离子风空气加速器流场的PIV技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子风空气加速器技术是空气电晕放电离子风研究领域的一项国际前沿技术。近些年来,国外学者围绕如何提高离子风效应产生的气流速度以及效率等问题,开展了一系列的基础理论研究和应用基础研究,主要内容包括:离子风对电除尘器捕集效率的影响、燃烧控制和强化换热效率等,而在利用离子风效应实现气流加速的研究方面起步较晚。本文基于离子风效应,探索一种与风机、风扇工作原理完全不同的新型气流传输基础部件,为离子风的技术应用开辟一个新途径,为节能环保提供一种新方法。
     粒子图像测速技术(PIV,Particle Image Velocimetry)是一种基于流场图像互相关分析的二维流场非接触式测试技术,近年来,该技术发展迅速,已成为复杂流场研究领域中一种有效的实验研究手段。本文从分析离子风发生机理出发,综述了国内外离子风研究的状况,阐述了离子风空气加速器的原理、模型及结构;通过对国内外PIV技术在离子风效应实验研究的分析,详述了PIV技术的原理,针对离子风空气加速器内部复杂流场的特点,搭建了用于离子风空气加速器流场研究分析的PIV实验平台,并对其进行了详细分析和论证,该实验系统包括PIV测量装置、高压电源、放电电极与流体通道四部分,通过该实验系统研究了放电场域离子风速度矢量特性及其分布规律,为实现离子风空气加速装置的研究开发提供了理论和实验的依据。
     本文从流场特性的研究入手,通过所搭建的PIV实验平台,探讨了离子风空气加速器实现气流加速的方法;利用粒子成像技术获得了离子风速度场图像。研究结果显示:在不考虑电晕极之间电场影响的前提下,在高压电源上叠加一微小变化的交流分量,通过改变其幅值和频率,气流速度将有规律地随之变化;在电压参数不变的情况下,离子风速随着极间距离的减小而随之提高;研究结果还表明,对于离子风空气加速器内部的复杂流场,PIV技术是一种行之有效的全流场测量方法。本文研究了不同的电压波动(幅值和频率)以及不同的电极结构下离子风的速度分布及流场性质,分析离子风作用机制。本文研究成果有助于获得更大的离子风速度,对于后续的研究具有重要的指导意义。
Ionic wind air accelerator research is one branch of air corona discharged ionic windtechnology. In recent years, scholars at home and abroad are carrying out a series of basicaltherory and its applied research on how to improve air flow speed and efficiency of ionicwind.The main contents of ionic wind include the impact of ionic wind on ESP collectioneffiency, combustion control and the effiency of enhancing heat transferring.However, theresearch of ionic wind used for ionic flow accelerating started much later. One new kind of gastransmissed infrastructure components based on the ionic wind technology is investigated. Thework principle of ionic wind air accelerator is completely different from the common fan. Itwill open up a new way for the engineering application of ionic wind and provide a newmethod for energy savings and environment protection.
     The particle image velocimetry (PIV) is an two-dimensional flow non-contacted testingtechnique based on the cross-correlation analysis of the fluid flow images,in recent years, itsapplied range has covered widely. PIV has became a kind of effective means for the researchfield for complex flow field.By analyzing the mechanism of ionic wind, the research reviewsof ionic wind from domestic and foreign is summarized, the principle、model and structure ofionic wind air accelerator is explained;by analysising the study status of ionic wind by meansof PIV technology at home and abroad, the principle of PIV technology is detailed in thethesis. According to the characteristic of flow field on ionic wind air accelerator, the PIVexperimental platform was built and the detailed analysis and verification were done. Theexperimental platform include measuring devices, high voltage power supply、dischargedelectrode and the fluid channel. The characteric of ionic wind velocity in the discharge field andthe regularity distribution is studied by PIV system experimental platform. In the paper, theeffect of tiny change of high voltage power supply and polar distance altering are studied,which provide theoretical ground and experimental base for the research and development forionic wind air accelerating device.
