福建地区烟粉虱抗药性成因与控制策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟粉虱Bemisia tabaci(Gennadius)是一种世界性的害虫。近20年来,由于B型生物型烟粉虱的入侵,给我国多个省市农业生产造成严重危害。上世纪末,烟粉虱入侵福建省,随后在漳州、泉州、龙岩等地市相继暴发成灾。一直以来,福建省烟粉虱防治都以化学药剂为主,特别是一些新烟碱类杀虫剂的应用,使得烟粉虱防治在短期内取得较好效果。但由于过于依赖化学药剂防治,造成化学药剂大范围、大强度的使用,几年时间就使得福建省田间烟粉虱的抗药性水平迅速提高,许多常规药剂失去防效,从而引发一系列问题。这不得不让人对以杀虫剂为主的防治策略重新定位和思考。为解决福建省烟粉虱抗药性所引起的为害问题,除对烟粉虱抗药性机制进行研究外,另一个关键问题是对烟粉虱抗药性发生成因有更深刻了解,才能制定符合福建省农业生产实际,合理、科学的烟粉虱控制策略。因此本论文首先通过田间烟粉虱抗药性监测比较,明确福建省烟粉虱田间种群对不同药剂的抗性现状和发展趋势。同时对影响烟粉虱抗药性发生成因(主要包括烟粉虱生物型、种群多样性及遗传分化、寄主和温度因子和杀虫剂亚致死效应等)等研究分析,阐明福建省烟粉虱抗药性发生的关键成因。并在此基础上构建出相应的可持续控制PUSH-PULL(推-拉)策略和生物防治措施,从而为福建省烟粉虱的抗药性治理和烟粉虱可持续控制奠定良好基础。研究结果如下:
     (1)采用成虫浸叶生测法对福建省不同地区烟粉虱田间种群的抗药性水平进行了测定。结果表明,与2005年比较,福建省烟粉虱种群除对阿维菌素生物制剂仍未产生明显抗药性;对有机磷和拟除虫菊酯类杀虫剂还依旧保持高水平抗性;对新烟碱类杀虫剂的抗性发展极为迅速。其中漳州种群对吡虫啉、噻虫嗪已由2005年的中等水平抗性发展为2009年的高水平抗性,其它地区种群也由低水平抗性发展为中等水平抗性。表明福建省烟粉虱田间种群对新烟碱类杀虫剂已产生明显抗性,此类药剂在福建省烟粉虱防控上已存在很大风险,要慎重使用。
     (2)采用西葫芦银叶测定和mtDNACO I序列比对方法对福建省烟粉虱不同田间种群的生物型进行鉴定,共鉴定出B型和FJ型2种生物型。除采自漳州变叶木上的烟粉虱种群为本地土著种(FJ型)外,其它10个采自大田蔬菜作物的烟粉虱种群均为B型。结果表明福建省大田未发现Q生物型入侵迹象,多年来为害福建省大田作物的烟粉虱生物型仍为B型。从而排除了福建省烟粉虱田间种群抗药性水平的迅速提高是由其它烟粉虱生物型侵入造成的可能。
     (3)通过ISSR、RAPD和mtDNACOI分子标记技术对福建省B型烟粉虱不同田间种群进行了群体遗传特征研究和抗性关系分析,结果表明福建地区烟粉虱田间种群遗传多样性丰富,在抗性水平上存在一定水平的遗传分化。这种遗传分化说明在化学药剂选择压力下,不同的抗性基因在烟粉虱群体能得以快速交流,有利于其种群抗药性水平迅速提高,抵御不利的外部环境。也反应了福建省烟粉虱种群自身较强的遗传进化和适应能力。
     (4)通过不同寄主和不同温度条件对烟粉虱药剂敏感性的影响研究,结果表明寄主植物和温度对烟粉虱种群的药剂敏感性有一定影响,但这种影响难以引起烟粉虱田间种群几十上百倍的抗性发展。认为吡虫啉等烟碱类杀虫剂高强度使用是B型烟粉虱田间种群对该类型药剂迅速形成抗性的重要原因。
     (5)通过吡虫啉杀虫剂亚致死剂量LC_(20)对烟粉虱进行室内抗性筛选试验,结果显示连续筛选14代,吡虫啉亚致死剂量从10ppm提高到100ppm,烟粉虱抗性倍数提高8.64倍。表明杀虫剂的亚致死效应与烟粉虱抗药性有着密切关联,是烟粉虱抗药性水平迅速提高的重要因子。
     (6)通过对福建省烟粉虱寄主的调查和烟粉虱与不同寄主植物适生关系研究,了解掌握对不同植物的嗜好性,为诱集物和驱避物选择奠定基础;通过对诱集植物-黄瓜和驱避物-辣椒碱的使用效果以及日本刀角瓢虫生物防治进行评价,最后集成应用诱集植物黄瓜和黄板诱集、驱避物辣椒碱驱避,同时结合在诱集物上释放捕食性天敌日本刀角瓢虫生物防治等技术,构建了适合福建省毛豆生产的可持续控制的PUSH-PULL策略和生物防治措施,为烟粉虱抗药性治理和烟粉虱可持续控制奠定基础。
The whitefly,Bemisia tabaci (Gennadius) is one of the most devastating pests worldwideand occurs in subtropical and tropical agriculture. Over the past20years, Bemisia tabaci hascaused tremendous losses in several provinces and cities in China. At the beginning of lastcentury, the outbreaks of B. tabaci populations occurred in Zhangzhou, Quanzhou, Longyanregions in Fujian province,China. In Fujian province, the control of B. tabaci has relied onchemical agent for all the times. Although, the use of chemical insecticides can cause short-term(acute) effects, especially some neonicotinoid insecticides. The irrational use of chemical agentshas brought about a series of problems, including insecticide resistance increasing quickly in