高压静电场中液体射流的雾化研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用静电场来提高液体射流的雾化效果是近年来发展的一项新技术,它是应用高压静电技术使液体介质经过喷嘴后通过不同方法带上电荷,形成荷电雾滴群。该技术被广泛应用在静电喷涂,静电印刷,污染研究,气象试验,农药喷洒以及核反应堆燃料添加等领域。应用液体射流雾化技术在一定的高压静电场中即可有效地实现液滴的微粒化,它可以降低雾滴尺寸、提高雾滴谱的均匀性和沉积效率,同时在节省原料、提高液体利用效率、减少污染等方面的作用日益突出。因此,高压静电场中的液体射流雾化是当前必须研究的一个新课题,具有非常重要的理论意义和实际应用价值。
     本文针对目前国内外静电雾化技术的初步研究现状,依据静电学原理和针-板电极电晕放电机理,在荷电液体射流雾化试验的基础上,建立相关仿真模型,运用数值分析方法,从试验研究和数值模拟与计算等方面深入阐述高压静电场中液体射流的雾化机理,它将为荷电液体射流的大规模工业应用提供重要的参考依据。本文还对静电涂油机的喷涂雾化试验和数学模型进行了深入探讨,对提高其喷涂雾化效果的关键技术进行了必要的分析。该课题的研究对于开发新型的静电涂油机和高效节能的静电喷涂设备、拓展现有的高压静电场和射流理论有十分重要的意义。本文的主要研究工作及创新点如下:
     ①对液体射流在高压静电场中的荷电机理及雾化过程进行了理论分析与研究,将射流长度、雾化角和液滴粒径及其分布作为静电场中描述液体射流雾化的主要指标。提出将荷电液体射流的雾化过程分为射流区、过渡区和雾化区,研究了液体在各个区的运动,深化了荷电液体射流雾化的实质。依据静电学原理,对静电场中液滴的荷电方式进行了深入探讨,给出了高压静电场中液滴荷电量的计算方法和液滴破碎的理论临界场强;
     ②依据高压静电场中液滴的受力情况,确定了液体射流荷电液滴的运动方程,在此基础上推导出了荷电液滴的理论最大运动速率。根据初始液滴总能量原则,通过理论分析与计算得到了荷电液滴一次分裂为两个和一次分裂为多个的理论数学模型,它为进一步研究荷电液滴的多次分裂提供了理论依据;
     ③对不同荷电液体射流的雾化过程和现象进行全面和系统地试验研究,通过自行设计、组装荷电液体射流雾化的试验装置,分别从宏观(射流长度和雾化角)和微观(浓度分布和液滴粒径)观察同一环境下煤油、乳化剂、酒精和柴油等不同液体介质在高压静电场中的雾化过程,总结不同液体射流在高压静电场中的雾化规律;
     ④对针-板电极负电晕放电特性进行分析,建立了喷嘴与接地电极之间的高压静电场简化模型,结合电磁场仿真软件和有限元数值计算方法分别探讨了完全空气介质和空气介质中掺有液态介质的针-板电极空间静电场变化规律,它将为获得荷电液体射流最佳的雾化效果和控制液滴在空间静电场中的运动轨迹提供重要的参考依据;
     ⑤基于荷电液体射流的数学和物理模型,利用广义坐标下的拉格朗日方程,建立了针-板电极静电场作用下无粘性液体射流的色散方程。结合不同的液体介质,分析了电欧拉数、电极间距、射流半径等因素对荷电液体射流的轴对称模型和非轴对称模型的影响,揭示了荷电液体射流不稳定性的实质;
     ⑥将有限差分技术耦合到流体力学中,解决了在荷电液体射流表面的Poisson方程和Navier-Stokes方程。基于CFD求解方法,对二维荷电液体射流的雾化进行了数值模拟,它为荷电液体射流的深入仿真研究提供了重要的理论基础;
     ⑦通过静电涂油机的油液雾化试验得到了影响油液雾化质量的主要因素。根据MATLAB程序来定量计算、分析得到了静电涂油机喷射雾化的射流长度、雾化角和油线间距的试验数据,采用多元回归法,分别归纳计算出三者同电压、刀梁到钢板之间的距离二因素的理论回归数学模型。依据所建立的数学模型,实现了静电涂油机喷涂雾化过程的动态模拟;
     ⑧依据静电喷涂原理,从静电涂油机的油液荷电装置方面对现已研制的静电涂油机做进一步改进,理论结合试验,找出了提高现有静电涂油机喷涂质量的关键技术,它为开发和研制出新一代高效、节能环保型的静电涂油机提供了重要的参考依据。
Improving the effects of liquids jets atomization with a high voltage electrostatic field is a new technology in recently years. Liquid medium can be charged by various ways after passing through the nozzle to form charged fog drops groups based on the high-voltage technique. It is widely used in electrostatic spraying, electrostatic printing, pollution research, meteorological experiment, pesticide spraying and stock of the nuclear reactor. The liquid can be micronized effectively using liquid jets technology in a high voltage electrostatic field. It can reduce the size of the fog drop; increase the uniformity and the efficiency of aggradations of the fog drops. The advantage is more and more outstanding in saving the materials, elevating the used efficiency of the liquid and reducing the environment pollution. So it is a necessary investigative new task, which has an important theoretical significance and practical application value.
