[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [6]王家玲等.环境微生物学(第二版)[M].高等教育出版社,2004:325-326.
    [7]陈维田,何淼.室内霉菌的污染途径及其控制策略研究[J].中山大学学报(自然科学版)2003,42:199-203.
    [8]张怡,朱良英.儿童哮喘208例吸入性过敏原调查分析[J].医学理论与实践,1998,11(8):368-369.
    [9]冯春杨,赵君科.电晕法处理挥发性有机化合物技术研究现状[J].四川环境,2003,22(5):2-4.
    [10]张道方,刘建兵,杨晓燕,等.典型室内空气污染现状研究[J].北方环境,2004,26(3):15-18.
    [11]Austin CC, Wang D, Ecobichon DJ, et al. Characterization of volatile organic compounds in smoke at municipal structural fires[J]. J Toxicol Environ Health A,2001,63(6):437-458.
    [12]赵金镯.室内挥发性有机物的来源及其健康效应[J].卫生研究,2004,33(2):229-232.
    [13]Pandit GG, Srivastava PK, Rao AM. Monitoring of indoor volatile organic compounds and polycyclic aromatic.hydrocarbons arising from kerosene cooking fuel[J]. Sci Total Environ,2001,279(1-3):159-165.
    [14]孙咏梅,袭著革,戴树桂.香烟烟雾成分分析及其对DNA生物氧化能力研究[J].环境与健康杂志,2002,18(4):203-206.
    [15]梁宏,余秉良,何正杰,等.密闭环境中挥发性有机物行为特性分析[J].解放军预防医学杂志,1999,17(2):85-88.
    [16]何正杰,于芳,何新星.密闭环境中人体自身代谢挥发性有机化合物气相色谱/质谱分析[J].分析化学仪器装置与实验技术,2001,29(80):978.
    [17]Elke K, Begerow J, Oppermann H, et al. Determination of selected microbial volatile organic compounds by diffusive sampling and dual-column capillary GC-FID-a new feasible approach for the detection of an exposure to indoor mould fungi[J]. J Environ Monit,1999,1(5):445-452.
    [18]Wieslander G, Norrback D, Bjornsson Asthma. Indoor environment:the significance of emission of formaldehyde and VOCs from newly painted indoor surfaces[J]. Internatioanl Archives of Occupational and Environmental Health,1997,69:115-124.
    [19]Workoff P, Nielsen G D. Organic compounds in indoor air-their relevance for perceived indoor air quality[J]. Atmospheric Environment,2001,35:4407-4417.
    [20]Molhave. Total volatile compounds (TVOC) indoor air quality investigations[J]. Indoor air,1997,7: 225-240.
    [21]Weschler, C., Wolkoff, P., Glasius, M. Indoor-outdoor relations:Chemical reactions I, II[C]. Proceedings of 11th International Conference on Indoor Air Quality and Climate, Sections:Mo 10T3, Mo13T3, Copenhagen, Denmark,2008.
    [22]Weschler, C.J. and Nazaroff, W.W. Indoor SVOC dynamics:Chlorpyrifos partitioning and persistence[C]. Proceedings of 11th International Conference on Indoor Air Quality and Climate, Paper ID: 126, Copenhagen, Denmark,2008.
    [23]Swan, S.H. Prenatal phthalate exposure and anogenital distance in male infants, Environmental Health Perspectives,2006,114 (2):A88-A89.
    [24]Kolarik, B., Naydenov, K., Bornehag, C.G., et al. The association between concentration of DEHP and BBzP in indoor dust in Bulgarian homes and selected building characteristic[C]. Proceedings of 11th International Conference on Indoor Air Quality and Climate, Paper ID:454, Copenhagen, Denmark,2008.
    [25]孟忠伟,宋蔷,姚强,等.壁流式过滤体捕集微细颗粒过程的数值模拟[J].清华大学学报(自然科学版),2006,46(5):678-681.
    [26]郭在理.空气净化器吸尘电场与负离子发生装置[J].电子技术,1994,1:13-15.
    [27]翁棣,唐先进,赵新景,等.高压静电除尘实验研究[J].实验技术与管理,2006,23(7):17-20.
    [28]郭治明,许德玄,孙英浩,等.雾化电晕放电静电除尘的实验研究[J].北京理工大学学报,2005,25(增刊):145-148.
    [29]Weinberg Stanley. Corona discharge device for destruction of airborne microbe and chemical toxins. US,6042637,2000,3,28.
    [30]Miyamoto. Corona discharge air purification apparatus. JP, Jpn. Kokai Tokkyo Koho,11342350.1999.