B.tabaci in short time. These problems cause people to reconsider the control strategy of pesticides.In attempting to solve the problems caused by resistance of B. tabaci in Fujian province, one isto study the mechanism of insecticide resistance, another is to evaluate about effect factors on B.tabaci resistance. So we can formulate rational and scientific control strategy for B. tabaciaccording with local agriculture production. For this reason, in this paper, firstly, throughmonitoring and comparing of B. tabaci resistance, the present situation and trend of insecticideresistance in field-collected populations of B. tabaci were defined in Fujian province. Secondly,the influence factors of resistance, including biotype of B. tabaci, population diversity andgenetic differentiation, host plant species, temperature and sublethal effect of pesticides, weresurveyed and analyzed to clarify the key effect factor on B. tabaci resistance in Fujian. On thebasis of these studies, we can construct the corresponding sustainable PUSH-PULL strategy andbiological control measures, and make a good foundation for resistance management of B. tabaciin Fujian province. The results were as follows:
     (1) Resistance to eight insecticides in field populations of Bemisia tabaci from six regions(Fuzhou, Zhangzhou, Longyan, Sanming, Nanping, Ningde) of Fujian Province was monitoredby adult leaf-dipping bioassay. The resistance levels to neonicotinoid insecticides developedrapidly in field-collected populations of B. tabaci. Especially, Zhangzhou population, theresistance levels to imidacloprid and thiamethoxam had already developed from medium to highlevel in2005and2009(28-102.53-fold to imidacloprid,29-227.74-fold to thiamethoxam). The populations in other regions exhibited moderate levels of resistance to neonicotinoid insecticides(19.72~44.76fold to imidacloprid,21.18~51.64-fold to thiamethoxam).
     (2) The biotypes of different geographical populations of Bemisia tabaci in Fujian provincewere identified base on mtDNACOI molecular marker and squash silverleaf determination. Thebiotype B and FJ were detected. In addition to the population collected from Zhangzhou, whichwas the biotype FJ, the10field-collected populations of B. tabaci were biotype B. Due to notdetecting biotype Q, the identification of biotypes showedthat the biotype B of B. tabaci was stilldestroying agricultural and production in Fujian province over the past10years, and theresistance of B. tabaci was not caused by the recent invasion of biotype Q or others.
