白僵菌与引诱剂联合控制松褐天牛及白僵菌分子生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由松材线虫引起的松树萎焉病(Pine wilt disease)已成为我国南方松林最严重的森林病害,给林业生产和生态环境带来了巨大的损失。该病主要借助羽化后的松褐天牛成虫于补充营养和产卵时进行传播。因此,有效地控制松褐天牛的发生,是防治松树萎焉病的关键。由于松褐天牛危害的隐蔽性,化学防治一般难于奏效。因此,利用生物防治和信号化合物引诱方法成为防治松褐天牛的关键措施。然而,这两种方法在利用过程中存在着各自的局限。虽然球孢白僵菌是松褐天牛最重要的病原真菌,在自然界中对天牛也有着非常高的寄生率,但是防治效果不稳定、控制害虫需要较长的时间、单独使用效果往往不佳。人们对白僵菌在自然界的流行动态知之甚少。具有诱集作用的引诱剂已在松褐天牛种群监测和防治中发挥了重要作用,但目前的引诱剂对补充营养期天牛活性较低。为此,在开发松褐天牛补充营养期引诱剂的基础上,为了充分发挥真菌杀虫剂的持续控制作用和引诱剂的引诱聚集作用,我们开展了应用引诱剂与白僵菌联合使用持续控制松褐天牛的研究。本论文还在筛选鉴定白僵菌新型分子标记的基础上,通过野外调查与室内分子分析相结合,借助于群落生态学和分子生态学的理论和方法,系统科学地评价人为引种白僵菌后的环境宿存能力、安全性和将松褐天牛持续控制在低虫口的生态学效应和作用机制。为了开展这项研究,本论文从以下几个方面入手并获得了相应的结果:
     第一,应用扫描电镜对松褐天牛的触角感器进行扫描观察表明:松褐天牛触角上共有7种感器,即毛形感器、锥形感器、指形感器、棒形感器、瓶形感器、芽形感器以及刺形感器,其中以毛形和锥形感器的数量最丰富。天牛触角对松树主要挥发物的电生理反应表明:松褐天牛成虫触角端部对α-Pinene (500 mg/ml)的EAG (electroantennographic)反应最强(2.3951±0.26 mV)。不同化合物的EAG反应表明:雌、雄成虫对Carene、(+)-α-Pinene、(-)-β-Pinene、Limonene均有较强的EAG反应,与对照(正已烷或空气)有显著性差异。其中,雄成虫对Carene的EAG反应最为强烈,雌成虫对(+)-α-Pinene的EAG反应最强,与其它化合物差异显著。剂量反应测试表明,当α-Pinene浓度在0.0005 mg/ml以下时,EAG反应值没有明显差异,当剂量超过5.0 mg/ml时,EAG反应值随剂量的增加呈直线快速上升趋势。不同化合物组合对松褐天牛的EAG反应表明:松褐天牛成虫触角对(-)α-Pinene + Carene、(-)α-Pinene + (+)-α-Pinene和(-)-α-Pinene + Limone三种二元混合物的EAG反应强烈,而对其余3种二元化合物和松节油的EAG值相对较低,且与单一组分(-)-α-Pinene的EAG值差异不显著。
     第二,4年林间诱捕结果表明:根据电生理反应所研制的不同引诱剂对松褐天牛都有一定程度的引诱效果,并对其它鞘翅目和半翅目昆虫也有引诱作用。其中,引诱剂Ma02的引诱活性最强,引诱活性显著高于其它8种引诱剂,Ma02诱捕量达到67.6-77.0头/诱捕器,天牛雌雄比为53.26,捕获到的雌成虫的怀卵率仅为61.43%,而引诱剂Ma99-1、Ma03和Ma04怀卵率分别高达100%、96%和96.67%。此外,Ma02诱捕到的雌天牛携带线虫率高达34.8%,雄成虫携带线虫率为25.0%。有效活性距离试验表明,Ma02的有效引诱活性距离至少达到50m,其有效诱捕范围可达0.78公顷。以上结果表明,Ma02不仅具有较高的引诱活性,而且能诱捕到携带线虫并处于补充营养期的天牛成虫。此外,还筛选出了持续引诱周期长达38天的引诱剂缓释器。不同剂量诱捕效果表明,当诱剂达到120 ml/诱捕器时,引诱效果显著增加。自主设计的宣州诱捕器引诱效果显著高于日式诱捕器,分别为36.4头/诱捕器和9.7头/诱捕器。
     第三,引诱剂与病原菌的联合使用。在松褐天牛幼虫毒力测定的基础上,通过选用不同来源的球孢白僵菌对成虫进行毒力生物测定,最终筛选出高毒力的白僵菌菌株Bb202-1,其校正死率达到86.9%,侵染率为75%。为了比较引诱剂与无纺布菌条不同联合应用方式的控制效果,共设置了5种不同的处理:不放菌区(对照区)、无纺布菌条区、无纺布菌条+引诱剂缓释器联用区、无纺布菌条+诱木联用区和无纺布菌条+引诱剂缓释器+诱木联用区。天牛种群动态监测表明,后两种联合防治区(诱木+无纺布菌条和引诱剂缓释器+诱木+无纺布菌条)对松褐天牛的种群均具有显著的控制作用,虫口密度下降近50%。死树率统计表明,2004年和2005年后两种联合防治区内死树下降率均显著地高于其它防治区(p<0.01), 2004年死树下降率分别达到65.66%和70.56%,2005年两区均无死树发生,死树下降率达到100%,具有明显的控制效果,但两处理间无显著性差异(p>0.05)。无纺布菌条区和无纺布菌条+引诱剂缓释器联用区的防治效果也显著高于对照区(p<0.05),2005年两处理区的死树下降率达到83.33%和76.67%,但两处理间也无显著性差异(p>0.05)。放菌后不同时间从非防治区引入松褐天牛至不同防治处理区进行罩笼饲养,结果表明:所有放菌区内的天牛感染率均与对照区有显著差异(p<0.01),放菌2天后引入第2、3、4、5处理区的天牛感染率在53.33-63.33%,而对照区仅为3.33%;12天后引入的天牛在4个防治区的感染率在30%-40%,对照区感染率为6.67%;22天后引入的天牛感染率为25-35%,对照区感染率为5%。放菌后不同时间对第1、3、4三种处理区内捕捉到的天牛进行罩笼饲养,放菌2天后从第3、4处理区捕捉到的天牛感染率分别为50%和60%,12天后感染率分别为25%和35%,22天后感染率分别为20%和25%。笼内木段上的侵入孔数和幼虫数统计表明:3、4联合防治区诱集天牛罩笼饲养后,木段内的侵入孔数和幼虫数显著低于对照区,其中侵入孔抑制率达到50.02%-54.41%,木段内幼虫数下降率达到25.9%-41.02%。以上结果表明:诱木和无纺布菌条联合应用在防治松褐天牛过程中表现出明显的优势,充分发挥了引诱剂和白僵菌各自的优良特性,实现了优势互补,为持续控制松褐天牛提供了新方法。
     第四,白僵菌的分子生态学研究。通过选用33个ISSR引物对39株不同来源的白僵菌的种群结构和遗传多样性研究表明:筛选出的18个ISSR引物扩增结果具有高度的多态性和可重复性,在种间和种内不同菌株间具有较高的遗传多样性。18个ISSR引物在39株白僵菌中共扩增出168条带,平均每个引物扩增出9.3个条带,多态性条带有161条,占总条带的95.8%,其中7条是布氏白僵菌Bbr06所特有,14条为多形白僵菌Ba08特有,18条带为粘孢白僵菌Bv01所特有。在36株球孢白僵菌种群内,共扩增出123条带,其中102条(占82.9%)具有多态性,平均每个引物扩增出8.9 (1-13)条带。供试的球孢白僵菌种内遗传相似性系数为0.651-0.972,3种白僵菌种间遗传相似性系数为0.411-0.720,系统聚类结果表明ISSR分子标记能较好地区分形态上相近的3种白僵菌。
     运用“磁珠富集法”构建了球孢白僵菌Bb202-1的(CA)n、(CT)n、(AAT)n和(ATG)n 4个微卫星富集文库,共得到429个阳性克隆。其中(CA)12探针富集得到的文库中含有177个克隆,(CT)12文库108个克隆,(AAT)10文库72个克隆,(ATG)10文库72个克隆。其中,(CA)12和(CT)12文库阳性率分别高达98%和92.7%,(AAT)10和(ATG)10文库阳性率较低,分别为29.2%和47.2%。通过对165个阳性克隆进行测序后,共得到65个两侧可设计引物的微卫星DNA非冗余序列,富集效率高达39.39%。其中完全型54个,高达83.07%;不完全型或复合型11个,仅占16.93%。65个微卫星中,含有(CA/GT)n和(CT/GA)n类型的分别为20和22个,以(ATG/TAC)n为重复单位的有4个,没有获得(CGC)n类型的微卫星DNA。还获得了1个(A)45、2个(CGC)6、1个(CTCCT)9和1个(CCTCTT)5等模式的微卫星DNA。通过引物设计,PCR产物电泳检测表明,52对SSR引物能扩增出特异的产物,占80%,其中的44对引物的PCR产物经PAGE检测具有多态性,占67.69%,其中的27对具有高度的多态性,占41.54%。
     5种不同处理区内的土壤带菌量动态检测表明:4个放菌区的带菌量在放菌后的不同时间内明显高于不放菌的对照区,表明释放菌株在土壤中具有较强的宿存能力。白僵菌寄主昆虫群落和当地虫生真菌群落动态研究表明:白僵菌具有丰富的寄主多样性,寄主的丰度为33种,多度为311株,相对多度高达60.04%。但人工接种式放菌后,寄主昆虫多样性指数和虫生真菌群落多样指数均较为稳定,并没有对寄主昆虫群落和虫生菌群落构成威胁,放菌后的第二年多样性指数反而有上升的趋势。
     通过对释放菌株与放菌前采集的野生菌的基因型比较分析,从27个SSR标记中获得了2个释放菌株特异的SSR标记。通过对放菌后回收菌株的基因型分析,表明释放菌株在土壤和僵虫中均具有较高的回收率。其中,土壤中释放菌株的回收率在16.67%-66.66%之间波动;僵虫中释放菌株的回收率相对较低,在7.69%-82.14%之间,表明释放菌株已在林间宿存和延续。群体遗传多样性分析表明,释放菌株也没有对土壤和僵虫中的白僵菌种群遗传结构造成不良影响。对释放菌株追踪和寄主谱分析表明,释放菌株虽然能感染林间其它19种非目标寄主昆虫,松茸毒蛾、松褐天牛、马尾松角胫象和黑蚁是释放菌株在林间不同时间内实现寄主转移的关键物种,在食物链的传递中处于重要的地位,为维持林间带菌量和保持遗传稳定性提供了保证。因此,释放菌株通过在土壤中营腐生生活,在不同寄主昆虫间通过寄主转移进行宿存和延续,从而达到持续控制害虫的目的,这也正是真菌杀虫剂发挥生态学效应和持续控制的机制所在。
The pine wilt disease caused by the pine wood nematode, Bursaphelenchus xylophylus Nickle has been becoming one of the most serious epidemic diseases of the pine (Pinus spp.) forests in the south of China. The pine sawyer, Monochamus alternatus Hope is the most important vector of the pine wood nematode. Because most of its life time is inside the wood, Monochamus alternatus is difficult to control by spraying chemical insecticides. Biological control, therefore, provides a viable alternative for controlling the vector beetle. The entomopathogenic fungus Beauveria bassiana has been considered to be the most important natural pathogen and the most promising biocontrol agent of the pine sawyer. The application of non-woven fiber bands impregnated with B. bassiana cultures onto infested trees have been demonstrated to be one of the most convenient and effective methods.
     At the adult stage, the beetle will eclose and look for food and location for oviposition. During this procession, the volatile chemicals play important roles in mediating beetles’behavior. Thus, the attractants have been developed to monitor the population dynamics and suppress the adult populations of pine sawyer. In order to integrate the massive natural epizootic potential of B. bassiana and the merits of synergistic function of attractant, the combined applications of mycoinsecticide and semiochemical attractants were studied for sustainable control of the pine sawyer, Monochanus alternatus. Through the developments of ISSR (Inter-Simple Sequence Repeat) and SSR (Simple Sequence Repeat) molecular markers of Beauvera spp., the studies were conducted to investigate the survival capacity, prevalence and persistence course of the released stain in the field as well as its infective rate on the target insect pest. Based on the theories and methods of community ecology and molecular ecology, further analyses were carried out to evaluate the effects of the released strain on local Beauveria population genetic structures and the nontarget insect pests. From the results of this study, systematical evaluations are made based on the factors of environmental safety of release, ecological effects of the introduced strain, and the mechanisms for sustainable control of the Monochamus alternatus by Beauveria bassiana. Our researches including the following aspects:
