放电环境与尘粒电凝并效应分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,静电除尘技术以其高效率得到了迅速发展,但实践研究表明,静电除尘技术总体除尘效率可高达99%,但对微细粉尘PM2.5的捕集效率仍处于相对较低的状态。针对以上情况,本文提出了将雾化电晕放电应用于除尘领域的构想,并将干式电晕放电与雾化电晕放电两种不同放电环境下粉尘颗粒的荷电、凝并状态以及电场空间的特性变化进行了对比性的实验分析,进而证实了雾化电凝并技术能够提高微细粉尘PM2.5的捕集效率,该结果为推动静电除尘技术的发展拓宽了思路。
     本文在实验研究过程中,首次采用空腔式雾化电极接触电离的结构形式,着重将雾化放电与干式放电进行了对比,并对雾化放电应用于除尘领域的可行性及各个影响因素进行了分析研究,结果表明:
     1.雾化电晕放电以其高效的荷电机制能够使放电电流增大,这就保证了后期的凝并实验中微细粉尘粒子荷电、凝并效率的提高,同时对雾化溶液浓度及雾化电极直径与放电特性之间的关系进行了研究,得出溶液浓度及雾化直径在一定范围内的变化对放电特性的影响微乎其微,大大提升了雾化凝并装置的可实用性。
     2.相对于传统的静电除尘技术,雾化电凝并技术使得PM2.5的捕集效率得到了不同程度的提高,特别是0.1-0.6μm范围内的微细粉尘颗粒捕集效率大幅提高,0.4μm的粉尘粒子捕集效率达到峰值。
     3.对比实验结果显示,在雾化放电环境下,一定程度的提高电压能够提高小粒径颗粒的凝并捕集效率,但捕集效率的提高与电压的提高非正对应关系,不同的实验条件最佳的输入电压不同,需根据实际情况进行调整。
In recent years, Electrostatic dust removal technology has been developing rapidly due to the high efficiency, However, practical studies have shown that, the overall collection efficiency of electrostatic precipitator can be up to 99%, but the collection efficiency of PM2.5 is still at a relatively low state. For the above, the concept of atomization corona discharge applied to dust removal is proposed in this paper, The dry corona discharge and atomization corona discharge are analyzed comparatively, including the state of charge and coagulation of dust particles and the changes of characteristics in electric space. The collection efficiency of PM2.5 can be improved by the spray coagulation technology is further confirmed. The result broadens the idea of promoting the development of electrostatic dust removal technology.
     In the process of experimental studying, the structure of cavity-type atomizing electrode contact ionization is adopted firstly, focusing on the comparison of spray discharge and dry discharge. The feasibility that spray discharge applied to dust removal and the influence of various factors are analyzed. The results show that,
     1. The discharge current of atomization corona discharge can be increased for its efficient mechanism. This ensures that the charge and coagulation efficiency of fine dust particles can be improved in the latter experiment. The same time, the relationship between the discharge characteristics and concentration of spray solution and the diameter of atomization electrode is also studied, the results show that, the concentration and diameter changes within a certain range with minimal impact on the discharge characteristics. So the practical value of the atomization device is greatly enhanced.
     2. Compared with the traditional electrostatic dust removal technology, the capture efficiency of PM2.5 is improved with varying degrees by spray coagulation technology. Particularly the fine dust particles of 0.1-0.6 has the substantial increase in collection efficiency, and the collection efficiency of 0.4 dust particle is up to the peak.
     3. In the spray discharge environment, increasing the voltage to some extent, the coagulation efficiency of small size particles can be improved. But the relationship between capture efficiency and the voltage is non-positive corresponding. The best input voltage is different in different experimental conditions, need to be adjusted according to actual situation.
引文
[1]薄以匀.浅议我国煤烟型大气污染及其控制[Jl.科技智囊,2006(12):34-36.
    [2]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002.161-227.
    [3]曹守仁等.煤烟污染与健康[M].北京:中国环境科学出版社,1992.43-49.
    [4]高香林.除尘技术[M].华北电力大学,2001.75-78.
    [5]祁均田等.现代烟气除尘技术[M].北京:化学工业出版社,2008.94-97.
    [6]Hinds W C. Aerosol Technology[M]. New York:John Wiley & Sons Inc,1982.288-300.
    [7]韩可琦,王玉浚.中国能源消费的发展趋势与前景展望[J].中国矿业大学学报,2001,34(2):38-40.
    [8]S.Oglesby. Future directions of particulate control technology[J]. Air Waste Manage,1990,40(8): 1183-1185.
    [9]M.Mohr, S.Ylatalo, N.Klippel, El.Kauppinen, H.Burtscher. Submicron fly ash Penetration through eletrostatic Precipitators at two coal Power plants[J].Aerosol Sci.Technol,1996(24):191-204.
    [10]马祝阳,许德玄.雾化电晕放电除尘原理及其特性研究[J].东北大学学报自然科学报,2003,35(2):36-40.
    [11]周建刚,刘栋,白敏药,邱秀梅.同极性荷电粉尘的凝并研究[J].环境工程,2009,27(2):12-14,62.