     According to initiative researches of electrostatic atomization technology at home and abroad in this thesis, based on electrostatics theory and corona discharge mechanism, the experiments of charged liquid jets is researched and the related simulation models is established. Applying numerical solution, atomization mechanism of charged liquid jets is represented deeply in a high voltage electrostatic field from experimental study, numerical simulation and calculation, which provides an important reference for a large-scale industrial use of charged liquid jets. Atomizing spraying experiment and mathematical model in the electrostatic oiler are studied and their key technologies for increasing the effects of atomizing spraying are also essential discussed in the thesis. It is a very important significance that develops a new type of electrostatic oiler and energy-efficient electrostatic spraying equipments and extends the existing theories of high-voltage electrostatic field and jets. The main studies and creative points of the thesis are followed:
     ①Charged mechanism and atomization procedure of liquid jets in a high voltage electrostatic field are theoretical analyzed, jet length, atomizing angle and liquid droplets particle size distribution are main factors for describing charged liquid jets. Jet area, transient area and atomization area are proposed for charged liquid jets in a high voltage electrostatic field and the movement of every area is discussed, which deepens the parenchyma for atomization of charged liquid jets. Based on electrostatics theory, charged ways of liquid droplets in a high voltage electrostatic field is discussed. At the same time, computational method of carrying capacity and theoretic critical electrical strength for breaking of liquid droplets is calculated.
     ②Charged liquid droplets equation of motion is determined in a high-voltage electrostatic field by means of studying its stress, and its maximum theoretic velocity is deduced from the equation. According to the primary total energy principle, the theoretic mathematical model of charged liquid droplets divided is determined for dividing two or more once, which can provide the rationale as liquid droplets of liquid jets dividing more and more.
     ③The process and phenomenon of atomization are experimental researched fully and systematically for different charged liquid jets. The equipment is self-designed and assembled in a high voltage electrostatic field. Under the same environment, atomization process for the different liquid medium of kerosene, emulsifier, alcohol and diesel oil are studied form macroscopic view (the jet length and the atomizing angle) and microscopic view (the concentration distribution and the particle size of liquid droplets). Finally, the regular pattern of atomization is summarized for different liquid jets in a high voltage electrostatic field.
     ④According to analyzing the properties of negative corona discharge for the needle-plate electrodes, the simplified model between the nozzle and the grounded electrode is established in a high-voltage electrostatic field. Variations of the electric field intensity is analyzed in depth for absolute air dielectric and liquid dielectrics contained in air dielectric based on the finite element method of numeric computation and simulation software in an electromagnetic field. It will supply important references for getting the best effects of charged liquid jets atomization and controlling the movement of charged liquid droplets in a high-voltage electrostatic field.
     ⑤Based on the physical model and mathematical model of charged liquid jets, the dispersion equations of inviscid liquid jets in an electrostatic field are established according to Lagrange equation under the generalized coordinate. Combining different liquid medium, the effects of electrical Euler number, electrode spacing and jet radius on axisymmetric modes and non-axisymmetric modes of charged liquid jets are studied, which reveals the essence of instability of charged liquid jets.
     ⑥A finite difference technique is coupled with a computational fluid dynamic code to solve Poisson’s equation and the Navier-Stokes equations at the electrostatic fluid-flow interface. The simulation of a two-dimensional electrified liquid jet is analyzed based on the solving method of CFD. So it will offer a significant basic theory for the research in depth of numerical simulation of charged liquid jets.
     ⑦Spray quality is decided by oil atomization in electrostatic oiler. The main factors of atomizing quality for oil are obtained by the experiment of oil atomization in electrostatic oiler. Using MATLAB program to calculate and solve experimental data of the jet length, the atomizing angle and the oil-line interval for spraying atomization in electrostatic oiler, the regression mathematical model that reflects three results and the voltage, the distance of blade and steel plate are inductive calculated individually by making use of multiple regression method. Finally, dynamic simulation of atomizing spraying process is realized based on the established mathematical model.
     ⑧Improvements are done based on electrostatic oiler have researched and designed according to the theory of electrostatic spraying. The charged device of oil drops in the electrostatic oiler is studied in depth. Based on combing the theory and the experiment, the key technology for improving the spray quality of electrostatic oiler is gained. It will provide crucial references for developing and manufacturing a new generation electrostatic oiler that is efficient, energy-saved and environment protected.
引文
[1]鲍重光.静电技术原理[M].北京:北京理工大学出版社, 1993.
    [2]解光润.高压静电场[M].上海:上海科学技术出版社, 1987.
    [3]高全杰.静电涂油机中油液的荷电雾化研究[J].中国机械工程, 2002, 13(7):552-554.
    [4] Edward S. L. Agricultural electrostatic spray application: a review of significant research and development during the 20th century[J]. Journal of Electrostatics, 2001, 51-52:25-42.
    [5]高全杰,王家青.梁板电极电场中油液荷电雾化理论分析[J].钢铁研究, 2002, 30(5):25-27.
    [6]王家青,汪朝晖,高全杰.静电喷涂技术及其应用探讨[J].机械工程师, 2006(1):136-138.
    [7] Macky W. A. Research on uncharged water drops in uniform electric field[J]. Proc.Roy.Soc, 1931, A(133):565-570.
    [8] Vonnegut B., Neubauer R. L. Production of monodisperse liquid particles by electrical atomization [J]. Journal of Colloid Science, 1952, 7(6):616-622.
    [9] Doyle A., Moffet D. R., Vonnegut B. Behavior of evaporating electrically charged droplets[J]. Journal of Colloid Science, 1964, 19(2):136-143.