     (3) The genetic analysis of eight field-collected populations of B. tabaci were characterizedbase on the ISSR, RAPD and mtDNACOI molecular markers in Fujian province. The resultsshowedthat the genetic diversity of field-collected B. tabaci in Fujian was abundant, and acertain level of genetic differentiation has appeared among different geographical populations.Simultaneously, The results also showedthat the Fujian populations of B. tabaci own strongability of genetic evolution and adaptability under the pesticide selection pressure. The geneticdifferentiation of B. tabaci can improve its own survivability under adverse conditions.
     (4) The sensitivity of B. tabaci to different pesticides was studied under different host plantsand different temperature conditions. The results showedthat the sensitivity of B. tabaci could beaffected by host plants and temperature, but this kind of impact factors was difficult to causeinsecticide resistance to increase more than several dozens or hundreds of times. We canconclude that the most important reason of resistance increasing rapidly might be due to highstrength use of neonicotinoids.
     (5) The resistance screening of laboratory population was used with sublethal doses(LC20)of imidacloprid in the laboratory in2009. After14generations, the resistance of B. tabacito imidacloprid was increased by8.64-fold (LC_(20)value from10.0ppm to100.0ppm). Therealized heritability estimate(h~2) with imidacloprid screening was0.198. The results showed thatcontinuous screening with sublethal doses of imidacloprid could further increase the resistancelevel of B. tabaci, and the sublethal effect of insecticide was closely associated with resistance ofB. tabaci.
     (6) Firstly, the host plants of B. tabaci and the adaptability relationship between B. tabaciand different host plants were investigated. Secondly, the control effect of trap plants (cucumber)and repellents (capsaicin) were evaluated, including biological control (Serangini japonicum).Finally, we integrated the application of trap plants(cucumber), yellow board, repellents(capsaicin) and combined with biological control technology (Serangini japonicum), to constructPUSH-PULL strategy and biological control measures for sustainable control of B. tabaci inFujian province.
引文
安新城,任顺祥.取食经验对烟粉虱寄主适应性的影响[J].华南农业大学学报,2009,30(1):27-30.
    陈连根.烟粉虱在园林植物上为害及其形态变异[J].上海农学院学报,1997,15(3):186-189,208.
    褚栋,毕玉平,张友军,等.烟粉虱生物型研究进展[J].生态学报2005a,25:3398-3405.
    褚栋,陈国发,徐宝云,等.烟粉虱B型和Q型群体遗传结构的RAPD分析[J].昆虫学报,2007,50:264-270.
    褚栋,刘国霞,陶云荔,等.烟粉虱Q型与B型种群动态及其影响因子研究进展[J].植物保护学报,2007,34(3):326-330.
    褚栋,张友军,毕玉平,等.警惕Q型烟粉虱在我国进-步扩散[J].植物检疫,2004,19(3):171-174.
    褚栋,张友军,丛斌,等.世界性重要害虫B型烟粉虱的入侵机制[J].昆虫学报,2004,47(3):400-406.
    褚栋,张友军,丛斌,等.烟粉虱不同地理种群的mtDNA COI基因序列分析及其系统发育[J].中国农业科学,2005,38(1):76-85.
    褚栋,张友军,丛斌,等.云南Q型烟粉虱种群的鉴定[J].昆虫知识,2005b,42(1):54-56.
    邓业成,徐汉虹,雷玲,等.烟粉虱的化学防治及抗药性[J].农药,2004(1):10-14.
    董国堃,林凌伟,叶建人,等.浙东南沿海地区烟粉虱的发生及其防治[J].长江蔬菜,2004,12:35-36.
    冯纪年,付健,韩明理.辣椒碱的研究概述[J].西北农业学报,2005,14(1):84-87.
    冯兰香,杨宇红,谢丙炎,等.警惕烟粉虱大暴发导致新的蔬菜病毒病流行[J].中国蔬菜,2001,2:34-35.
    傅建炜,黄建,姚向荣,等.小黑瓢虫形态特征及生物学特性观察[J].华东昆虫学报,1999,8(1):85-89.
    何玉仙,黄建.烟粉虱抗药性的研究进展[J].华东昆虫学报,2005,14(4):336-34
    何玉仙,黄建,杨秀娟,等.烟粉虱对拟除虫菊酯杀虫剂的抗性机理[J].昆虫学报,2007,50(3):241-247.