     First, with a scanning electron microscope (SEM), 7 types of sensilla of M. alternatus were observed: Sensilla trichoid, sensilla basiconica, sensilla digit-like, sensilla rod-like, sensilla bottle-like, sensilla bud-like, sensilla chaetica. Overall, Sensilla trichoid and sensilla basiconica are the most abundant sensilla on the antenna surface. The data of electroantennographic (EAG) responses of different parts of the antennae toα-Pinene indicated that in contrast to the basal part, the apical part had the strongest response (2.3951±0.26mV) EAG value was significantly increased at the dose of more than 5 mg/ml. Carene could provoke the most significant EAG response by the male beetles while the females have the strongest response to Rα-Pinene. In general, the findings showed that the mixture of compounds Rα-Pinene and carene elicited the strongest EAG responses by both the male and female beetles.
     Second, the field trapping in four years showed that different attractant formulae had varied degree of trapping ability to pine sawyer, and some of them could also attract other species of Coleopteran or Hemipteran insects. Among them, the formula Ma02 showed the significantly higher attractancy than other 8 tested attractants with the mean capturing effect was 67.6-77.0 individuals per trap. The percentage of female beetles with pregnant eggs captured by Ma02 was 61.43%, and was significantly lower than those of Ma99-1(100%), Ma03(96.0%) and Ma04(96.67%). The percentage of the beetles carring nematode captured by Ma02 was 25.0% for the male, and 34.8% for the female. The observation of trapping capacity indicated that the effective distance ranged from 20-50m by Ma02 but significantly reduced when beyond 70m. The effectively attractive area could be up to 0.78 ha. The above results showed that the attractant Ma02 could attract not only the ovipositing stage of female adults, but also the nutrition replenishing stage beetles. The attractiveness of three different attractant dispensers to Monochamus alternatus adults was also investigated. The attractant dispenser B (specified control dispensing plastic bottle) had comparatively stronger effect, could be used for up to 38 days. The attractiveness of different dose of attractant showed that the efficiency enhanced with the increase of attractant volume. The effect was not significantly enhanced when the dosage of attractant was increased from 20 ml to 80 ml per bottle, but was significantly improved when the dosage reached up to 120 ml. As for trap, Xuanzhou trap designed by us was superior to the imitated Japanese trap, the trapping efficiency was 36.4 individuals/trap, 9.7 individuals/trap, respectively.
     Third, combined application of attractants and fungi. The virulence of different entomogenous fungi on adult pine sawyers, Monochamus alternatus was tested. Beauveria bassiana strain Bb202-1 was the highest virulent, with sawyer mortality up to 86.9%, infection rate to 75%, and LT50 at 6.77d. In order to compare the efficacy of different combined applications with control, Five treatments were conducted: (1) control (CK); (2) treated with non-woven fiber bands impregnated with Bb202-1 alone (NFB); (3) fungal bands combined with attractant (NFB+Attractant); (4) fungal bands combined with bait tree (NFB+bait tree); and (5) fungal bands combined with attractant and bait tree (NFB+Attractant+bait tree). Relative population dynamics of Monochamus alternatus captured by attractant-baited trap were monitored for five treatments every four days. The results showed that the treatments of NFB+bait tree and NFB+Attractant+bait tree had obviously increased controlling effects, the relative beetle population densities all declined by nearly 50%. The pine tree mortality in plots using five different treatments against the Monochamus alternatus were investigated in years 2004 and 2005. The results showed that the decrease rates of dead pine trees in the treatment plots of NFB+bait tree and NFB+Attractant+bait tree was 65.66 and 70.56% in 2004, respectively and no dead pine tree was found in 2005. The tree mortality was decreased by 100%, which were significantly higher than the other treatments. But there was no significant difference between the NFB+bait tree and NFB+Attractant+bait tree plots. The efficacy of the NFB and NFB+Attractant was also significantly higher than that of control, the tree mortalities were decreased by 83.33% and 76.67% in 2005, respectively. The cage experiment by importing the adult beetles and rearing inside the treatment plots showed that the mean percentage infection rates of the imported beetles in 4 fungal bands treated plots were significantly different from the control, but the infection declined with time. The infection rates in 4 fungal bands treated plots were ranged at 53.33-63.33% 2 days after bands application, 30-40% for 12th day, 25-35% for 22th day, but the highest infection of untreated control was only 6.67%. The cage experiment by exporting the adult beetle and rearing outside the treatment plots showed that the infections of the exported beetles from NFB+Attractant and NFB+bait tree were significantly higher than those of the control at 2, 12, and 22 days after band application. The mean percentage of infection of the beetles exported from NFB+Attractant and NFB+bait tree was 50% and 60% at 2th day, 25% and 35% at 12th day, 20% and 25% at 22th day, respectively. The anatomization of log section in the cage showed that the number of invading holes and larvae of the treatment of NFB+Attractant and NFB+bait tree were decreased by 50.02-54.41% and 25.9-41.02%, respectively, which were significantly lower than that of the control. The above results showed that the combined applications of fungal bands and semiochemical attractant evidently demonstrated synergistic effects by complementing each other’s disadvantages to offer the great potential for controlling Monochamus alternatus.