     In this thesis, the factors of ionic wind accelerator achieving the air flow acceleratingfrom the perspective of studying flow field was studied through the PIV experimental platform;a clear and accurate ionic wind velocity field image was achieved by using PIV particleimaging from the point of view of the characteristics of the flow field. This paper studiesvelocity distribution and flow field properties under different voltage fluctuations (includingamplitude and frequency) and different polar distance. The research results showed that oncondition that without considering the impact of electric field between polars, at both ends of ahigh voltage power supply, small changes of AC component was superposition (includingchanges in its amplitude and frequency), along with changes in flow velocity; under thecondition of voltage parameters invariable, the ionic velocity improved as the distance betweenthe poles decreases subsequently; PIV technology measurements is an effective techniquemethod for the whole flow field measurements. Analyzing the action range and mechanism ofionic wind contributes to acquiring greater wind speed, which has a strong significance on thefollowing-up study.
引文
[1] Locb L. B.Electrical Coronas.Univorsity of California Press.1965
    [2] Kallio G. A.,Stock D.E. Interaction of electrostatic and fluid dynamic fields in wi re-plateelectrostatic precipitators[J]. Fliud Mech.1992;240:l33-16
    [3] M. Robinson..A history of electric wind[J].American Journal of Physics,1962,30(5):366-372.
    [4] A. P. Chattock. On the velocity and mass of ions in the electric wind in air[J]. Philos. Mag. S5,1899,48(294):401-420.
    [5] M. Robinson. Movement of Air in the Electric Wind of the Corona Discharge[J]. Trans of AIEE,1961,80(1):143-150.
    [6] Akira Yabe, Yasuo Mori, Kunio Hijikata. EHD Study of the Corona Wind between Wire and PlateElectrodes[J]. AIAA Journal,1978,16(4):340-345.
    [7] The biefeld-brown effect [EB/OL]. http://montalk.net/science/84/the-biefeld-brown-effect.
    [8] Lin Zhao, Kazimierz Adamiak. Numerical analysis of forces in an electrostatic levitation unit [J].Journal of Electrostatics,2005,63:729-734.
    [9] Francis X. Canning, Cory Melcher, Edwin Winet. Asymmetrical capacitors for propulsion.NASA/CR-2004-213312.
    [10] T. T. Brown, Umatilla, Fla, Inc. Electrokinetic transducer [P]. US:3018394,1962-01-23.
    [11] William J. Coleman, Port Jefferson etc. Electrostatic propulsion means. US:3071705,1963-01-01.
    [12] T. T. Brown, Malvern. Electrohydrodynamic fluid pump [P]. US:326860,1966-08-23.
    [13] A. Rashkovan, E. Sher, H. Kalman. Experimental optimization of an electric blower by coronawind [J]. Applied Thermal Engineering,2002,22:1587–1599.
    [14] K. Adamiak, I. I. Inculet, G. S. P. Castle. The control of corona current distribution using shapedelectrodes [J]. Journal of Electrostatics,1993,30:381-392.
    [15] K. Adamiak. Simulation of corona in wire-duct electrostatic precipitator by means of theboundary ele-ment method [J]. IEEE Trans. on Industry Apply,1994,30:381-386.
    [16] K. Adamiak, X. Deng. Electric field and space charge density analysis in an AC charger for smallparticles [J]. Inst. Phys. Conf. Ser.,1999,163:305-308.
    [17] X. Deng, K. Adamiak. A numerical algorithm for simulation of the electric corona discharge inthe triode system [J]. Engineering Analysis with Boundary Elements,1999,23:597-602.
    [18] K. Adamiak, J. Zhang, L. Zhao. Finite element versus hybrid BEM-FEM techniques for theelectric corona simulation [J]. The Electrotechnical Review,2003,11:753-756.
    [19] L. Zhao, K. Adamiak. Characteristics of secondary EHD flow in pin-grid system generated byelectric corona discharge in air [C]. Proc. of2004Electrostatics Society of America Annual Meeting,Rochester, New York, June2004,104-118.