    [10] Abbas M. A., Latham J. The instability of evaporating charged drops[J]. Journal of Fluid Mechanics, 1967, 30:663-669.
    [11]渡边彰.应用物理[M]. 1968.
    [12] Schweizer J. W., Hanson D. N. Stability limit of charged drops[J]. Journal of Colloid and Interface Science, 1971, 35(3):417-423.
    [13] Jones A. R., Thong K. C. The production of charged monodisperse fuel droplets by electrical dispersion[J]. Journal of Physics D: Applied Phys., 1971, 4: 1159-1165.
    [14] Rosell-LIompart J., Femandez J. Generation of monodisperse droplets 0.3 to 4μm in diameter from electrified cone-jets of highly conducting and viscous liquids[J]. Journal of Aerosol Science, 1994, 25(6):1093-1119.
    [15] Miller J. A., Biblarz O. Electrostatic spray modification in gas turbine combustion[J]. Journal of Prolusion and Power, 1997, 3(2):187-192.
    [16] Gomez A., Tang K. Atomization and dispersion of quasi-monodisperse electrostatic sprays of heptane[C]. Proceedings of the 5th International Conference on Liquid Atomization and Spray Systems. Gaithersburg, USA, 1998.
    [17] Jido M. Burning characteristics of electro statically sprayed liquid fuel and formation ofcombined droplets of different fuels[C]. Conference Record-IAS Annual Meeting, 1999.
    [18] Jeong H. K., Nakajima T. Aerodynamic influences on droplet atomization in an electrostatic spray[J]. JSME International Journal, 2000, 42(2):224-229.
    [19] Watanabe H., Matsuyama T., Yamamoto H. Experimental study on electrostatic atomization of highly viscous liquids[J]. Journal of Electrostatics, 2003, 57(2): 183-197.
    [20] Balachandran W., Machowski W., Ahmad C. N. Electrostatic atomization of conducting liquids using AC superimposed on DC fields[J]. IEEE Transaction on Industry Application, 1994, 30(4):850-855.
    [21] Lastowa O., Balachandran W. Novel low voltage EHD spray nozzle for atomization of water in the cone jet mode[J]. Journal of Electrostatics, 2007, 65(8):490-499.
    [22]苏永宏.烃燃料的静电雾化[C].中国静电年会论文集,西安:西安纺织大学出版社, 1999.
    [23]李世武.燃油带电荷辅助雾化的机理与试验研究[D].吉林:吉林工业大学博士学位论文, 2000.
    [24]李世武,王云鹏.静电雾化技术在汽车节能降排中的应用[J].汽车工程, 2001, 23(4):283-286.
    [25]吴志峰.光脉动法颗粒测试技术及其在喷嘴雾化研究中的应用[D].上海:上海交通大学博士学位论文, 2002.
    [26]朱智勇.数字粒子图像测速技术(DPIV)在燃油喷雾特性研究中的应用[D].上海:上海交通大学硕士研究生学位论文, 2003.
    [27]陈效鹏,董绍彤.电雾化装置及雾化模型研究[J].实验力学, 2005, 15(1):97-103.
    [28]吴有金,吴亚雷,许晓慧等. PZT溶胶液静电雾化雾场模拟[J].中国科学技术大学学报, 2006, 36(7):755-760.
    [29]闻建龙,王军锋.柴油高压静电雾化燃烧的研究[J].内燃机学报, 2003, 21(1):31-34.
    [30]张军,闻建龙,王军锋.不同雾化模式下静电雾化的雾滴特性[J].江苏大学学报(自然科学版), 2006, 27(2):105-108.
    [31]郑捷庆,张军,刘勇.高压静电雾化雾滴粒径双峰分布概率密度模型[J].高电压技术, 2007, 33(10):88-91.
    [32] Taylor G. I. Disintegration of water drops in an electric field[J]. Proc.Roy.Soc, 1964, (A )280:383-397.
    [33] Donald G. R., Amold J. K. Analysis of the disruption of evaporating charged droplets[J]. IEEE Transaction on Industry Application, 1983, IA-19(5):771-775.
    [34] Elghazaly H. M. A., Castle G. S. P. Analysis of the instability of evaporating charged liquid drops[J]. IEEE Transactions on Industry Application, 1986, IA-22(5):892-896.
    [35] Hayati I., Bailcy A. Investigation into mechanism of electrohydrodynamic spraying of liquids #1[J]. Journal of Colloid Interface Science, 1987, 117(1):205-221.
    [36] Hayati I., Bailcy A. Investigation into mechanism of electrohydrodynamic spraying of liquids #2[J]. Journal of Colloid Interface Science, 1987, 117(1):222-230.
    [37] Electrostatic Spraying Systems Inc. Watkinsville, Georgia, 1992.
    [38] Cherney L. T. Structure of Taylor cone-jets: limit of low flow rates[J]. Journal of Fluid Mechanics, 1999, (378):167-196.
    [39] Cherney L. T. Electrohydrodynamics of electrified liquid menisci and emitted jets[J]. Journal of Aerosol Science, 1999, 30(7):851-862.
    [40] Hartman R. Electro-hydrodynamic atomization in cone-jet mode [D]. Ph. D. Thesis, TUD, 1998.
    [41] Pantano C., Gannan-Calvo A. M., Barrero A. Zeroth-order, electrohydrostatic solution for electrostaticspraying in cone-jet mode[J]. Journal of Aerosol Science, 1994, 25(6):1065-1077.