    [31]Kuroki. Development of new electric air cleaner for controlling particles and odors. Earozoru Kenkyu, 2000,15(2):116-123.
    [32]向晓东.现代除尘理论与技术[M].北京:冶金工业出版社,2002,180-182.
    [33]郭治明,许德玄,孙英浩,等.雾化电晕放电静电除尘的实验研究[J].北京理工大学学报,2005,25:145-148.
    [34]杜长明,严建华,李晓东,等.利用滑动弧放电脱除烟气中多环芳烃和碳黑颗粒[J].中国电机工程学报,2006,26(1):77-81.
    [35]林山杉,盛连喜,李明非,等.磁增强电晕放电及其对颗粒荷电的研究[J].电工技术学报,2004,19(9):42-46.
    [36]余斯安.关于空气净化消毒技术应用的一些看法[J].广东科技,2006(150):143-144.
    [37]张强,赵淑静.室内自然通风对旅店客房空气中细菌总数的影响[J].甘肃医药,1997,16(5):279-280.
    [38]章丽.空调不清洁“脏风”会伤身[J].家庭科技,2005,5:10-11.
    [39]蒋学兵,马骢,陆晓白.6种常用消毒方法对室内空气消毒效果的比较[J].中华医院感染学杂志,2004,14(11):1258-1259.
    [40]关萍,邓昌超,蔡洪霞,等.外置式臭氧发生器的应用及其消毒效果的验证[J].实用药物与临床,2005,8(增刊):67-68.
    [41]赵荣.一种多功能空气消毒机[J].医疗装备,2005,3:17-19.
    [42]M.Laroussi. Nonthermal decontamination of biological media by atmospheric pressure plasmas:review, analysis, and prospects[J]. IEEE Trans. Plasma Sci.2002,30:1409-1415.
    [43]Weinberg Stanley. Corona discharge device for destruction of airborne microbeand Chemical toxins. Patent Number:US 6042637.
    [44]M. Laroussi. Sterilization of contaminated matter with an atmospheric pressure plasma[J]. IEEE Trans. Plasma Science,1996,24:1188-1191.
    [45]M. Yamamoto, M. Nishioka, M. Sadakata. Sterilization using a corona discharge with HO droplets and examination of effective species[C]. Proc.15th Int. Symp. Plasma Chemistry, Orleans, France,2001, Ⅱ:743-751.
    [46]A. I. Kuzmichev, I. A. Soloshenko, V. V. Tsiol- ko, et al. Feature of sterilization by different type of atmospheric pressure discharges[C]. Proc. Int. Symp. High Pressure Low Temperature Plasma Chemistry, Greifswald, Germany,2001:402-406.
    [47]罗跃辉,杨兰均,冯允平等.放电等离子体空气灭菌净化技术的研究[J].高电压技术,27(5),2001:39-40.
    [48]李国文.生物法净化挥发性有机废气(VOCs)的研究[J].西安:西安建筑科技大学,1999.
    [49]Gonzalez-Martin, A S Jeevarajan, O J Murphy·Photodegradation of Organic Compounds in the Vapor Phase Using TiO2-Coated Optical Fibers[J]. J. Adv. Oxid. Tech.,1998,3(3):253-260.
    [50]R Changrani, G B Raupp.Performance Evaluation of a Titania-coated Reticulaed From Photocatalytic Oxidation Reactor[J]. J. Adv. Oxid. Tech.,1998,3(3):277-284.
    [51]都基峻,季学李.低温等离子体处理气态污染物[J].污染防治技术,2000,13(1):33-34.
    [52]Shoji Hashimoto, Teruyuki Hakoda, Koichi Hirata, et al. Low energy electron beam treatment of VOCs[J]. Radiation Physics and Chemistry,2000,57:485-488.
    [53]王银生,季学李,羌宁.脉冲电晕等离子体净化有机污染物甲苯的实验研究[J].同济大学学报,2000,28(6):699-701.
    [54]J S Chang, T Yamamoto, H Kohno, et al. Reamoval of Xylene, Trichloroethylene and Their Mixtures from Air Stream by a PulseCorona Discharge[J]. J. Adv. Oxid. Tech.,1997,2(2):346-352.
    [55]E N Ruddy, L A Caroll. Select the best VOC Control Strategy[J]. Chemical Engineering Progress, 1993,89(7):28-35.
    [56]K L L Vercamnen, A A Berzin, F Lox, et al. Destruction of Volatile Organic Compounds by Non-thermal Plasmas:A Critical Re-view[J]. J. Adv. Oxid. Tech.,1997,2(2):312-329.