    [12]J.A.Gallego-Juerez, E.R.F, De Sarabia, G.Rodriguez-Corral. Application of acoustic agglomeration to reduce fine particle emission from coal combustion plants [J]. Environ. Sci. Technol, 1999,33(21):3483-3849.
    [13]A. Bologa,H.R, Paur,T, Wa.scher. Electrostatic charging of aerosols as a mechanism of gas cleaning from submicron particles[J]. Filtr Separ,2001,38 (10):26-30.
    [14]T.Watanabe, F.Tachikubo, Y.Koizumi, T.Tsuchida, J.Hautanen, E.I.Kuappinen. Submicron particle agglomeration by an electrostatic agglomerator[J]. Electrostat,1995 (34):367-383.
    [15]G.G. Won, G.S.P. Castle. An investigation of an AC precipitator agglomerator[A].IEEE Ind. Appl. Soc. Annual Meeting[C].1980.941-947.
    [16]陈旺生,董伟,郭俊一.微细颗粒物电凝并技术研究新进展[J].工业安全与环保,2008,34(5): 1-3.
    [17]S. Kanazawa, T. Ohkubo, Y. Nomoto, T. Adachi. Submicron particle agglomeration and precipitation by using a bipolar charging method[J]. Electrostat,1993,29 (3):193-209.
    [18]J.Hautanen, M.Kilpela, inen,E.I, Kauppinen,J, Jokiniemi, K.Lehtinen. Electrical agglomeration of aerosol particles in an alternating electric field[J]. Aerosol Sci. Technol,1995,22 (2):181-189.
    [19]J.Kildeso, V.K.Bhatia, L.Lind,E, Johnson,A, Johansen. An experimental investigation for agglomerati-on of aerosols in alternating electric fields[J]. Aerosol Sci. Technol,1995 (23):603-610.
    [20]J.H, Ji,J, Hwang,G.N, Bae,Y, G.Kim. Particle charging and agglomeration in DC and AC electric fields[J].Electrostat,2004(61):57-68.
    [21]唐敏康,周跃.电除尘器中粉尘粒子的凝并[J].科技导报,2007,25(19):23-25.
    [22]卢涛.气固两相流中粒子双极荷电凝并研究[D].江苏:江苏大学能动学院,2007.
    [23]A. Laitinen,J. Hautanen,J. Keskinen,E. Kauppinen,J. Jokiniemi,K. Lehtinen,Bipolar charged aerosol agglomeration with alternating electric field in laminar gas flow.J. Electrostal.1996(38):303-315.
    [24]Y.S. Kim,J.B. Lee,J. Hwang,K.S. Park,An experimental study of electrical agglomeration of fine particles in an alternating electric field. Seventh International Conference on Electrostatic Precipitation,Kyongju,Korea,20-25 September,1998:179-187.
    [25]向晓东,陈宝智,张国权.荷电粉尘在交变电场中的凝并与收集[J].东北大学学报,1999,20(6):616-618.
    [26]冯涛.异极性荷电粉尘在电场中的凝并与收集[D].天津:天津大学环境科学与工程学院,2006.
    [27]赵爽.电凝并脱除可吸入颗粒物的实验研究[D].浙江:浙江大学机械与能源工程学院,2006.
    [28]毛程奇.交变电场粒子荷电凝并实验研究[D].大连:大连海事大学,2007.
    [29]王海宁,阮金良,余汉民.电除尘器脉冲供电电源及其应用研究[J].电力环境保护,2001,17(1):13-15.
    [30]潘伯良,雒晓卫,于溯源.颗粒凝并过程中需要考虑的几个因素[J].武汉理工大学学报,2007,29(10):94-95.
    [31]米俊峰,许德玄,杜胜男.磁增强雾化电晕放电烟气净化器研究[J]. Science&technology,2007, 25(27):36-42.
    [32]郭治明,许德玄,孙英浩.雾化电晕放电静电除尘的实验研究[J].北京理工大学学报,2005, 25(增刊):146-148.
    [33]林山杉,盛连喜,李明非.磁增强电晕放电及其对颗粒荷电的研究[J].电工技术学报,2004,19(9):43-45.
    [34]孙玉荣.电除尘器中颗粒运动状态研究[D].保定:河北大学静电研究所,2008.
    [35]宿鹏浩,朱益民,陈海丰.多针对板负电晕放电电离区形貌确定[J].光谱学与光谱分析.2007,27(11):2172-2173.
    [36]冯小军.线管放电系统中颗粒物运动状态分析[D].保定:河北大学静电研究所,2009.
    [37]刘志强,白谏平,李海凤,李庆.板式电除尘器离子风数值模拟[J].北京理工学报.2009,2962-64.
    [38]蒋展鹏.环境工程学[M].北京:高等教育出版社,2002.79-82.
    [39]李庆.基于激光测量技术的煤尘污染静电治理研究[D].保定:河北大学,2008.
    [40]李庆,孙晓荣,李海凤,张文月,王霁光.高压负电晕放电物化实验分析[J].高电压技术,2010,36(6):55-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700