    [42] Ganan-Calvo A. M., Davila J., Barrero A. Current and droplet size in the electro-spraying of liquids. Scaling laws[J]. Journal of Aerosol Science, 1997, 28(2):249-275.
    [43] Colbert S. A., Cairncross R. A. A discrete drop let transport model for predicting spray coating patterns of an electrostatic rotary atomizer[J]. Journal of Electrostatics, 2006, 64(3):234-246.
    [44] Petera J., Nassehi V. A new two-dimensional finite element model using Lagrange framework constructed along fluid particle trajectories[J]. Number Methods Engineering, 1996(39):4159-4182.
    [45] Mestel A J. Elelctrohydrodynamic stability of a slight viscous jet[J]. Journal of Fluid Mechanism, 1994, (274):93-113.
    [46] Mestel A. J. Elelctrohydrodynamic stability of a slight viscous jet[J]. Journal of Fluid Mechanism, 1996, (312):9311-326.
    [47] Turnbull R. J. On the instability of an electrostatically sprayed liquid jet[J]. IEEE Transaction on Industry Application, 1992, 28(6):1432-1438.
    [48] Turnbull R. J. Finite conductivity effects on electrostatically sprayed liquid jet[J]. IEEE Transaction on Industry Application, 1996, 32(4):837-843.
    [49] Artana G., Touchard G., Romat H. Absolute and convective instability in an electrified jet[J]. Journal of Electrostatics, 1997, 40-41:33-38.
    [50] Jaworek A., Krupa A. Forms of the multijet mode of electrohydrodynamic spraying[J]. Journal of Aerosol Science, 1996, 27(7): 979-986.
    [51] Peter D. N., Michael G. Stability and atomization characteristics of electrohydrodynamic jetsin the cone-jet and multi-jet modes[J]. Journal of Aerosol Science, 2000, 31(10): 1165-1172.
    [52] Yoon S. S., Heister S. D., Epperson J. T., et al. Modeling multi-jet mode electrostatic atomization using boundary element methods[J]. Journal of Electrostatics, 2001, 50(2):91-108.
    [53] Setiawan E. R., Heister S. D. Nonlinear modeling of an infinite electrified jet[J]. Journal of Electrostatics, 1997, 42(3):243-257.
    [54] Petera J. D., Rooney L. R. Particle and droplet trajectories in a non-linear electrical field[J]. Chemical Engineering Science, 1998, 53(22):3781-3792.
    [55] Rafiroiu D., Munteanu C., Morar R., et al. Computation of the electric field in wire electrode arrangements for electrostatic processes applications[J]. Journal of Electrostatics, 2001, 51-52(5):571-577.
    [56] Zhao S., Castle G. S. P., Adamiak K. The effect of space charge on the performance of an electrostatic induction charging spray nozzle[J]. Journal of Electrostatics, 2005, 63(3-4):261-272.
    [57] Jose M. L., Alfonso M. G., Miguel P S. One-dimensional simulation of the breakup of capillary jets of conducting liquids application to EHD spraying[J]. Journal of Aerosol Science, 1999, 30(7):895-912.
    [58] Lastow O., Wamadeva B. Numerical simulation of electrohydrodynamic(EHD) atomization[J]. Journal of Electrostatics, 2006, 64(12):850-859.
    [59] Huberner A. L., Chu H. N. Instability and breakup of charged liquid jets[J]. Journal of Fluid Mechanic, 1971, 4: 361-372.
    [60] Artana G., Romat H., Touchard G. Theoretical analysis of linear stability of electrified jets flowing at high velocity inside a coaxial electrode[J]. Journal of Electrostatics, 1998, 43(2): 83-100.
    [61] Abdel R. F. E., Bothaina M. H. A., Abd E. K. E. Nonlinear electrohydrodynamic stability of a finitely conducting jet under an axial electric field[J]. Physica A: Statistical Mechanics and its Applications, 2001, 297(3-4):368-388.
    [62] Priol L., Baudel P., Louste C., et al. Theoretical and experimental study(linear stability and Malvern granulometry)on electrified jets of diesel oil in atomization regime[J]. Journal of Electrostatics, 2006, 64(7-9):591-596.
    [63] Li F., Yin X. Y., Yin X. Z. Instability analysis of an inner-driving coaxial jet inside a coaxial electrode for the non-equipotential case[J]. Journal of Electrostatics, 2008, 66(1):58-70.
    [64] Lopez-Herrera J. M., Ganan-Galvo A. M. A note on charge capillary jet break of conducting liquids: experimental validation of a viscous one-dimensional model[J]. Journal of FluidMechanic, 2004, 501: 303-326.
    [65] Abd E. K. E. Nonlinear instability of charged liquid jets: Effect of interfacial charge relaxation[J]. Physica A, 2007,375(2): 411-428.
    [66]李芳,刘志勇,尹协振,等.电场作用下导电射流稳定性的理论与实验研究[J].力学季刊, 2007, 28(4): 517-520.
    [67]叶齐政,顾温国.运动水滴在尖-板式直流电场中的放电研究[J].高电压技术, 1999, 25(4):7-8.
    [68]罗惕乾,王泽,闻建龙.荷电两相射流的理论分析与计算[J].江苏理工大学学报(自然科学版),2000,21(6):50-53.
    [69]王军峰.荷电喷雾燃烧的基础研究——燃油静电喷雾及荷电两相湍流射流的研究[D].江苏:江苏大学博士学位论文, 2002.