    [20] K. Adamiak. Numerical simulation of charge relaxation in low conductivity fluids stored incylindrical tanks [J]. IEEE Trans. on Magnetics,2004,40:710-713.
    [21] K. Adamiak, P. Atten. Simulation of corona discharge in point-plane configuration [J]. Journal ofElectrostatics,2004,61:85-98.
    [22] K. Adamiak, V. Atrazhev, P. Atten. Corona discharge in the hyperbolic point-plane configuration:direct ionization criterion versus approximate formulations [J]. IEEE Trans. on Diel. and Electr. Insul.,2005,12:1025-1034.
    [23] L. Zhao, K. Adamiak. EHD flow in air produced by electric corona discharge in pin-plateconfiguration [J]. Journal of Electrostatics,2005,63:337-350.
    [24]L. Zhao and K. Adamiak, EHD gas flow in electrostatic levitation unit, J. of Electrostatics, vol.64,pp.639-645,2006
    [25] K. Adamiak. AC electrostatic fluid flow in electrolytes generated by two coplanar electrodes [C].Proc. of NSTI Natotech2006Conference, Boston, Massachusetts,2006,2:574-577.
    [26] J. Zhang, K. Adamiak. A dynamic model for negative corona discharge in point-planeconfiguration [C]. Proc. of ESA/IEJ/IEEE-IAS/SFE Joint Conference on Electrostatics, Berkeley,California,2006,2:588-597.
    [27] L. Zhao, K. Adamiak. EHD gas flow in electrostatic levitation unit [J]. Journal of Electrostatics,2006,64:639-645.
    [28] J. Zhang, K. Adamiak. A multi-species DC stationary model for negative corona discharge inoxygen: point-plane configuration [J]. Journal of Electrostatics,2007,65:459-464.
    [29] J. Zhang, K. Adamiak, G.S.P. Castle. Numerical modeling of negative corona discharge in oxygenunder different pressures [J]. Journal of Electrostatics,2007,65:174-181.
    [30] J. Zhang, K. Adamiak. A single-species pulsed model of negative corona discharge in air [J].IEEE Trans. on Industry Apply.,2008,44:494-500.
    [31] N. E. Jewell-Larsen, D. A. Parker, I. A. Krichtafovitch, A. V. Mamishev. Numerical simulationand optimization of electrostatic air pumps.2004Annual Report Conference on Electrical Insulationand Dielectric Phenomena,2004.
    [32] Sergey Karpov, Igor Krichtafovitch. Electrohydrodynamic flow modeling using FEMLAB.Excerpt from Proceedings of the COMSOL Multiphysics User’s Conference2005Boston.
    [33] Stanley Weinberg, Los Angeles. Portable personal corona discharge device for destruction ofairborne microbes and chemical toxins [P]. US:5814135,1998-09-29.
    [34] Daniel M. Sherman, Stephen P. Wilkinson, J. Reece Roth. Paraelectric gas flow accelerator [P].US:6200539B1,2001-03-13.
    [35] Igor A. Krichtafovitch. Method of and apparatus for electrostatic fluid acceleration control of afluid flow [P]. US:666474B1,2003-12-16.
    [36] Roger L. Shannon, Dale F. Watkins, Sumner, John T. Pogson. Electric wind generator [P]. US:4210847,1980-07-01.
    [37] Wendell P. Spurgin, Cincinnati, Ohio. Two stage electrostatic precipitator with electric fieldinduced airflow [P]. US:4231766,1980-11-04.
    [38] Jimmy L. Lee, Santa Rosa, Calif. Electrokinetic transducing methods and apparatus and systemscomprising or utilizing the same [P]. US:4789801,1988-12-06.
    [39] Charles E. Taylor, Sebastopol, Shek Fai Lau. Electro-kinetic air transporter-conditioner [P]. US:6176977B1,2001-01-23.