    [57]Carlos M Nunez, Geddes H Ramsey, Wade H Poder, et al.Corona Destruction:An Innovtive Control Technology for VOCs and Air Toxics[J]. Air and Waste Management Association,1993, 43:242-247.
    [58]K Urashima, J S Chang, T Ito, et al. Destruction of Volatile Organic Compounds in Air by a Superimposed Barrier Discharge Plasma Reactor and Activated Carbon Filter Hybrid System[C]. Proc. IEEE-IAS Annual Meeting.Piscataway, NJ, USA:IEEE,1997:1969-1974.
    [59]T Yamamoto, K Mizuno, I Tamori, et al. Catalysis-Assisted Plasma Technology for Carbon Tetrachloride Destruction[J]. IEEE Trans.Ind. Appl.,1996,32(1):100-105.
    [60]晏乃强,吴祖成,施耀,等.电晕-催化技术治理甲苯废气的实验研究环境科学[J].1999,20(1):11-14.
    [61]李坚,马广大.电晕法处理VOCs的机理分析与实验[J].西安建筑科技大学学报,2000,32(1):24-27.
    [62]J S Chang, A Chakrabarti, T A Myint, et al. The Effect of Corona Wire Geometries on the Destruction of Volatile Organic Compounds in Air by a Pulsed Corona Discharge Plasma Reactor-Adsorbent HybridSystem[J]. J. of Adv. Oxid. Tech.,1999,4(3):297-304.
    [63]Yamamoto T, et al. Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor[J]. IEEE Transaction on industry application,1992,28(3):528-534.
    [64]聂勇,李伟,施耀,等.脉冲放电等离子体治理甲苯废气放大试验研究[J].环境科学,2004,25(3):30-34.
    [65]C.M. Nunez, G.H.Ramsey, W.H. Ponder, et al. Corona destruction:an innovative control technology for VOCs and air toxic[J]. Air & waste,1993,43:242-247.
    [66]Hongchang Wang, Duan Li, Yan Wu et al. Removal of four kinds of volatile organic compounds mixture in air using silent discharge reactor driven by bipolar pulsed power.Journal of electrostatics,67 (2009):547-553.
    [67]H. Ichiura, T. Kitaoka, H. Tanaka. Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique[J]. Chemosphere,2003,50:79-83.
    [68]全燮,詹天珍,回滨,等.TiO2-SiO2-GF复合光催化剂对甲醛光催化降解研究[J].大连理工大学学报,2005,45(4):522-526.
    [69]李晓红,徐自力,于连香,等.TiO2-SiO2纳米粒子气相光催化降解甲苯的研究[J].吉林大学学报,2005,43(2):247-251.
    [70]C.H. Ao, S.C. Lee, J.Z. Yu, et al. Photodegradation of formaldehyde by photocatalyst TiO2:effects on the presences of NO, SO2 and VOCS[J]. Applied catalysis B:Environmental,2004,54:41-50.
    [71]M. Okubo, T. Yamamoto, et al. Electric air cleaner composed of non-thermal plasma reactor and electrostatic precipitator[J]. IEEE Trans on IA,2001,37 (5):1505-1511.
    [72]Keping Yan, Hexing Hui, Mi Cui, et al. Corona induced non-thermal plasma:fundamental study and industrial applications[J]. Journal of electrostatics 1998,44:17-39.
    [73]Vinogradov Jan, Rivin Boris, Sher Eran. NOx reduction from compression ignition engines with DC corona discharge-An experimental study[J]. Energy,2007,32(3):174-186.
    [74]Ruinian Li. A Phenomenon of oxidation in removal of SO2 from flue gas by positive pulsed streamer[C]. The 2th International conference on Applied Electrostatics,1993,32-38.
    [75]T Yamamoto, P A Lawless, L E Sparks. Triangle-shaped DC corona discharge device for molecular decomposition[J]. IEEE Trans. on Ind. Appl.1989,25(4):743-749.
    [76]Jen-Shih Chang, Phil A. Lawless, Toshiaki Yamamoto. Corona discharge processes[J]. IEEE Transactions on Plasma science,1991,19(6):1152-1161.
    [77]宿鹏浩.针阵列对板电晕放电及其与催化结合脱硝研究.博士毕业论文,2008.
    [78]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1992.
    [79]Yehia, Ashraf. Calculation of ozone generation by positive dc corona discharge in coaxial wire-cylinder reactors [J]. Journal of Applied Physics,2007,101(2):213-217.