    [70]王军锋,闻建龙.煤油荷电喷雾特性及喷雾流场的实验研究[J].机械工程学报, 2002, 38(7):37-40.
    [71]马祝阳,许德玄.雾化电晕放电除尘原理及其特性研究[J].东北师大学报(自然科学版), 2003, 35(2):35-40.
    [72]邹远权,叶明玉.电场中介质微粒的荷电机理与实验控制模型[J].大学物理, 1997, 16(10):33-35.
    [73]于水,李理光,胡宗杰等.静电喷雾液滴破碎的理论边界条件研究[J].内燃机学报, 2005, 23(3):239-243.
    [74]彭正标,梁坤峰,袁竹林.液-液射流雾化的数值模拟与实验研究[J].热能动力工程, 2007,22(2):205-212.
    [75]张军, Michael W. R.静电雾化过程中粒径分布的预测[J].农业工程学报, 2008, 24(12): 89-92.
    [76]王贞涛,闻建龙.静电雾化理论及应用技术研究进展[J].排灌机械, 2004, 22(6):41-44.
    [77]陈效鹏.电雾化装置及雾化模型研究[J].实验力学, 2000, 15(1):97-103.
    [78]于才渊,于春健,朱琳.静电雾化理论研究及技术应用的进展[J].干燥技术与设备, 2003(1):12-14.
    [79]柯亨玉.电磁场理论[M].北京:人民邮电出版社, 2004.
    [80]林德云.电磁场理论基础[M].北京:清华大学出版社, 1990.
    [81]王晓明,赵莹.等离子体反应器多相介质电场畸变分析[J].高电压技术, 2005, 31(5):41-46.
    [82]陈文会,李忠,景占荣,等.基于有限元法的含固定微粒的GIS静电场分析[J].高电压技术, 2006, 32(1) :16-17.
    [83]甘艳,阮江军,邬雄.有限元法分析高压架空线路附近电场分布[J].高电压技术, 2006,32(8) :52-55.
    [84] Chonung K., Jongbok J., Xingyi H., et al. Finite element analysis of electric field distribution in water treed XLPE cable insulation: The influence of geometrical configuration of water electrode for accelerated water treeing test[J]. Polymer Testing, 2007, 26(4) :482-488.
    [85]洪川,胡建林,孙才新,等.棒一板长空气间隙击穿电场稳态条件的仿真[J].高电压技术, 2007, 33(11) :75-79.
    [86]刘永刚,沈星,赵东标,等.压电纤维复合材料的静电场分析[J].人工晶体学报, 2007, 36(3): 596-600.
    [87]司马文霞,邵进,杨庆.应用有限元法计算覆冰合成绝缘子电位分布[J].高电压技术, 2007, 33(4): 21-25.
    [88]王佳颖,方春恩,戴王松. 35kV触头盒电场计算及优化设计[J].高电压技术, 2007, 33(12):63-65.
    [89]黄玲,文习山. RTV涂层和增爬裙对绝缘子电场分布的影响[J].高电压技术, 2007, 33(3):91-95.
    [90]欧阳克诚.静电涂油技术研究[J].冶金设备, 1999, (4):13-16.
    [91]曾顺华,王术军.新型钢板静电涂油机的研制[J] .冶金设备, 2001, (2):5-8.
    [92]金振远,刘圣勇.带钢静电涂油机关键技术研究[J].设计与研究, 1999, (1):3-9.
    [93]黄云华.静电涂油机在冷轧厂的应用[J].武钢技术, 2001, 39(4):34-37.
    [94]王家青.静电涂油机中油液的荷电雾化机理研究[D].武汉:武汉科技大学博士学位论文, 2007.
    [95]李云霄,张家春.静电喷涂防锈油的应用[J].合成润滑材料, 2006, 33(2):38-39.
    [96]欧阳克诚.静电涂油机用油的性能要求[J].武汉科技大学学报(自然科学版), 2002, 25(4): 373-375.
    [97] Rayleigh J. W. S. On the instability on the jets [J]. Proc.Roy.Soc., 1879, 24:71-97.
    [98] Jones A. R. Thong K. C. The Production of charge monodisperse full droplets by electrical dispersion [J]. Brit Jour Al Phy Series D, 1971, 4:1159-1166.
    [99] Gomez A., Tang K. Charged and fission of droplets in electrostatic spray [J]. Physics Fluid, 1994, 6(1):28-79.
    [100] Jayasinghe S. N., Edirisinghe M. J. Effect of viscosity on the size of relics produced by electrostatic atomization[J]. Journal of Aerosol Science, 2002, 33(10):1379-1388.
    [101] Wang Z., Jin H. H. Numerical simulation of charged gas-liquid two phase jet flow in electrostatic spraying[J]. Chinese Journal of Mechanical Engineering(English Edition), 2001, 14(3):266-270.
    [102]于水,李理光,胡宗杰等.静电喷雾液滴破碎的理论边界条件研究[J].内燃机学报, 2005,23(3): 239-243.
    [103] Gao Q. J. Analyzing on mechanism of oil atomization[C]. The 4th International Conference on Applied Electrostatics, 2001, 9-13.
    [104]高全杰,田中捷.梁板电极电场中油液荷电雾化的实验研究[J].武汉科技大学学报(自然科学版), 2002, 25(3): 259-260.
    [105]张军,闻建龙,王军锋,等.毛细管-环电极下的静电雾化模式的研究[J].农业机械学报, 2006, 37(6): 124~127.