     Fourth, the molecular ecology study using molecular markers. ISSR markers were used to investigate genetic diversity among 39 isolates of Beauveria spp. (36 B. bassiana, one B. brongniartii, one B. amorpha, and one B. velata) isolated from different insect hosts and geographical origins. Eighteen of 33 primer pairs harboring different SSR were chosen for their good reproducibility and the generation of high polymorphisms. In total, one hundred and sixty-eight highly reproducible fragments were amplified from all 39 isolates with an average yield of 9.3 markers per primer pair. Among these, 161 (95.8%) were polymorphic among strains. For 36 B. bassiana isolates, 8.9 (1-13) markers per primer were acquired, and the total of 123 fragments were amplified, in which 102 (82.9%) were polymorphic. Among the 168 polymorphic bands, 7 bands were considered to be specific for B. brongniartii isolate Bbr06, 14 bands for B. amorpha isolate Ba08, and 18 bands for B. velata isolate Bv01. Within 36 B. bassiana isolates, genetic similarity ranged from 0.651 to 0.972. However, the genetic similarity values among different Beauveria species ranged from 0.411 to 0.720, suggesting that ISSR technique was successful in differentiating the 3 closely related species from B. bassiana. The results also indicated that there was a positive association between the genotypes of B. bassiana isolates and their geographical origins, but no clear correlation with their insect hosts.
     Four enriched microsatellite libraries, (CA)n, (CT)n, (AAT)n and (ATG)n were constructed for Beauveria bassiana strain Bb202-1 by using magnetic beads. In total, 429 positive clones were obtained. Of which, 177 clones were for the library constructed by probing with (CA)12 , 108 clones for (CT)12 probe, 72 clones for (AAT)10 probe, and 72 clones for (ATG)10 probe. PCR detection showed that the percentages of positive clones in library (CA)12 (98%) and (CT)12 (92.7%) were higher than those of other two libraries. The percentages of positive clones in library (AAT)10 and (ATG)10 were 29.2% and 47.2%, respectively. Of 165 sequenced positive clones, 65 could successfully provide working primer pairs, accounting for 30% of the total number. Of 65 loci isolated, 54 were perfect (83.07%) and the rest were imperfect (16.93%). Among those, 52 loci could yield amplified products with expected sizes, and of these, 44 amplified SSR products were polymorphic by PAGE analysis, and 27 of them were highly polymorphic, accounting for 41.54%.
     Investigation of the population dynamics of B. bassiana surviving in soil with a selective dodine-oat medium showed that the inoculum density of B. bassiana in soil of the 4 fungal treatments plots was higher than that of untreated control plot, which suggested that the released strain had higher ability of colonizing in the soil of pine ecosystem. The estimates of community biodiversities of insect hosts and entomopathogenic fungi for different periods showed that B. bassiana had abundant diversity of the insect hosts where the species richness of insect hosts was up to 33, the abundance was 311 and the relative abundance was 60.14%. After fungal releases with an inoculative application strategy, the community diversity index of both insect hosts and entomopathogenic fungi were relatively stable, and did not pose any threat to community diversity of both insect hosts and entomopathogenic fungi. On the contrary, the diversity indexes were increased at the second year after application.
     Genotyping analysis of B. bassiana strains collected before and after fungal release showed that 2 out of 27 polymorphic SSR markers were specific to the released strain. The detection of recovery showed that the released strain had the higher recovery rates from both the soil and cadaver samples. The recovery rates ranged from 16.67%-66.66% for soil samples and 7.69%-82.14% for dead insects, indicating that the released strain had successfully colonized and dispersed in the pine ecosystem. Analysis of population genetic structure revealed that the artificial releasing strain in an inoculative way also did not impact the genetic diversity of indigenous B. bassiana populations. Analysis of host species infected by the released strain showed that the released strain could also invade 19 species of non-target insect hosts at different seasons. Of those, the species of Dasychira axutha, Monochamus alternatus, Shirahoshizo patruelis, and Lasius niger played crucial roles for the released strain to transfer among different food chains and provided an assurance for maintaining the stability of inoculum density and genetic diversity in the pine ecosystem. In short, the released strain could colonize and persist in the pine ecosystem by surviving as a saprophyte in soil and jumping among different insect hosts to maintain the sustainable control effect against the beetles in the field.
引文
1. Aquino de Muro M, Mehta S, Moore D. The use of amplified fragment length polymorphism for molecular analysis of Beauveria bassiana isolates from Kenya and other countries, and their correlation with host and geographical origin. FEMS Microbiology Letters 2003, 229: 249-257
    2. Aquino de Muro M, Elliott S, Moore D, Parker BL, Skinner M, Reid W, Bouhssini MEL. Molecular characterization of Beauveria bassiana isolates obtained from overwintering sites of Sunn Pests (Eurygaster and Aelia species). Mycol Res 2005, 109 294-306
    3. Backeljau T, Bruyn LD, Wolfe HD, Jordaens K, Dongen SV, Winnepenninckx B. Multiple UPGMA and Neighbor-joining trees and the performance of some computer packages. Molecular Biology and Evolution 1996, 13: 309-313
    4. Berretta MF, Lecuona RE, Zandomeni RO, Grau O. Genotyping isolates of the entomopathogenic fungus Beauveria bassiana by RAPD with fluorescent labels. Journal of Invertebrate Pathology 1998, 71: 145-150
    5. Bidochka M, Melzer M. Genetic polymorphisms in three subtilisin-like protease isoforms (Pr1A, Pr1B, and Pr1C) from Metarhizium strains. Can J Microbiol., 2000, 46: 1138-1144
    6. Bidochka MJ, Walsh SRA, Ramos ME, St Leger RJ, Silver JC, Roberts DW. Pathotypes in the Entomophaga grylli species complex of grasshopper pathogens differentiated with rapid amplification of polymorphic DNA and cloned-DNA probe. Appl. Environ. Microbiol. 1995, 61: 556-560
    7. Bidochka MJ, St Leger RJ, Carruthers I, Silver JC, Khachatourians GG. Cloned DNA probes distinguish endemic and exotic Entomophaga grylli fungus pathotype infections in grasshopper life stages. Mol. Ecol. 1997, 6: 303-330
    8. Bidochka MJ, Menzies FV, Kamp AM. Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preference. Archives of Microbiology 2002, 178: 531-537
    9. Bogo MR, Vainstein MH, Arag?o FJL, Rech EL, Schrank AA. High frequency gene conversion among benomyl resistant transformants in the entomopathogenic fungus Metarhizium anisopliae. FEMS Microbiology Letters 1996, 142: 123-127
    10. Bogo MR, Rota CA, Pinto HJ, Ocampos M, Correa CT, Vainstein MH, Schrank AA. chitinase encoding gene (chit 1 gene) from the entomopathogen Metarhizium anisopliae: isolation and characterization of genomic and full length cDNA. Current Microbiology 1998, 37: 221-225
    11. Bridge PD, Prior C, Sagbohan J, Lomer CJ, Carey M, Buddie A. Molecular characterization of isolates of Metarhizium from locusts and grasshoppers. Biodiversity and Conservation 1997, 6: 177-189
    12. Burke T, Seidler R, Smith H. Ecological implications of transgenic plants. Mol Ecol 1994, 3: 1-89
    13. Butt MT, Jackson C, Magan N. Introduction-fungal biological control agents: progress, problems and potential. In Fungal as Bio-control Agent (T.M. Butt, C. Jackson & N. Magan, eds): 1-8. CABInternational, Wallingford. In: 2001.
    14. Cantone FA, Vandenberg JD. Use of the green fluorescent protein for investingations of Paecilomyces fumosoroseus in insect hosts. J. Invertbrate Pathology, 1999, 4: 193-197
    15. Castrillo LA, Brooks WM. Differentiation of Beauveria bassiana isolates from the darkling beetle, Alphitobius diaperinus, using isozyme and RAPD analysis J. Invertebr. Pathol 1998, 72: 190-196
    16. Castrillo LA, Vandenberg JD, Wraight SP. Strain-specific detection of introduced Beauveria bassiana in agricultural fields by use of sequence-characterized amplified region markers. J. Invertebr. Pathol. 2003, 82: 75-83
    17. Charnley AK, St. Leger RJ. The role of cuticle degrading enzymes in fungal pathogenesis of insects. In: G. T. Cole, H. C. Hoch. The Fungal Spore and Disease Initiation in Plants and Animals. New York, London: Plenum Press, 1991, 267-286.
    18. Charnley AK, Cobb B, Clarkson JM. Towards the improvement of fungal insecticides. In: Microbial insecticides: Novelty or necessity? . No.68 BCPC Symposium Proceedings, 1997, 115-126.