    [80]Zheng W., Liu, F., Wang, W. Optical study of OH radical in a needle-plate DC corona discharge[J]. EPJ Applied Physics,2007,38(2):153-159.
    [81]Pekarek, S. Ozone production by a dc corona discharge in air contaminated by n-heptane[J]. Journal of Physics D:Applied Physics.2008,41(2):133-136.
    [82]高翔,余权,吴祖良等.喷嘴-平板直流电晕放电中的OH光谱研究[J].强激光与粒子束,2007,19(4):700-704.
    [83]田地,余刚,张彭义等.太阳能学报,2002,23(1):66.
    [84]段晓东,孙德智,朱质彬等.哈尔滨工业大学学报,2002,34(5):725.
    [85]张悠金,杨俊,李婉等.化学研究与应用,2001,13(6):709.
    [86]Lee BY, Park SH, Lee SC. Decomposition of benzene by using a discharge plasma-photocatalyst hybrid system[J]. Catalysis Today,2004,93-95:769-776.
    [87]张增凤,丁慧贤.低温等离子体-催化脱除室内VOC中的甲醛.黑龙江科技学院学报,2004,14(1):15-17.
    [88]Kim HH, Lee YH, Ogata A. Plasma-driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition[J]. Catalysis Communications,2003,4 (7):347-351.
    [89]Lee, SH. Development of photocatalyst plasma air cleaning filter used in air conditioner[J].J. Adv. Oxid.Technol.,2003,6 (1):66-69.
    [90]Li DA, Yakushiji D, Kanazawa S. Decomposition of toluene by streamer corona discharge with catalyst[J]. J. Electrostatics,2002,55 (3-4):311-319.
    [91]Daito S, Tochikubo F, Watanabe T. NOx removal process in pulsed corona discharge combined with TiO2 photocatalyst[J]. J. Appl. Phys. Part 1,2001,40 (4A):2475-2479.
    [92]Shin SY, Hong YK, Lee SH. A study on performance of photocatalyst plasma for air clean[C]. Proc. 4th Int. Symp. on Heating, Ventilating and Air Conditioning,2003,1-2:37-43.
    [93]Y. H. Lee, W. S. Jung, Y. R. Choi. Application of pulsed corona induced plasma chemical process to an industrial incinerator. Environ. Sci. Technol.,2003,37 (11):2563-2567.
    [94]朱益民.正直流流光放电等离子体源装置,实用新型,2000.00201301.0
    [95]朱益民.非热放电和光催化协同净化污染空气装置,实用新型,2003,03104038.1
    [96]王晓臣,朱益民.多针对板负电晕放电电极间距确定[J].高电压技术,2003,29(7):40-42.
    [97]陈海丰,朱益民,宿鹏浩,等.多针电极结构双极电晕放电伏安特性研究[J].高电压技术,2007,33(10):92-95.
    [98]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1992.
    [99]A. Robledo-Martinez. Characteristics of DC corona discharge in humid, reduced-density air[J]. Journal of Electrostatics,1992,29:101-111.
    [100]Raizer Y P. Gas discharge physics[M]. Kisin V I transl. Berlin, Germany:Springer-Verlag,1991,349.
    [101]Sigmond R S. Simple approximate treatment of unipolar space-charge-dominated coronas:The Warburg and the saturation current [J]. J. Appl. Phys.,1982,53(2):891-898.
    [102]Chandra, Avinash. Investigations on Electrostatic Precipitator:A Case Study. IEEE Industry [J]. Applications Sociaty,1998,3:1947-1952.
    [103]朱益民,孔祥鹏.多针对板电晕放电伏安特性研究[J].高电压技术.2006,32(158):57-68.
    [104]朱益民,孔祥鹏,张曼霞,孙培廷.多针对板电晕放电中针尖半径对伏-安特性影响[J].北京理工大学学报,2005,25(128):41-44.
    [105]陈海丰,宿鹏浩,朱益民.发射光谱研究多针对板双极电晕放电形貌[J].光谱学与光谱分析,2009,29(1):24-27.
    [106]Chen Haifeng, Su Penghao, Yang Shu. Study on Bipolar Corona Discharge in Emitting Needle Electrode Configuration[J]. J.Adv.Oxid.Technol.,2008,11(1):116-120.
    [107]Avinash Chandra. Investigations on electrostatic precipitator:a case study[J]. IEEE, Piscataway, NJ, USA,1998,3:1947-1952.