    [106] Bon K. K., Sang S. K. Electrospray characteristics of highly viscous liquids[J]. Journal of Aerosol Science, 2002, 33(10):1361-1378.
    [107]丁宁.加热条件下液体射流破碎机理的研究[D].天津:天津大学硕士学位论文, 2002.
    [108]张淑容.气流式雾化喷嘴的特性研究[D].大连:大连理工大学硕士学位论文, 2006.
    [109]刘连胜.气泡雾化喷嘴的雾化特性及其喷雾两相流场的实验和理论研究[D].天津:天津大学博士学位论文, 2001.
    [110]钱丽娟,熊红兵,林建忠.湍动雾化射流液雾粒径分布的数值模拟[J].工程热物理学报, 2007, 28(2):251-254.
    [111]周浩生,冼福生.荷电射流雾化研究[J].江苏理工大学学报(自然科学版), 1995, 16(4):7-12.
    [112]杜青,刘宁,张建新,等.液体燃料射流破碎的热不稳定性分析[J].燃烧科学与技术, 2005, 11(4): 323~328.
    [113]严春吉,解茂昭.液体射流分裂与雾化机理在喷雾特性预测中的应用[J].应用基础与工程科学学报, 2007, 15(4):552-558.
    [114]王军锋,闻建龙,王泽,等.煤油荷电喷雾特性及喷雾流场的试验研究[J].机械工程学报, 2002, 38(7): 37-40.
    [115]贾卫东,李萍萍,邱白晶,等.农用荷电喷雾雾滴粒径与速度分布的试验研究[J].农业工程学报, 2008, 24(2): 17-21.
    [116]高全杰,王记军.静电涂油机中涂油质量控制的试验研究[J].武汉科技大学学报(自然科学版), 2007, 30(6): 606-609.
    [117]于辉,何雄奎,仲崇山,等.在静电喷雾中喷液物化特性对荷质比的影响[J].安徽农业科学, 2007, 35(15): 4706-4707.
    [118]王家青,高全杰.静电涂油机中油液分叉现象的机理研究[J].机械工程师[J]. 2006(9): 60-61.
    [119]陈馨.静电涂油机雾化仿真研究[D].武汉:武汉科技大学硕士学位论文, 2005.
    [120]王记军.梁板电极结构的静电涂油机雾化研究[D].武汉:武汉科技大学硕士学位论文, 2007.
    [121]汪朝晖.静电涂油机雾化实验与数学模型研究[D].武汉:武汉科技大学硕士学位论文, 2006.
    [122]高全杰,卢泽杰,苏再军.静电涂油机中油液电晕荷电雾化机理研究[J].冶金设备, 2006(5): 5-9.
    [123]高全杰,王家青,王记军.液体荷电雾化技术及其在静电涂油机中的应用[J].武汉科技大学学报(自然科学版), 2008, 31(1): 18-22.
    [124]于水,胡宗杰,邓俊.静电喷雾高压喷射下喷雾特性的研究[J].内燃机学报, 2006, 24(5): 434-439.
    [125] Peng M., Balachandran W., Ping X. Formation of ceramic thin films using electrospray in cone-jet mode[J]. IEEE Transaction on Industry Application, 2002, 38(1):50-56.
    [126] Patrick K. N., Osman A. B. Dynamics of drop formation in an electric field[J]. Journal of Colloid and Interface Science, 1999, 213(1):218-237.
    [127]ЛЫЩЕЕСКИЙA. C.Ополяхконцентрацийраспыленнойжидкостивосесимметрнчнойструе[J].НФЖ, 1961, 4(2):21-25.
    [128]РЕВЗИНИ.С.Влияниеэлектростатическогополянараспределениераспыленнойжидкостивосесимметричнойструе[J].Электронаяобработкаматериалов, 1981, 127(6):31-33.
    [129]徐家莺.等离子体物理学[M].北京:原子能出版社, 1981.
    [130]孙杏凡.等离子体及其应用[M].北京:高等教育出版社, 1982.
    [131]曾咪,孙岩洲,潘萍.介质阻挡放电和介质阻挡电晕放电的特性比较[J].电工材料, b 2008(1): 43-45.
    [132]杨加元,陈海丰,朱益民.多针电极双极电晕放电电极间距优化[J].高电压技术, 2008, 34(1): 95-98.
    [133]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社, 1996.
    [134] Victor Y. S., Alexander A. S. Disintegration of a charged viscous jet in a high electric field[J]. Fluid Dynamics Research, 2001, 28(1): 23-39.
    [135] Kanako S., Mitsuo T. Influence of needle voltage on the formation of negative core ions using atmospheric pressure corona discharge in air[J]. International Journal of Mass Spectrometry, 2007, 261(1):38-44.
    [136] Xu D. X., Li J., Wu Y., et a1. Discharge characteristics and applications for electrostatic precipitation of direct current: corona with spraying discharge electrodes[J]. Journal of electrostatics, 2003, 57(3-4):217-224.
    [137] Hyungho P., Kyoungtae K., Sangsoo K. Effects of a guard plate on the characteristics of an electrospray in the cone-jet mode[J]. Journal of Aerosol Science, 2004, 35(11): 1295-1312.
    [138] Zhang B. L., Zhou Y. X., Wang N. H., et al. Polarity reversal charging of polypropylene films under DC corona discharge[J]. Journal of electrostatics, 2005, 63(6-10):657-663.