    19. Clarke K. Comparisons of dominance curves. Journal of Experimental Marine Biology and Ecology 1990, 138: 143-157
    20. Clarkson JM, Charnley AK. New insights into the mechanisms of fungal pathogenesis in insects. Trends in Microbiology 1996, 4: 197-203
    21. Coates BS, Hellmich RL, Lewis LC. Allelic variation of a Beauveria bassiana (Ascomycota: Hypocreales) minisatellite is independent of host range and geographic origin. Genome 2002, 45: 125-132
    22. Coates BS, Hellmich RL, Lewis LC. Beauveria bassiana haplotype determination based on nuclear rDNA internal transcribed spacer PCR-RFLP. Mycological Research 2002, 106: 40-50
    23. Cobb BD, Clarkson JM. Detection of molecular variation in the insect pathogenic fungus Metarhizium using RAPD-PCR. FEMS Microbiology Letters 1993, 112: 319-324
    24. Cole SCJ, Charnley AK, Cooper RM. Purification and partial characterization of a novel trypsin-like cysteine proteinase from Metarhizium anisopliae. FEMS Microbiology Letters 1993, 113: 189-196
    25. Cravanzola F, Piatti P, Bridge PD, Ozino OI. Detection of genetic polymorphism by RAPD-PCR in strains of the entomopathogenic fungus Beauveria brongniartii isolated from the European cockchafer (Melolontha spp.). Letters in Applied Microbiology 1997, 25: 289-294
    26. Crouau Y, Crouau B. Antennal sensory organs of a troglobitic coleoptera, Speonomus hydrophilus Jeannel (Catopidae): An ultrastructural study by chemical fixation and cryofixation. Int. J Insect Morphol Embryol 1991, 20: 169~184
    27. Dai HG, Honda H. Sensilla on the antennal flagellum of the yellow spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae). Appl Ent Zool 1990, 25: 273-282
    28. Dalleau-clouet C, Gauthier N, Risterucci AM, Bon MC, Fargues J. Isolation and characterization of microsatellite loci from the entomopathogenic hyphomycete, Paecilomyces fumosoroseus. Molecular Ecology Notes 2005, 5: 496-498
    29. Dean RA. Signal pathways and appressorium morphogenesis. Annual review of Pathology 1997, 35:211-234
    30. Di Giovanni GD, Watrud LS, Seidler RJ, Widmer F. Fingerprinting of mixed bacterial strains and BIOLOG Gram-negative (GN) substrate communities by enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR). Curr Microbiol. 1999, 38: 217-223
    31. Driver F, Milner RJ, Trueman JWH. A taxonomic revision of Metarhizium based on phylogenetic analysis of rDNA sequence data. Mycol. Res 2000, 104: 134-150
    32. Du JW, (杜家纬). Insect Pheromone and Its Application (In Chinese). In. Beijing: Chinese Forestry Press, 1988, 113~115.
    33. Dubois T, Hajek AE, Hu JF, Li ZZ. Evaluating the efficiency of entomophathogenic fungi against the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae), by using cages in the field. Environment Entomology 2004, 33: 62-74
    34. Dubois T, Li ZZ, Hu JF, Hajek AE. Efficacy of fiber bands impregnated with Beauveria brongniartii cultures against the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). Biological control 2004, 34: 320-358
    35. Enda N, Igarashi M, Fukuyama K, Nobuchi A, in Trans.100th Mett. Jpn. For. Soc. (1989).
    36. Enkerli J, Widmer F, Gessler G, Keller S. Strain-specific microsatellite markers in the entomopathogenic fungus Beauveria brongniartii. Mycological Research 2001, 105: 1079-1087
    37. Enkerli J, Kollider R, Keller S, F W. Isolation and characterization of microsatellite markers from the entomopathogenic fungus Metarhizium anisopliae. Molecular Ecology Notes 2005, 5: 384-338
    38. Entz S, Johnson D, Kawchuk L. Development of a PCR-based diagnostic assay for the specific detection of the entomopathogenic fungus Metarhizium anisopliae var. acridum. . Mycol. Res 2005, 109: 1302-1312
    39. Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y, Feng J, Yang X, Zhang Y, Pei Y. Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl. Environ. Microbiol. 2005, 71: 363-370
    40. Fincham JRS. Transformation in fungi. Microbiology Review 1989, 53: 148-170
    41. Fischer SG, Lerman LS. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 1979, 16: 191-200
    42. Fisher RA. Statistical methods for research workers. 12th ed. Oliver and Boyd, Edinburgh. 1954,
    43. Freimoser FM, Screen S, Bagga S, Hu G, St. Leger RJ. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 2003, 149: 239-247
    44. Freimoser FM, Hu G, St. Leger RJ. Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 2005, 151: 361-371
    45. Frydenberg J, Pertoldi C, Dahlgaard J, Loeschcke V. Genetic variation in original and colonizing Drosophila buzzatii population analysed by microsatellite loci isolated with a new PCR screening method. Mol Ecol. 2002, 11: 181-190
    46. Fukushima Y. Furumori, K, Higuchi, T et al.1991. Carrier for insecticidal microorganisms consists of non-woven or woven carrier bearing culture medium for microorganism. WPI Acc No: 1991-102066/199114.
    47. Fukushima Y, Furumori K, Higuchi T, et al, in WPI Acc No: 1991-102066/199114. (1991).
    48. Futai K, Shirakikawa S, Nakai I. The suitability of Korean pine (Pinus koraiensis Sieb. et Zucc.) and Japanese Red Pine (P. densiflora Sieb. et Zucc.) as a host of the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae) Appl Ent Zool 1994, 29: 167~177
    49. Gaitan A, Valderrama AM, Saldarriaga G, Velez P, Bustillo A. Genetic variability of Beauveria bassiana associated with the coffee berry borer Hypothenemus hampei and other insects. Mycological Research 2002, 106: 1307-1314
    50. Gillespie JP, Bateman R, Charnley AK. Role of cuticle-degrading proteases in the virulence of Metarhizium spp. for the desert locust, Schistocerca gregaira. J Invertebr Pathol 1998, 71: 128-137
    51. Gillespie JP, Bailey AM, Cobb B, Vilcinskas A. Fungi as elicitor of insect immune responses. Archives of Insect Biochemistry and Physiology 2000, 44: 49-68
    52. Gillings M, Holley M. Amplification of anonymous DNA fragments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to genetic variation. Electrophoresis 1997,
    53. Gillings M, Holley M. Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Letters in Applied Microbiology 1997, 25: 17-21
    54. Glare TR, Inwood AJ. Morphological and genetic characterization of Beauveria spp. from New Zealand. Mycol. Res. 1998, 102: 250-256
    55. Goettel MS, St. Leger RJ, Rizzo NW, Staples RC, Roberts DW. Ultrastructural localization of a cuticle-degrading protease produced by the entomopathogenic fungus Metarhizium anisopliae during penetration of host (Manduca sexta) cuticle. J. Gen. Microbiol 1989, 135: 2233-2239
    56. Gorinstein S, Paccola-Meirelles LD, Belo VA, Azevedo JL. Characterization of Beauveria bassiana, Meterhizium anisopliae and Aspergillus nidulans through electrophoretic patterns of their protein fractions J. Ferm. Bioen 1996, 82: 89-92
    57. Hajek AE, Walsh SRA, Strong DR, Silver JC. A disjunct Californian strain of Entomophaga aulicae infecting Orgyia vetusta. J. Invertebr. Pathol. 1996, 68: 260-268
    58. Han Q, Inglis GD, Hausner G. Phylogenetic relationships among strains of the entomopathogenic fungus, Nomuraea rileyi, as revealed by partial β-tubulin sequences and inter-simple sequence repeat (ISSR) analysis. Letters in Applied Microbiology 2002, 34: 376-383
    59. Harrison S. Metapopulations and conservation. In Large-scale Ecology and Conservation Biology (Edwards, P.J. N.R. Webb, & R.M. May). Oxford: Blackwells. 1994,
    60. Hegedus DD, Khachatourians GG. Identification of Molecular Variants in Mitochondrial DNAs of Members of the Genera Beauveria, Verticillium, Paecilomyces, Tolypocladium, and Metarhizium. Appl Environ Microbiol 1993, 59: 4283-4288
    61. Hegedus DD, Khachatourians GG. Construction of Cloned DNA Probes for the Specific Detection ofthe Entomopathogenic Fungus Beauveria bassiana in Grasshoppers Journal of Invertebrate Pathology 1993, 62: 233-240
    62. Hegedus DD, Khachatourians GG. Identification and differentiation of the entomopathogenic fungus Beauveria bassiana using polymerase chain reaction and single-strand conformation polymorphism analysis. J. Invertebr. Pathol. 1996, 67: 289-299
    63. Higuchi T. Biorational Pest Formulation against Longhorn Beetle Damage Using B.brongniartii(Sacc.)Petch. Nitto Denko Report 1993, 31: 103-110
    64. Higuchi T. Biorational Pest Formulation against Longhorn Beetle Damage Using B. brongniartii(Sacc.)Petch. Nitto Denko Report,31(2 ): 103-110. 1993,
    65. Higuchi T, Saika T, Senda S, et al. Development of biorational pest control formulation against Longicorn beetles using a fungus, Beauveria brongniatii. Journal of Fermentation and Bioengineering 1997, 84: 236-243
    66. Hu J, (胡江), Li YL, (李义龙), Liu JH, (刘剑虹), et al. Scanning electron microscope study on adult sensilla of Cosinesthes salicis Gressitt. (in Chinese). J Chin Electr Microsc Soc (电子显微学报) 2001, 20: 499~500