    [40] Fumin Yang. Corona-driven air propulsion for cooling of microelectronics [D]. Washington: Univ.of Washington,2002.
    [41] K.T. Hyun, C.H. Chun;The wake flow control behind a circular cylinder using ion windExperiments in Fluids35(2003)541–552
    [42] Nels E. Jewell-Larsen. Optimization and miniaturization of electrostatic air pumps for thermalmanagement [D]. Washington: Univ. of Washington,2004.
    [43] Matthew Rickard, Derek Dunn-Rankin, Felix Weinberg, Fred Carleton. Characterization of ionicwind velocity [J]. Journal of Electrostatics,2005,63:711–716.
    [44] Mattlew Rickard, Derek Dunn-Rankin. Maximizing ion-driven gas flow [J]. Journal ofelectrotatics,2006,64:368-376.
    [45] Frans Soetomo, Gerald M. Colver, Kaveh Forouraghi;Micro-force measurement of drag on asmall flat plate in the presence of a corona dischargeJournal of Electrostatics64(2006)525–530
    [46] Felix Weinberg,Fred Carleton, Dhiren Kara Agatha Xavier,Derek Dunn-Rankin,MatthewRickard;Inducing gas flow and swirl in tubes using ionic wind from corona discharges Experiments inFluids (2006)40:231–237
    [47] Matthew Rickard, Derek Dunn-Rankin, Felix Weinbergb, Fred Carleton;Maximizing ion-drivengas flows Journal of Electrostatics64(2006)368–376
    [48] David B. Go, Raul A. Maturana, Timothy S. Fisher, Suresh V. Garimella;Enhancement ofexternal forced convection by ionic wind International Journal of Heat and Mass Transfer51(2008)6047–6053
    [49] Jen-Shih Chang, Hiroaki Tsubone, Glenn D. Harvel, Kuniko Urashima;Narrow-Flow-Channel-Driven EHD Gas Pump for an Advanced Thermal Management ofMicroelectronics IEEE Transactions on Industry Applications,Vol.46, NO.3, May/June2010
    [50] Florian Altendorfner,Frank Beyrau,Alfred Leipertz1,Thomas Hammer,Dieter MostGünter Lins,David Walter Branston; Technical Feasibility of Electric Field Control for TurbulentPremixed Flames Chem. Eng. Technol.2010,33, No.4,647–653
    [51]Jerzy Mizeraczyk, Marek Kocik, Jaros"aw Dekowski, Miros"aw Dors, Janusz PodlinH ski,Toshikazu Ohkubo,Seiji Kanazawa, Toshiyuki Kawasaki; Measurements of the velocity field of theflue gas flow in an electrostatic precipitator model using PIV method Journal of Electrostatics51--52(2001)272—277
    [52] Matthew Rickard, Derek Dunn-Rankin. Numerical simulation of a tubular ion-driven windgenerator [J]. Journal of Electrostatics,2007,65:646–654.
    [53] Luc Léger, Eric Moreau, Guillermo Artana, Gérard Touchard. Influence of a DC corona dischargeon the airflow along an inclined flat plate [J]. Journal of Electrostatics,2001,51-52:300-306.
    [54] E. Moreau, A. Labergue, Gérard Touchard. DC and pulse surface corona discharge along aPMMA flat plate in air: electrical properties and discharge-induced ionic wind [J]. J. Adv. Oxidat,2005,8(2):241–247.
    [55] Christophe Louste, Guillermo Artana, Eric Moreau, Gérard Touchard. Sliding discharge in air atatmospheric pressure: electrical properties [J]. Journal of Electrostatics,2005,63:615-620.
    [56] Maxime Forte, Luc Léger, Jérome Pons, Eric Moreau, Gérard Touchard. Plasma actuators forairflow control: measurement of the non-stationary induced flow velocity [J]. Journal of Electrostatics,2005,63:929-936.
    [57] Alexandre Labergue, Luc Leger, Eric Moreau, Gérard Touchard. Effect of a plasma actuator on anairflow along an inclined wall: P. I. V. and wall pressure measurements [J]. Journal of Electrostatics,2005,63:961-967.