    [139]陈海丰,朱益民,宿鹏浩等.多针电极结构双极电晕放电伏安特性[J].高电压技术, 2007, 33(10):92-95.
    [140] Leuteritz U., Velji A. A novel injection system for combustion engines based on electrostatic fuel atomization[C]. SAE International Spring Fuels and Lubricants Meeting and Exposition, Paris, 2000.
    [141]杨超珍,吴春笃,陈翠英.静电喷雾电晕充电特性研究[J].排灌机械. 2006, 24(1): 27-30.
    [142]陈志刚,周金木,吴春笃.高压脉冲负电晕荷电喷雾试验研究[J].高电压技术, 2007, 33(2):128-131.
    [143]杨超珍,赵伟敏,叶五梅,等.等离子体射流雾滴的荷电特性研究[J].高电压技术, 2007, 33(2):62-65.
    [144]杨超珍.环形电极感应充电机理及其应用[J].高电压技术, 2004, 30(5): 9-11.
    [145]王晓臣,朱益民.多针对板式负电晕放电电极间距确定[J].高电压技术, 2003, 29(7): 40-42.
    [146] Junhong C., Jane H. D. Model of the negative DC corona plasma: comparison to the positive DC corona plasma[J]. Plasma Chemistry and Plasma Processing, 2005, 23(1): 83-102.
    [147] Frank H. B. R. Influence of high voltage needle electrode material on hydrogen peroxide formation and electrode erosion in a hybrid gas–liquid deries electrical discharge reactor[J]. Plasma Chemistry and Plasma Processing, 2007, 25(10): 54-78.
    [148]杨津基.气体放电[M].北京:科学出版社, 1983.
    [149]张德丰. Matlab数值分析与应用[M].北京:国防工业出版社, 2007.
    [150]张培强. MATLAB语言:演算纸式的科学工程计算语言[M].合肥:中国科学技术大学出版社, 1996.
    [151]刘定兴,胡先权,周天润.尖端导体表面附近的电场特性[J].重庆师范大学学报:自然科学版, 2007, 24(1): 56-58.
    [152]兰明建,李旭.对球形尖端导体表面附近静电场的研究[J].重庆工商大学学报, 2004, 21(3): 305-308.
    [153] Ferchmin D., Banachowicz E., Ferchmin A. R. Water phases under high electric field and pressure applied simultaneously[J]. Journal of Molecular Liquids, 2007, 23(1): 1-11.
    [154]卢泽杰.电晕等离子体荷电雾化机理及涂油机结构有限元分析[D].武汉:武汉科技大学硕士学位论文, 2006.
    [155] Petera J., Weatherley L. R., Rooney D., et al. A finite element model of enzymatically catalyzed hydrolysis in an electrostatic spray reactor[J]. Computers & Chemical Engineering,2009, 33(1):144-161.
    [156] Armand C., Lucian D. Numerical modeling of combined corona-electrostatic fields[J]. Journal of Electrostatics, 2004, 61(1):43-55.
    [157] Paine M. D., Alexander M. S., Smith K. L., et al. Controlled electrospray pulsation for deposition of femtoliter fluid droplets onto surfaces[J]. Journal of Aerosol Science, 2007, 38(3):315-324.
    [158] Regele J. D., Papac M. J., Rickard M. J. A., et al. Effect of capillary spacing on EHD spraying from an array of cone jets[J]. Journal of Aerosol Science, 2002, 33(11):1471-1479.
    [159] Kanako S., Mitsuo T. Influence of needle voltage on the formation of negative core ions using atmospheric pressure corona discharge in air[J]. International Journal of Mass Spectrometry 2007, 261(1):38-44.
    [160] Lackowski M., Adamiak K., Jaworek A., et al. Electrostatic charging of particulates by ionic current in alternating electric field[J]. Power Technology, 2003, 135-136(10):243-249.
    [161] Ian G. H., Adrian G. B., Adel H. H. A design method for the electrostatic atomization of liquid aerosols[J]. Journal of Aerosol Science, 1996, 27(7):987-996.
    [162] Rodriguze S., Nuno L., Jodar L., et al. An improvement of the finite-element method for computing the electric field of waveguides with complex geometry[J]. Mathematical and Computer Modelling, 2005, 41(6-7):791-805.
    [163] Khaddour B., Atten P., Coulomb J. L. Numerical solution of the corona discharge problem based on mesh redefinition and test for a charge injection law[J]. Journal of Electrostatics, 2008, 66(5-6):254-262.
    [164]刘国强,赵凌志,将继娅. Ansoft工程电磁场有限元分析[M].北京:电子工业出版社, 2005.
    [165]卢泽杰,高全杰,权秀敏.基于ANSOFT有限元分析的静电涂油机刀梁极结构优化设计[J].机械设计与制造, 2007, (5):21-23.
    [166] Lintanf A., Neagu R., Djurado E. Nanocrystalline Pt thin films prepared by electrostatic spray deposition for automotive exhaust gas treatment[J]. Solid State Ionics, 2007, 177(39-40):3491-3499.
    [167] Jual L., Fernandez J. M. Charge and size distributions of electrospray drops[J]. Journal of Colloid and Interface Science, 1997, 186(2):280-293.
    [168] Bailey A. G. Electrostatic atomization of liquids[J]. Sci. Prog. Oxf., 1974, 61: 555-581.
    [169] Chandrasekhar S. Hydrodynamic and hydromagnetic stability[M]. Dover: New York, 1981.