    [108]Brocilo D, Podlinski J, Dekowski J, et al. Electrohydro-dynamic flow patterns in a wide spacing spike-plate electrostatic precipitators under negative coronas[C]. Recent developments in applied electrostatics. Oxford. UK:Elsevier,2004,100-103.
    [109]Okubo M., Yamamoto T., Kuroki T., et al. Electric air cleaner composed of non-thermal plasma reactor and electrostatic precipitator [C]. Conf Rec IAS Annu Meet,1999,3:1483-1488.
    [110]Niu, J. L. et al. Quantification of dust removal and ozone emission of ionizer air-cleaners by chamber testing[J]. J. of Electrostatics,51-52(2001):20-24.
    [111]G L Leonard, M Mitchner, S A Self, et al. Experimental study of the effect of turbulent diffusion on precipitator efficiency [J]. J. Aerosol Science,1982,13:271-284.[112]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002.
    [113]M. Laroussi. Sterilization of contaminated mat- ter with an atmospheric pressure plasma[J]. IEEE Trans. Plasma Science,1996; 24:1188-1191.
    [114]M. Yamamoto, M. Nishioka, M. Sadakata. Sterilization using a corona discharge with HO droplets and examination of effective species[C]. Proc.15th Int. Symp. Plasma Chemistry, Orleans, France,2001, Ⅱ:743-751.
    [115]A. I. Kuzmichev, I. A. Soloshenko, V. V. Tsiol-ko, et al. Feature of sterili- zation by different type of atmospheric pressure discharges[C]. Proc. Int. Symp. High Pressure Low Temperature Plasma Chemistry, Greifswald, Germany,2001:402-406.
    [116]朱晓波,陈家森,李祥,等.电晕放电致使微生物失活的机理研究[J].华东师范大学学报(自然科学版),2000,3:62-66.
    [117]Roberts P, Hope A. Virus inactivation by high intensity broad spectrum pulsed light[J]. Journal of Virological Methods,2003,110:61-65.
    [118]Shechmeister I L. Sterilisation by ultraviolet irradiation. Disinfection, sterilisation and preservation [M] (3rd edition), Philadelphia, USA:Lea and Febiger,1983.106-124.
    [119]朱林泉,朱苏磊,靳雁霞.SARS病毒紫外C杀灭技术[J].应用激光,2003,23(6):342-344.
    [120]Tree J A, Adams M R, Lees D N. Virus inactivation during disinfection of wastewater by chlorination and UV irradiation and the efficacy of F+ bacteriophage as a 'Viral Indicator'[J]. Wat. Sci. Tech.,1997,35: 227-232.
    [121]Y. Sekine & A.Nishimura. Removal of formaldehyde from indoor air by passive type air-cleaning materials[J]. Atmosphere Environment,2001,35:2001-2007.
    [122]Y. Sekine. Oxidative decomposition of formaldehyde by metal oxides at room temperature[J]. Atmospheric Environment,2002,36:5543-5547.
    [123]H. Ichiura, T. Kitaoka, H. Tanaka. Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique[J]. Chemosphere,2003,50:79-83.
    [124]A. L. Linsebigler, G. Lu, J. T. Yates Jr. Photocatalysis TiO2 surfaces:principle, mechanism, and selected results[J]. Chem. Rev.,1995,7:735-758.
    [125]Y. Ohko, K. Hashimoto, A. Fujishima. Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin film[J]. J. Phys. Chem. A 1997,101:8057-8062.
    [126]A. Mizuno, et al. Indoor air cleaning using a pulsed discharge plasma[J]. IEEE Trans. Ind. Appl., 1999,35(6):1284-1288.
    [127]Y. Zhu et al. Experiment on DC streamer discharge for indoor air cleaning[C].7th Int.Conf.on Advanced Oxidation Technologies for Water and Air Remediation, Candana,2001:121-122.
    [128]M.Okumoto, A.Mizuno. Conversion of methane for higher hydrocarbon fuel synthesis using pulsed discharge plasma method[J]. Catalysis Today,2001,71:211-217.
    [129]Gutsche C.D.,'Pasto,D. J.有机化学基础[M].人民教育出版社,北京,1982,267-268.
    [130]Peyrous R., Pignolet P., Held B. Kinetic simulation of gaseous species created by an electrical discharge in dry or humid oxygen[J]. J Phys. D:Appl. Phys.1989,22:1658-1667.
    [131]Ono R., Oda T. OH radical measurement in a pulsed arc discharge plasma observed by a LIF method[J]. IEEE Trans. Ind. Appl.2001,37 (3):709-714.
    [132]Dai.,S.论环境化学[M].高等教育出版社:北京,1997:23-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700