    [58] Eric Moreau, Luc léger, Gérard Touchard. Effect of a DC surface-corona discharge on a flat plateboundary layer for air flow velocity up to25m/s [J]. Journal of Electrostatics,2006,64:215–225.
    [59] M. Forte, J. Jolibois, J. Pons, E. Moreau, G. Touchard, M. Cazalens. Optimization of a dielectricbarrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity:application to airflow control [J]. Exp Fluids,2007,43:917-928.
    [60] Eric Moreau. Airflow control by non thermal plasma actuators [J]. J. Phys. D: Appl. Phys,2007,40:605–636.
    [61] Eric Moreau, Gérard Touchard. Enhancing the mechanical efficiency of electric wind in coronadischarges [J]. Journal of Electrostatics,2008,66:39–44.
    [62] Eric Moreau, C. Louste, G. Touchard. Electric wind induced by sliding discharge in air atatmospheric pressure [J]. Journal of Electrostatics,2008,66:107–114.
    [63] Seth Walker,Takehiko Segawa; Mitigation of flow separation using DBD plasma actuators onairfoils: A tool for more efficient wind turbine operation Renewable Energy xxx (2011)1-6
    [64] Jichul Shin, Laxminarayan L. Raja;Cathode-sheath driven low-speed aerodynamic flow actuationusing direct-current surface glow discharges Journal of Electrostatics68(2010)453-457
    [65] N. Zouzou,E. Moreau; Effect of a filamentary discharge on the particle trajectory in aplane-to-plane DBD precipitator J. Phys. D: Appl. Phys.44(2011)285204doi:10.1088/0022-3727/44/28/285204
    [66]Sajanish Balagopal,David B. Go; Counter-flow Ionic Winds for Localized Hot Spot CoolingProc. ESA Annual Meeting on Electrostatics2011
    [67] Noureddine Zouzou, Boni Dramane, Eric Moreau, and Gérard Touchard;EHD Flow andCollection Efficiency of a DBD ESP in Wire-to-Plane and Plane-to-Plane Configurations IEEETransctions on Industry Applications,Vol47,No1,Jan/2011
    [68] M.Tański, M.Kocik and J.Mizeraczyk Electrohydrodynamic Gas Pump with Both InsulatedElectrodes Driven by Dielectric Barrier Discharge,IEEE Transactions on Dielectrics and ElectricalInsulation Vol.18, No.5; October2011
    [69] Emanuel S. Stockman, Sohail H. Zaidi, Richard B. Miles, Campbell D. Carter, Michael D.Ryan;Measurements of combustion properties in a microwave enhanced flame Combustion and Flame156(2009)1453–1461
    [70]陈海丰,朱益民,宿鹏浩,杨加元.多针电极结构双极电晕放电伏安特性[J].高压电技术,2007,33(10):92-95.
    [71]宿鹏浩,朱益民,陈海丰.多针对板负电晕放电电离区形貌确定[J].光谱学与光谱分析,2007,27(11):2171-2174.
    [72]宿鹏浩,朱益民,陈海丰.多发射光谱研究多针对板电晕放电形貌[J].光谱学与光谱分析,2008,28(9):1998-2002.
    [73]陈海丰,宿鹏浩,朱益民.多针双极电晕放电形貌发射的光谱研究[J].光谱学与光谱分析,2009,29(1):24-27.
    [74]朱益民*,杨树,黄丽萍,张零零,唐晓佳,李想.电晕放电及催化法净化室内空气.环境科学与技术2010,33(6E):86-88.
    [75]李清泉1,刘勇1,孔苏丽2.电流体动力等离子体发生器的仿真优化.高电压技术2009,35(1):17-21
    [76]刘勇,李清泉.电流体动力等离子体发生器特性实验研究.电工电能新技术2009,28(2):29-33
    [77]袁均祥,邱炜,郑程,杨兰均,张乔跟等.空气放电离子风特性的研究[J].中国电机工程学报,2009,29(13):110-116.