    [170] Ion I. I., Floryan J. M., Haywood R. J. Dynamics of water droplets breakup in electric field[J]. IEEE Transactions on industry applications, 1992, 28(5):1203-1204.
    [171] Schneider J. M., Lindblad N. R., Hendricks C. D., et al. Stability of an electrified liquid jet[J]. Journal of Applied Physics, 1967(38): 2599-2605.
    [172] Son P. H., Ohba K. Theoretical and experimental investigations on instability of an electrically charged liquid jet[J]. International Journal of Multiphase Flow, 1998, 24(4):605-615.
    [173] Arnold D., Read M. D., Bernard V. Behavior of evaporating electrically charged droplets [J]. Journal of Colloid Science, 1964, 19(2): 136-143.
    [174] Baudry K., Romat H., Artana G. Theoretical influence of the pressure of the surrounding atmosphere on the stability of high velocity jets[J]. Journal of Electrostatics, 1997, 40-41:73-78.
    [175] Colbert S. A., Cairncross R. A. A discrete droplet transport model for predicting spray coating patterns of an electrostatic rotary atomizer[J]. Journal of Electrostatics, 2006, 64(3-4):234-246.
    [176]贾卫东,邱白晶,施爱平,等.农用高压静电喷雾场的实验[J].农业机械学报, 2007, 38(12): 66-69.
    [177]杨超珍,吴春笃,陈翠英,等.静电喷雾的突变特性分析和试验[J].农业机械学报, 2007, 38(1): 72-75.
    [178]胡迎锋.高压静电场中几种液体介质的雾化机理探讨与试验研究[D].武汉:武汉科技大学硕士学位论文, 2006.
    [179] Kaiser K. L., Kaiser M. J., Weeks W. L. The simulation of electrified liquid jets[J]. Mathematical and Computer Modelling, 1993, 18(12):57-83.
    [180] Mark J. K., Kenneth L. K., Walter L. W. Electrohydrodynamic simulation investigation[J]. Mathematics and Computers in Simulation, 1994, 36(3):221-240.
    [181] Joseph D. H, Richard G. Fluid flow electrophoresis model[J]. Bioelectrochemistry, 2004, 63(1-2): 365-367.
    [182] Lei H., Wang L. Z., Wu Z. N. EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator[J]. Journal of Electrostatics, 2008, 66(3-4):130-141.
    [183] Abu-Ali J., Barringer S. A. Method for electrostatic atomization of emulsions in an EHD system[J]. Journal of Electrostatics, 2005, 63(5):361-369.
    [184] Colbert S. A., Cairncross R. A. A computer simulation for predicting electrostatic spraying coating patterns[J]. Power Technology, 2005, 151(1):77-86.
    [185]高全杰,汪朝晖,王家青.基于有限元分析的静电涂油机涂油室结构优化研究[J].组合机床与自动化加工技术, 2006(3): 32-34.
    [186]欧阳克诚.静电涂油机工作机理[J].重型机械, 1999(1): 27-30.
    [187]王家青.静电涂油机梁板电极电晕放电特性研究[J].机械与电子, 2008(7): 6-8.
    [188]胡传胜,熊洪亮.喷嘴液滴雾化细度和喷雾角测量装置的研究[J].能源研究与信息, 2001, 17(4): 225-226.
    [189]应保胜,高全杰,等.静电喷涂中荷电油液的雾化研究[J].表面技术, 2003, 32(5):12-15.
    [190]王家青.静电涂油机中油液的荷电雾化机理研究[D].武汉:武汉科技大学硕士学位论文, 2003.
    [191]王学仁,温忠粦.应用回归分析[M].重庆:重庆大学出版社, 1991.
    [192]白新桂.数据分析与试验设计优化[M].北京:清华大学出版社, 1996.
    [193]孙兆林. MATLAB 6.X图像处理[M].北京:清华大学出版社, 2002.
    [194] Richard S., Jr M. S. OpenGL [M].北京:人民邮电出版社, 2001.
    [195]黄晶晶.基于OpenGL的发动机试车仿真动画设计[J].计算机仿真, 2005, 22(4):214-217.
    [196]高全杰,陈馨.基于粒子系统的静电喷涂雾化模拟研究[J].冶金设备, 2004(6): 47-49.
    [197] Jarke J. V. W. Flow visualization with surface particles[J]. IEEE Computer Graphics & Applications, 1993, 13(4): 18-24.
    [198]武汉科技大学静电涂油机研制课题组.板带静电涂油机开发研制报告[M], 2003.
    [199]田家熙,薛海鹏,田中捷,等.静电涂油装置[P].中国, ZL98232316.6.
    [200]高全杰,曾顺华.新型钢板静电涂油机的关键技术[J].机械与电子, 2002(6): 42-44.
    [201]高全杰,曾顺华.钢板静电涂油机的改型[J].机械研究与应用, 2002, 15(3): 44-46.
    [202] Gao Q. J., Wang J. Q. Realization of the lower blade inclined spraying in electrostatic oiler[C]. The 5th International Conference on Applied Electrostatics, 2004, 172-179.
    [203]王家青,高全杰.静电涂油机中下刀梁斜喷技术计算机模拟及实现[J].机床与液压, 2004(5): 30-31.
    [204]王家青,高全杰.静电涂油机中新型油液荷电装置的试验研究及仿真分析[J].中国机械工程, 2008, 19(18): 2176-2179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700