    67. Igarashi Y, Ochi K, Katagiri K, Shimazu M, in Trans. 93rd Ann. Meet. Jap. For. Soc. . (1982).
    68. Ikeda T, Enda N, Yamane A, et al. Attractants for the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae). Appl Ent Zool 1980, 15: 358~361
    69. Ikeda T, Oda K. The occurrence of attractiveness for Monochamus alternatus Hope (Coleoptera: Cerambycidae) in nematode infected pine trees. J Jap For Soc 1980, 62: 432~434
    70. Ikeda T, Oda K, Yamane A, et, al. Volatiles from Pine Logs as the Attractant for the Japanese Pine Sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae). J Jap For Soc 1980, 62: 150~152
    71. Ikeda T. Host attractants for Monochamus alternatus and their applications. 1st Japan/USA sym on IPM, Tsukuba (Japan), Sept. 29~30. 1981,
    72. Ikeda T, in 1st Japan/USA symp. on IPM. (Tsukuba (Japan), 1981).
    73. Ikeda T. Integrated pest management of Japanese pine wilt disease. Sonderdruck aus Eur J For Pathol 1984, 14: 398~414
    74. Ikeda T, Yamane A, et al. Attractiveness of volatile components of felled pine trees for Monochamus alternatus Hope. J. Jpn. For. Soc 1986, 68: 15-19
    75. Inglis DG, Goettel SM, Butt MT, Strasser H. Use of hyphomycetous fungi for managing insect pest. In: T. M. Butt, C. Jackson, N. Magan. In Fungi as Biocontrol Agents. Wallingford: CAB International, 2001, 23-69.
    76. James PJ, Kershaw MJ, Reynolds SE, Charnley AK. Inhibition of desert locust (Schistocerca gregaria) Malpighian tubule fluid secretion by destruxins, cyclic peptide toxins from the insect pathogenic fungus Metarhizium anisopliae. J Insect Physiol 1993, 39: 797-804
    77. Jarvis P, Lister C, V S, Dean C. Integration of CAPs markers into the RFLP map generated using recombinant inbred lines of Arabidopsis thaliana. Plant Mol. Biol. 1994, 24: 685-687
    78. Jelitto TC, Page HA, Read ND. Role of external signals in regulating the pre-penetration phase ofinfection by the rice blast fungus, Magnaporthe grisea. Planta 1994, 194: 471-477
    79. Ji BZ, (嵇宝中). Contributing factors, present situations and management strategies on the plague of longicorn beetles in China (in Chinese). World For Res (世界林业研究) 2001, 14: 50~56
    80. Jiang LY, (蒋丽雅), Peng JH, (朋金和), Zhou JS, (周健生), Lü CH, (吕传海), Pu HP, (卜厚平), Su YG, (苏元功) Study on Monochamus alternatus Attractant Mat-1(in Chinese). For Pest and Dis 1997, 5~7
    81. Joshi L, St. Leger RJ, Bidochka MJ. Cloning of a cuticle-degrading protease from the entomopathogenic fungus, Beauveria bassiana. FEMS Microbiology Letters 1995, 125: 211-218
    82. Joshi L, St. Leger RJ, Roberts DW. Isolation of a cDNA encoding a novel subtilisin-like protease (Pr1B) from the entomopathogenic fungus, Metarhizium anisopliae using differential display-RT-PCE. Gene 1997, 197: 1-8
    83. Kang SC, Park S, Lee DG. Isolation and characterization of a chitinase cDNA from the entomopathogenic fungus, Metarhizium anisopliae. FEMS Microbiology Letters 1998, 165: 267-271
    84. Kanost MR, Jiang H, Yu XQ. Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 2004, 198: 97-105
    85. Kobayashi F, Yamane A, Ikeda T. The Japanes pine sawyer beetle as the vector of pine wilt disease. Ann. Rev. Entomol. 1984, 29: 115~135
    86. Koniecyzn A, Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993, 4: 403-410
    87. Lai YX, (来燕学), Zhang SY, (张世渊), Huang HZ, (黄华正) , Nu ZT, (吕兆田) , Shi YY, (史迎寅). Monochamus alternatus Withered Pine(in Chinese). J Zhejiang For Coll (浙江林学院学报) 1996, 13: 75~81
    88. Lander ES. The new genomics: global views of biology. Science 1996, 274: 536-539
    89. Leal-Bertioli SCM, Butt TM, Feberdy JF, Bertioli DJ. Genetic exchange in Metarhizium anisopliae strains co-infecting Phaedon cochleariae is revealed by molecular markers. Mycol. Res. 2000, 104: 409-414
    90. Leal SC, Bertioli DJ, Butt TM, Carder JH, Burrows PR, Peberdy JF. Amplification and restriction endonuclease digestion of the Pr1 gene for the detection and characterization of Metarhizium strains Mycol. Res 1997, 101: 257-265
    91. Leal SCM, Bertioli DJ, Butt TM, Peberdy JF. Characterization of isolates of the entomopathogenic fungus Metarhizium anisopliae by RAPD-PCR. Mycology Research 1994, 98: 1077-1081
    92. Lee YH, Dean RA. Hydrophobicity of contact surface induces appressorium formation of Magnaporthe grisea. FEMS Microbiol. LETT. 1994, 115: 71-76
    93. Li ZZ, Li CR, Huang B, Fan MZ. Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Science Bulletin 2001, 46: 751-753
    94. Ma RY, (马瑞燕), Du JW, (杜家纬). Sensilla on insect antenna (in Chinese). Ento Knowl (昆虫知识)2000, 37: 179~182
    95. Magalhaes BP, Butt TM, Humber RA, et al. Formation of appressoria in vitro by the entomopathogenic fungus Zoophthora radicalns (Zygomycetes entomophth orales). J. Invertebr. Pathol. 1990, 550: 284-288
    96. Mamiya Y, Tamura H, in Trans. 36th Ann. Meet. Kanto Branch Jap. For. Soc. (1984).
    97. Maurer P, Couteaudier Y, Girard PA, Bridge PD, Riba G. Genetic diversity of Beauveria bassiana and relatedness to host insect range. Mycological Research 1997, 101: 159-164
    98. Mavridou A, Typas MA. Intraspecific polymorphism in Metarhizium anisopliae var. anisopliae revealed by analysis of rRNA gene complex and mtDNA RFLPS. Mycol. Res. 1998, 102: 1233-1241
    99. Mazet I, Hung SY, Boucias DG. Detection of toxic metabolites in the haemolymph of Beauveria bassiana infected Spodoptera exigua larvae. Experientia 1994, 50: 142-147
    100. McGuire MR, Ulloa M, Park YH, Hudson N. Biological and molecular characteristics of Beauveria bassiana isolates from California Lygus hesperus (Hemiptera: Miridae) populations Biological control 2005, 33: 307-314
    101. Miller MP. Tools for population genetic analysis (TFPGA) 1.3: A Windows program for the analysis of allozyme and miolecular population genetic data. Computer software distributed by author. 1997,
    102. Mugnai L, Bridge PA, Evans HC. A chemotaxonomic evaluation of the genus Beauveria. Mycological Research 1989, 92: 199-209
    103. Murrin F, Nolan RA. Ultrastructure of the infection of spruce budworm larvae by the fungus Entomophaga aulicae. Can. J. Bot, 1987, 65: 1694-1706
    104. Nagaoka T, Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and Applied Genetics 1997, 94: 597-602
    105. Nei M. Genetic distance between populations. American Naturalist 1972, 106: 283-292
    106. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89: 583-590
    107. Nemr AE. Synthetic methods for the stereoisomers of swainsonine and its anslogues. Tetrahedron 2000, 56: 8579-8629
    108. Neuvéglise C, Brygoo Y, Riba G. 28S rDNA group I introns: a powerful tool for identifying strains of Beauveria brongniartii. Molecular Ecology 1997, 6: 373-381
    109. Nobuchi A. An automatic reieasing equipment of Beauveria contaminated bark beetle for microbial control of Monochamus alternatus. Forest pest 1993, 42: 217-217
    110. Noumi T, Mosher ME, Natori S, Futai M, Kanazawa HA. phenylalanine for serine substitution in the beta subunit of Escherichia coli F1-ATPase affects dependence of its activity on divalent cations. J Biol Chem. 1984, 259: 10071-10100
    111. Okada K, Mori M, Shimazaki K, Chuman T. Morphological studies on the antennal sensilia of the cigarette beetle, Lasioderma serricome (F.) (Coleoptera: Anobiidae). Appl Ent Zool 1992, 27: 269~276
    112. Okitsu M, Kishi Y, Takagi Y. Control of adults of Monochamus alternatus Hope (Coleptera:Cerambycidae) by application of non-woven fabric strips containing Beauveria bassiana (Deutyeromycotina: Hyphomycetes) on infested tree trunks. J. Jpn. For. Soc. 2000, 82: 276-280
    113. Padmavathi J, Uma Devi K, Uma Maheswara Rao C, Nageswara Rao Reddy N. Telomere fingerprinting for assessing chromosome number, isolate tying and recombination in the entomopathogen Beauveria bassiana. Mycological Research 2003, 107: 572-580
    114. Pantou MP, Mavridou A, Typas MA. IGS sequence variation, group-I introns and the complete nuclear ribosomal DNA of the entomopathogenic fungus Metarhizium: excellent tools for isolate detection and phylogenetic analysis. Fungal Genetics and Biology 2003, 38: 159-174
    115. Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet 1993, 85: 985-993
    116. Paris S. Heterokaryosis in Beauveria tenella. Mycopathologia 1977, 61: 67-76
    117. Pedras MC, Zaharia LI, Ward DE. The destrxins: synthesis, biosynthesis, biotransformation, and biological activeity. Phytochemistry 2002, 59: 579-596
    118. Pendland JC, Boucias DG. Characterization of monoclonal antibodies against cell wall epitopes of the insect pathogenic fungus, Nomuraea rileyi: differential binding to fungal surfaces and cross-reactivity with host hemocytes and basement membrane components. Eur. J. Cell Biol 1998, 75: 118-127
    119. Perera L. Russell J R, Provan J, et al. Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L.). Genome 2004, 3: 15~21
    120. Pfeifer TA, Khachatourians GG. Electrophoretic karyotype of the entomopathogenic deuteromycete Beauveria bassiana J. Invertebr. Pathol. 1993, 61: 231-235