    [78]袁均祥,杨兰均,张乔根,刘鹏等.电极参数对尖-板电极空气放电离子风特性的影响[J].电工技术学报,2010,25(1):24-29.
    [79] Wei Qiu, Lingzhi Xia, Xiaoya Tan, and Lanjun Yang.The Velocity Characteristics of aSerial-Staged EHD Gas Pump in Air IEEE Trans. on Plasma Science,2010,38:2848-2853.
    [80]那刚1,李锻1,2,吴彦1,2,李杰1,2,鲁娜1,2等.线筒式脉冲高压电晕放电降解四氯乙烯/间二甲苯混合污染物[J].河北大学学报:自然科学版,2010,30(5):534-537.
    [81]周小旭1,钟诚文1,李凯1,陈效鹏2等.等离子体EHD顺电加速效应影响因素试验研究[J].实验力学,2010,25(3):286-292
    [82]李庆,李海凤,孙晓荣,张文月,王昊.电晕放电电流体状态实验研究与数值模拟.高电压技术2010,36(11):2739-2744.
    [83]刘志强,王霁光,李庆,张文月,孙晓荣.空腔水电极电晕放电雾化特性的研究..北京理工大学学报2011,31(1):78-83
    [84] Zhengwei Long, Qiang Yao;Evaluation of various particle charging models for simulatingparticle dynamics in electrostatic precipitators. Journal of Aerosol Science41(2010)702–718
    [85] Zhang, Xiangrong; Wang, Lianze; A stochastic method for calculating the collision andagglomeration in an electrostatic agglomerator,IEEE Conference Proceedings on MultimediaTechnology26-28July2011:1921-1928
    [86]杨小林,严敬.PIV测速原理及应用[J].西华大学学报2001,(1):19-21.
    [87]电晕放电--80008.cn百科http://8.80008.cn/80
    [88]周志敏,周纪海等.开关电源使用技术-设计与应用[M].北京:人民邮电出版社,2007.
    [89] Felix Weinberg,Fred Carleton, Dhiren Kara Agatha Xavier,Derek Dunn-Rankin,MatthewRickard;Inducing gas flow and swirl in tubes using ionic wind from corona discharges Experiments inFluids (2006)40:231–237
    [90] S. Oglesby, G. Nichols. A manual of electrostatic precipitator technology-Part I:Fundamentals [M]. Southern Research Inst., Birmingham, AL, Aug,1970.
    [91] Shane McGlaun, Engineers Develop Solid-state Fan That Puts Traditional Coolers to Shame
    [EB/OL]2008-03-19.
    [92]J. Lawton and F. J. Weinberg, Electrical Aspects of Combustion. Ox-ford, U.K.: Clarendon,1969.
    [93]杨小林,严敬.PIV测速原理及应用[J].西华大学学报2001(,1):19-21.[87]张军等.3D-PIV技术数值模拟研究[J].船舶力学,2000,(8):46-49.
    [94]张玮,王元,徐忠,等.应用粒子图像速度场仪对泊肃叶流动及圆柱绕流的测量[J].西安交通大学学报,2002,36(3):2462251.
    [95]梁爱国,龙新平,何培杰.应用PIV技术测量射流泵内部流场[J].水泵技术,2004(1):10214.
    [96]邓国强,董守平.流场测试中的粒子成像测速系统[J].石油机械,2000,28(COO):
    [97]赵峰,张军,徐洁,等.尾附体与主体连接形式对尾流场不均匀度影响的P IV测试评估[J].船舶力学,2001,5(5):6-14.
    [98]孙鹤泉,康海贵,李广伟. PIV原理与应用[J].水道港口,2002,(1):42245.
    [99] Particle Image Velocimetry Software Manual. TSI,2008.
    [100] Melting A. Tracer Particle and Seeding for Particle Image Velocimetry[J]. Journal of FluidsEngineering,2003,125:61-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700