    121. Pielou E, 著(卢泽愚译). 数学生态学 In. 北京: 科学出版社, 1991, 1-406.
    122. Pipe ND, Chandler D, Bainbridge BW, Heale JB. Restriction fragment length polymorphisms in the ribosomal RNA gene complex of isolates of the entomopathogenic fungus Metarhizium anisopliae. Mycological Research 1995, 99: 485-491
    123. Poprawski TJ, Riba G, Jones WA, Aioun A. Variation in isoesterase of geographical population of Beauveria bassiana (Deuteromycotina: Hyphomycetes) isolated from Sitona weevils (Coleoptera: Curculionidae). Environmental Entomology 1988, 17: 275-279
    124. Raymond ML, Rousset F. An exact test for population differentiation. Evolution 1995, 49: 1280-1283
    125. Rehner SA, Buckley EP. Isolation and characterization of microsatellite loci from the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales). Mole. Ecol. Notes 2003, 3: 409-411
    126. Riba G, Ravelojoana AM. The parasexual cycle in the entomopathogenic fungus Paecilomyces fumosoroseus (Wize) Brown and Smith. Can. J. Microbiol. 1984, 30: 922-926
    127. Rivera A, Bridge PD, Bustillo AE. Caracterization dentes de la broca del café, Hypothenemus hampei. Review of Colombian Entomology 1997, 23: 51-57
    128. Robert AS, Harry CE, Jean-Paul L. Atlas of entomopathogenic fungi. In. Netherlands: Wetenschappelijke uitgeverij Bunge, 1988, 128-139.
    129. Roberts DW, Humber RA. Entomopathogenic fungi. In: D. W. Roberts, J. R. Aist. Infection Processes of Fungi. The Rockefeller Foundation, 1984, 1-12.
    130. Royet J. Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol. Immunol 2004, 41: 1063-1075
    131. Samuels RI, Paterson IC. Cuticle degrading proteases from insect moulting fluid and culture filtrates of entomopathogenic fungi. Comp Biochem Physiol 1995, 110: 661-669
    132. Schneider D. Insect antennae. Annu Rev Entomol 1964, 9: 103~122
    133. Schwartz DC, Cantor CR. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 1984, 37: 67-75
    134. Screen SE, Hu G, St. Leger RJ. Transformants of Metarhizium anisopliae sf. Anisopliae overexpressing chitinase from Metarhizium anisopliae sf. Acridum show early induction of native chitinase but are not altered in pathogenicity to Manduca sexta. J. Invertebr. Pathol. 2001, 78: 260-266
    135. Segers R, Butt TM, Carder JH, et al. The subtilisins of fungal pathogens of insects, nematodes and plants: distribution and variation. Mycol Res. 1999, 103: 395-402
    136. Shannon CE, Weaver W. The methematical theory of communication. Illinois: Vniv. Illinois Press. 1949, 117
    137. Sharples GJ, Lloyd RG, A. Novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes Nucleic Acids Research 1990, 18: 6503-6508
    138. Shibata E, Yoneda Y, Higuchi T, Ichinose H, Yamada N. Control method of the adult sugibark borer, Semanotus japonicus Lacordaire(Coleoptera: Cerambycidae), using the nonwoven fabric sheet with an entomogenous fungus Beauveria brongniartii, in Japanese cedar, Cryptomeria japonica D. Don, stand. Appl. Entomol. Zool. 1991, 26: 587-590
    139. Shibata E, Kazuguchi Y, Yonbeda Y. General research on wood quality degradation insect pest control for Cryptmeria japonica and Chamaecyparis. 1988-1992. Naraken Ringyo Shikenjo Gyomu Hokoku 1992, 19
    140. Shimazu M, Kushida T, in Trans. 32th Meet. Kanto Branch Jpn. For. Soc. (1980).
    141. Shimazu M, Katagiri K. Pathogens of the Japanese pine sawyer Monochamus alternatus Hope, and possible utilization of them in a control program. Proc. XVII IUFRO World Congr. Div. 1981, II: 291-295
    142. Shimazu M, Kushida T, in Trans. 35th Meet. Kanto Branch Jpn. For. Soc. (1983).
    143. Shimazu M, Mitsuhashi W, Hashimoto H. Cordyceps brongniartii sp. nov., teleomorph of Beauveria brongniartii. Transactions of the Mycological Society of Japan 1988, 29: 323-330
    144. Shimazu M, Kushida T, Tsuchiya D, Mitsuhashi W. Microbial control of Monochamus alternatus Hope (Coleptera:Cerambycidae) by implanting wheat-bran pellets with Beauveria bassiana in infested tree trunks. J. Jpn. For. Soc. 1992, 74: 325-330
    145. Shimazu M. Potential of the cerambycid-parasitic type of Beauveria brongniartii (Deuteromycotina: Hyphomycetes) for microbial control of Monochamus alternatus Hope (Coleoptera: Cerambycidae).Appl. Entomol. Zool. 1994, 29: 127-130
    146. Shimazu M, in International symposium on pine wilt disease caused by pine wood nematode. (Beijing, 1995) pp. 128-135.
    147. Shimazu M, Tsuchiya D, Sato H, Kushida T. Microbial control of Monochamus alternatus Hope (Coleoptera: Cerambycidae) by application of nonwoven fabric strips with Beauveria bassiana (Deuteromycotina: Hyphomycetes) on infested tree trunks. Appl. Entomol. Zool. 1995, 30: 207-213
    148. Shimazu M, Sato H. Effects of larval age on mortality of Monochamus alternatus Hope (Coleoptera: Cerambycidae) after application of nonwoven fabric strips with Beauveria bassiana. J. Appl. Entomol. Zool 2003, 38: 1-5
    149. Shimizu S, Nishida Y, Yoshioka H, Matsumoto T. Separation of chromosomal DNA molecules from Paecilomyces fumosoroseus by pulsed-field electropheresis J Invertebr Pathol 1991, 58: 461-463
    150. Shimizu S, Arai Y, Matsumoto T. Electrophoretic karyotype of Metarhizium anisopliae. J. Invertebr. Pathol. 1992, 60: 185-187
    151. Shimizu S, Yoshioka Y, Matsumoto T. Electrophoretic characterization of chromosomal DNA from Paecilomyces farinosus. Transactions of the Mycological Society of Japan 1993, 34: 239-244
    152. Smithson SL, Paterson IC, Bailey AM, Screen SE, Hunt BA, Cobb BD, Cooper RM, Charnley AK, Clarkson JM. Cloning and characterisation of a gene encoding a cuticle-degrading prostease from the insect pathogenic fungus Metarhizium anisopliae. Gene 1995, 166: 161 - 165
    153. St Leger RJ, May B, Allee LL, Frank DC, Staples RC, Roberts DW. Genetic differences in allozymes and in formation of infection structures among isolates of the entomopathogenic fungus, Metarhizium anisopliae. Journal of Invertebrate Pathology 1992, 60: 89-101
    154. St. Leger RJ, Charnley AK, Cooper RM. Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliae. Arch Biochem Biophys 1987, 253: 221-232
    155. St. Leger RJ, Roberts DW, Staples RC. Novel GTP-binding proteins in plasma membranes of the fungus Metarhizium anisopliae. Biochem Biophys Res Commun 1989, 164: 562-566
    156. St. Leger RJ, Butt TM, Staples RC, Robert DD. Second messenger involvement in differentiation of the entomopathogenic fungus, Metarhizium anisopliae. J. Gen. Microbiol 1990, 136: 1779-1789
    157. St. Leger RJ, Laccetti LB, taples RC, Robert DW. Protein kinase in the entomopathogenic fungus, Metarhizium anisopliae. J. Gen. Microbiol 1990, 136: 1401-1411
    158. St. Leger RJ, Allee LL, May B, Staples RC, Roberts DW. World-wide distribution of genetic variation among isolates of Beauveria spp. Mycological Research 1992, 96: 1007-1015
    159. St. Leger RJ, Frank DC, Robert DW, Staples RC. Molecular cloning and regulatory analysis of the cuticle-degrading-protease structural gene from the entomopathogenic fungus Metarhizium anisopliae. Eur. J. Biochem 1992, 204: 991-1001
    160. St. Leger RJ, May B, Allee LL, Frank DC, Staples RC, Roberts DW. Genetic differences in allozymes and in formation of infection structures among isolates of the entomopathogenic fungus, Metarhizium anisopliae. Journal of Invertebrate Pathology 1992, 60: 89-101
    161.St. Leger RJ, Staples RC, Roberts DW. Cloning and regulatory analysis of starvation-stress gene, ssgA,encoding a hydrophobin-like protein from the entomopathogenic fungus, Metarhizium anisopliae. Genetika 1992, 120: 119-124
    162. St. Leger RJ, Shimizu S, Joshi L, Bidochka MJ, Roberts DW. Co-transformation of Metarhizium anisopliae by electroporation or using the gene gun to produce stable GUS transformants. FEMS Microbiol. LETT. 1995, 131: 289-294
    163. St. Leger RJ, Joshi L, Bidochka MJ, Rizzo NW, Roberts DW. Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl Environ Microbiol 1996, 62: 1257-1264
    164. St. Leger RJ, Joshi L, Bidochka MJ, Rizzo NW, Roberts DW. Characterization and ultrastructural localization of chitinases from Metarhizium anisopliae, M. flavorviride, and Beauveria bassiana during fungal invasion of host (Manduca sexta) cuticle. Appl. Environ. Microbiol. 1996, 162: 907-912
    165. St. Leger RJ, Joshi L, Bidochka MJ, Roberts DW. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc. Natl. Acad. Sci. USA 1996, 93: 6349-6354
    166. St. Leger RJ, Joshi L. The application of molecular techniques to insect pathology with emphasis on entomopathogenic fungi. In: L. Lacey. Manual of Techniques in Insect Pathology. New York: Acedemic Press, 1997, 367-394.
    167. St. Leger RJ, Screen SE. Prospects for strain improvement of fungal pathogens of insects and weeds. In: T. M. Butt, C. Jackson, N. Magan. Fungi as biocontrol agent. CABI international, 2001, 219-237.
    168. Takasu F, Yamamoto N, Kawasaki K, et al. Modeling the expansion of an introduced tree disease. Biological Invasions 2000, 2: 141-150
    169. Tang WQ, (唐伟强), Wu CS, (吴沧松), Wu YH, (吴银海). Comparison of several methods for attracting Monochamus alternatus (in Chinese). J Zhejiang For Coll (浙江林学院学报) 2000, 17: 338~340
    170. Tautz D. Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Research 1989, 17: 6463~6471
    171. Tinline RD, Noviello C. Heterokaryosis in the entomogenous fungus Metarhizium anisopliae. Mycologia 1971, 63: 701-712
    172. Tsutsumi T, Yamanaka M. Effects of nonwoven fabric sheet containing entomogenous fungus,Beauveria brongniartii (Sacc.) Petch GSES, on adults yellow spotted longicorn beetle,Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae) on fig tree. Japanese Journal of Applied Entomology and Zoology 1996, 40: 145-151
    173. Tsutsumi T, Yamanaka M. Infection by entomogenous fungus, Beauveria brongniartii (Sacc.) Petch GSES,of adults of yellow spotted longicorn beetle, Psacothea hilaris Pascoe by dispersing conidia from non-woven fabric sheet containing fungus. Japanese Journal of Applied Entomology and Zoology 1997, 41: 45-49
    174. Tymon AM, Pell JK. ISSR, ERIC and RAPD techniques to detect genetic diversity in the aphid pathogen Pandora neoaphidis. Mycol Res. 2005, 109: 285-293
    175. Valderrama F, Cristancho A, Chaves C. Analysis de la variabilidad genética del hongoentomopatogeno Beauveria bassiana con marcadores RAPD. Review of Colombian Entomology 2000, 26: 25-29
    176. Viaud M, Couteaudier Y, Levis C, Riba G. Genome organization in Beauveria bassiana: electrophoretic karyotype, gene mapping, and telomeric fingerprint. Fungal Genetics and Biology 1996, 20: 175-183
    177. Viaud M, Gouteaudier Y, Levis C, Riba G. Molecular analysis of hypervirulent somatic hybrids of the entomopathogenic fungi Beauveria bassiana and Beauveria sulfurescens. Applied Environmental Microbiology 1998, 64: 88-93
    178. Vilcinskas A, Matha V, Gotz P. Effects of the entomopathogenic fungus Metarhizium anisopliae and its secondary metabolites on morphology and cytoskeleton of plasmatocytes isolated from Galleria mellonella. Journal of Insect Physiology 1997, 43: 1149-1159
    179. Wang CS, Li ZZ, Butt TM. Molecular studies of co-formulated strains of the entomopathogenic fungus, Beauveria bassiana. J. Invertebr. Pathol. 2002, 80: 29-34
    180. Wang CS, Li ZZ, Butt TM. Nuclear large subunit rDNA group I intron distribution in a population of Beauveria bassiana strains: phylogenetic implications. Mycological Research 2003, 107: 1189-1200
    181. Wang CS, Shah FA, Patel N, Li ZZ, Butt TM. Molecular investigation on strain genetic relatedness and population structure of Beauveria bassiana. Environ. Microbiol 2003, 5: 908-915
    182. Wang CS, Fan MZ, Li ZZ, Butt TM. Molecular monitering and evaluation of application of entomopathogenic fungus Beauveria bassiana in Southeast China. J. Appl. Microbiol. 2004, 96: 861-870
    183. Wang CS, Hu G, St. Leger RJ. Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet Biol 2005, 42: 704-718
    184. Wang CS, St. Leger RJ. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot Cell 2005, 4: 937-947
    185. Wang CS, St. Leger RJ. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci USA 2006, 103: 6647-6652
    186. Wang Q, (王乔). Management and prevalence of Chinese (中国松材成虫病的流行与治理) (in Chinese). In: B.-J. Yang, (杨宝君). Study on Biological Geography of Monochamus. Beijing: Chinese Forest Press, 1995, 69~74.
    187. Wang SB, Miao XX, Zhao WG, Huang B, Fan MZ, Li ZZ, Huang YP. Genetic diversity and population structure among strains of the entomopathogenic fungus, Beauveria bassiana, as revealed by inter-simple sequence repeats (ISSR). Mycol. Res. 2005, 109: 1364-1372
    188. Wang SB, (王四宝), Fang MZ, (樊美珍), Li ZZ, (李增智), Huang YP, (黄勇平). Advances in research on natural microbial enemies of Monochamus alternatus(in Chinese). Ent Knowl 2003, 40: 299~303
    189. Wang YY, (王玉燕), Su CR, (舒超然), Sun YC, (孙永春). A Preliminary Report on Attractant of Monochamus alternatus Hope (in Chinese). Sci Silvae Sin (林业科学) 1991, 27: 186~189
    190. Weber JL, May PE. Abundant class of human DNA polymorphisms which can be typed using thepolymerase chain reaction. . American Journal of Human Genetics 1989, 44: 388~396
    191. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38: 1358-1370
    192. Weiser J, Matha V, Zizka Z, Jegorov A. Pathology of cyclosporine A in mosquito larvae. Cytobios 1989, 59: 143-150
    193. Wolfe AD, Liston A. Contributions of PCR-based methods to plant systematics and evolutionary biology. In: P. S. Soltis, D. E. Soltis, J. J. Doyle. Molecular systematics of plants: DNA sequencing. New York USA: Kluwer New York, 1998, 43-86.
    194. Yamane A, Asada T. Changes in the production of odor from freshly cut pine boles after cutting in relation to its oviposition attractiveness to Monochamus alternatus. Trans 88th Ann Meet Jap For Soc 1977, 283~284
    195. Yan SC, (严善春), Zhang DD, (张丹丹), Chi DF, (迟德富). Advances of studies on the effects of plant volatiles on insect behavior. Chin J Appl Ecol (应用生态学报) 2003, 14: 310~313
    196. Yeh FC, Yang RC, Boyle TBJ, Z.H Y, Mao JX. POPGENE, the User-Friendly Shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada. 1997.
    197. Yin SY, ( 尹淑艳 ), Sun XG, ( 孙 绪 艮 ). Effects of semiochemicals on the correlation of platns-phytophagous insects (mites) and its natural enemies (In Chinese). J Shandong AgricUniv. 2000, 31: 441~445
    198. Yurchenko L, Zakharov IA, Livttin MM. Genetique et selection du champingnon entomopathogene Beauveria bassiana (Bals.) Vuill Etude de Iheterocaryose. Genetika 1974, 10: 95-101
    199. Zacharuk RY. Ultrastructure and function of insect chemosensilla. Annu Rev Entomol 1980, 25: 27~47
    200. Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review. Molecular Ecology 2002, 11: 1-10
    201. Zhang LQ, (张莲芹), Song SH, (宋世涵), Huang HH, (黄焕华). Study on Trapping Monochamus alternatus and Other Pine Boring Beetles with Attractant (in Chinese). For Res (林业科学研究) 1992, 5: 478-481
    202. Zhao JN, (赵锦年), Jiang P, (蒋平), Wu CS, (吴沧松), Sun SL, (孙胜利), Jian LY, (姜礼元), Lin CC, (林长春) Studies on Monochamus alternatus Attractant and the Attract ability (in Chinese). For Res (林业科学研究) 2000, 13: 262-267
    203. Zhao JN, (赵锦年), Lin CC, (林长春), Jian LY, (姜礼元). Study on attract ability of attractant M99-1 to Monochamus alternatus (in Chinese). For Res (林学科学研究) 2001, 14: 523~529
    204. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 1994, 20: 176-183
    205. 丁德贵, 李增智, 樊美珍, 王滨. 球孢白僵菌种群在松林中的寄主转移及遗传多样性对松毛虫持续控制的影响. 应用生态学报 2004, 15: 2315-2320
    206. 方卫国, 张永军, 杨星勇, 王中康, 裴炎. 球孢白僵菌降解昆虫体壁蛋白酶基因 CDEP-1 的克隆与序列分析. 遗传学报 2002, 29: 278-282
    207. 方卫国, 张永军, 杨星勇, 裴炎. 根癌农杆菌介导真菌遗传转化的研究进展. 中国生物工程杂志 2002, 22: 41-45
    208. 片桐一正, 岛津光明. 松褐天牛的天敌微生物. 森林防疫 1980, 29: 9-14
    209. 王中康, 殷幼平, 彭国雄, 夏玉先. 杀虫真菌功能基因克隆和菌株改良研究进展. 中国虫生真菌研究与应用 2003, 5: 18-28
    210. 王四宝, 刘竞男, 吴刚, 樊美珍, 李增智. 两种虫生真菌酯酶同工酶酶谱多样性研究. 生物学杂志 2002, 18: 23-25,20
    211. 王四宝, 樊美珍, 李增智, 黄勇平. 松褐天牛天敌微生物的研究利用进展. 昆虫知识 2003, 40: 303-307
    212. 王四宝, 黄勇平, 张心团, 刘云鹏, 樊美珍, 李增智. 松褐天牛成虫高毒力病原真菌筛选及林间防治. 中国森林病虫 2004, 23: 13-16
    213. 王成树, 丁德贵, 王四宝, 李增智. 球孢白僵菌混菌培养的遗传学分析. 微生物学报 2000, 40: 5455-5550
    214. 王成树, 王四宝, 李增智, Butt TM. 球孢白僵菌种群野生菌株异核现象的分子验证. 菌物系统 2001, 20: 475-481
    215. 王海川, 尤民生. 绿僵菌对昆虫的入侵机理. 微生物学报 1999, 26: 71-73
    216. 王滨, 樊美珍, 李增智. 真菌杀虫剂剂型的研究与应用. 安徽农业大学学报 2003, 30: 206-209
    217. 王滨, 聂英奇, 樊美珍, 李增智. 球孢白僵菌在土壤中宿存的数量、毒力及产孢量变化研究. 安徽农业大学学报 2003, 30: 40-43
    218. 宋肖玲, 李国霞. 昆虫病原真菌毒素对昆虫的作用机制研究进展. 微生物学报 2002, 42: 388-392
    219. 李增智. 球孢白僵菌的昆虫寄主名录. In: 中国虫生真菌研究与应用(第一卷). 北京: 学术期刊出版社, 1988, 135-139.
    220. 李增智. 菌物在病虫、草害生物防治中的未来. 中国生物防治 1999, 15: 35-40
    221. 李增智, 樊美珍. 真菌生物技术与真菌杀虫剂的发展. In: 喻子牛. 微生物农药及其产业化. 北京: 科学出版社, 2002, 115-121.
    222. 周性恒, 朱洪兵, 肖文忠. 南京地区松褐天牛病原真菌的调查研究. In: 杨宝君, 朱克恭, 周元生, 朱正昌, 严敖金. 中国松材线虫病的流行与治理. 北京: 中国林业出版社, 1995, 188-191.
    223. 周性恒, 林巧娥. 松材线虫天敌—矛线虫的发现. In: 杨宝君, 朱克恭, 周元生, 朱正昌, 严敖金. 中国松材线虫病的流行与治理. 北京: 中国林业出版社, 1995, 185-187.
    224. 胡加付. 安徽农业大学, 2001
    225. 胡魏, 黄秀梨. 白僵菌属全细胞可溶性蛋白电泳的比较研究 In: 中国虫生真菌研究与应用第四卷. 北京: 中国农业科学出版社, 1997.
    226. 唐启义, 冯明光. 实用统计分析及其计算机处理平台. In. 北京: 中国农业出版社, 2000, 108-125.
    227. 徐金柱. 安徽农业大学, 2002
    228. 徐福元, 杨宝君, 葛明宏. 松材线虫病媒介昆虫的调查. 森林病虫通讯 1993, 20-21
    229. 徐福元. 国内外松褐天牛天敌的研究利用进展. 世界林业研究 1998, 41-45
    230. 祖元刚, 唐中华. 分子生态学发展中的几个问题. In: 李文华, 赵景柱. 生态学研究回顾与展望. 北京: 气象出版社, 2004, 28-44.
    231. 彭仁旺, 管考梅, 黄秀梨. 球玸白僵菌胞内几丁酶的纯化及性质. 微生物学报 1995, 356: 427-432
    232. 雷冬梅, 张莘, 宋春敬. 分子生态学的理论与方法研究进展. 生态科学进展(第一卷) 2006, 135-159
    233. 蒲蛰龙, 李增智. 昆虫真菌学. In. 合肥: 安徽科学技术出版社, 1996, 362-386.
    234. 樊美珍, 黄勃, 王建林. 几种虫生真菌附着胞的荧光电镜及扫描电镜观察. 菌物系统 1999, 18: 249-253
    235. 刘云鹏, 夏成润, 王四宝, 赵学球, 蔡守平, 李增智, 樊美珍, 倪健. 球孢白僵菌无纺布菌剂与引诱剂联合防治松褐天牛初报. 安徽农业大学学报 2005, 32: 415-418
    236. 张心团. 应用虫生真菌防治松褐天牛技术的研究.[硕士论文]. 合肥: 安徽农业大学, 2003
    237. 张永安, 张龙, 王玉珠, 秦启联, 蒋平. 防治松墨天牛的新病原—松褐天牛微粒子虫. 林业科学研究 2002, 15: 627-629
    238. 张波, 白杨, 岛津光明等. 无纺布防治光肩星天牛成虫的初步研究. 西北林学院学报 1999, 14: 68-72
    239. 张美庆, 王幼珊, 邢礼军. 我国东南沿海地区 AM 真菌群落生态分布研究. 菌物系统 1998, 17: 274~277
    240. 张惠文, 张倩茹, 周启星, 张成刚. 分子微生物生态学及其研究进展. 应用生态学报 2003, 12: 286-292
    241. 张德兴. 分子生态学. In: 戈峰. 现代生态学. 北京: 科学出版社, 2002, 7-31.
    242. 张莲芹, 宋世涵, 黄焕华. 利用引诱剂诱捕松褐天牛等甲虫的研究. 林业科学研究 1992, 5: 478-481
    243. 杨宝君, 朱克恭, 周元生, 朱正昌, 严敖金. 中国松材线虫病的流行与治理. In: 北京: 中国林业出版社, 1995, 1-319.
    244. 陈迎春, 曹又方, 赵立平. 大肠杆菌 MG1655 菌株 ERIC-PCR 图谱主带序列组成分析. 微生物学通报 2002, 29: 28-32
    245. 马克平. 试论生物多样性的概念. 生物多样性 1993, 1: 20-22
    246. 马克平, 刘玉明. 生物群落多样性的测度方法. 生物多样性 1994, 2: 231-239
    247. Yap, I.V., and Nelson, R.J. Winboot, a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. International Rice Research Institute, Manila, Philippines, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700