    何玉仙,梁智生,林桂君,等.烟粉虱成虫对烟碱类杀虫剂抗性的生物测定方法[J].福建农林大学学报,2006,35(2):143-146.
    何玉仙,翁启勇,黄建,等.烟粉虱田间种群的抗药性[J].应用生态学报,2007,18(7):1578-1582.
    何玉仙,杨秀娟,翁启勇,等.福建省烟粉虱生物型鉴定[J].福建农林大学学报,2006,35(5):486-490.
    蒋金炜,高素霞,王强雨,等.郑州地区烟粉虱寄主植物种类及发生动态[J].河南农业大学学报,2006,40(3):258-260.
    荆英,黄建,马瑞燕,等.刀角瓢虫的生物学特性及其与小黑瓢虫形态特征的比较[J].福建农业大学学报.2003,(02):37-41
    孔令军,林东,王兆民,等.江苏连云港地区烟粉虱发生原因及防治对策[J].江苏农业科学,2004(4):61-62.
    林建国,张传溪,唐振华.与昆虫抗药性相关的乙酞胆碱酯酶基因突变研究进展[J].农药学学报,2005,7(1):01-06.
    林克剑,吴孔明,张永军,等.利用诱集寄主苘麻防治B型烟粉虱的研究[J].中国农业科学,2006,39(7):1379-1386
    林克剑,吴孔明,魏洪义,等.寄主作物对B型烟粉虱生长发育和种群增殖的影响[J].生态学报,2003,23(5):870-877.
    林克剑,吴孔明,张永军,等. B型烟粉虱成虫对五种寄主植物的取食和产卵行为[J].植物保护学报,2008,35(3):199-204.
    李会仙,郝赤,王利英,等.高效氯氰菊酯和溴氰菊酯对棉铃虫的亚致死效应[J].山西农业大学学报,2005,25(3):231-233.
    刘芳,傅强,赖凤香,等.害虫生物型及其遗传机理[J].昆虫学报,2004,47(5):670-678.
    刘可春,宋广运.辣椒碱的分离纯化及分析[J].山东科学,2000,13(1):25-28.
    刘新,刘永.辣椒碱对桃蚜的生物活性及其与几种杀虫剂的联合作用[J].农药学学报,2003,5(2):94-96.
    罗晨,向玉勇,郭晓军,等.寄主植物对B型烟粉虱(Bemisia tabaci)和温室粉虱(Trialeurodesvaporariorum)个体发育和种群繁殖的影响[J].生态学报,2007,27(3):225-230
    罗晨,姚远,王戎疆,等.利用mtDNA COI基因序列鉴定我国烟粉虱的生物型[J].昆虫学报2002,45(6):759-763.
    罗晨,张君明,石宝才,等.北京地区烟粉虱Bemisia tabaci(Gennadius)寄主植物调查初报[J].北京农业科学,2000,18(增刊):42-47.
    罗晨,张芝利.烟粉虱研究概述[J].北京农业科学,2000(增刊):4-13
    罗晨.烟粉虱的种下变异和我国的分布现状.第五届生物多样性保护与利用高新科学技术国际研讨会论文集.北京:科学出版社,2005,69-128.
    邱宝利,任顺祥,Mandour N S,等.温度对烟粉虱发育和繁殖的影响[J].昆虫学报,2003a,10(1):43-49.
    邱宝利,任顺祥,林莉,等.广东省烟粉虱蚜小蜂种类及种群动态调查初报[J].昆虫知识,2004,41(4):333-335.
    邱宝利,任顺祥,林莉,等.不同寄主植物对B型烟粉虱生长发育的影响[J].生态学报,2003,23(6):1206-1211.
    邱宝利,任顺祥,孙同兴,等.广州地区烟粉虱寄主植物调查初报[J].华南农业大学学报,2001,22(4):43-47
    邱宝利,任顺祥,温硕祥,等.利用RAPD-PCR方法鉴定我国烟粉虱的生物型[J].昆虫学报,2003,46(5):605-608
    邱宝利,任顺祥,肖燕,等.国内烟粉虱B生物型的分布及其控制措施研究[J].华东昆虫学报,2003c,12(2):27-31.
    饶琼,罗汉钢,汪细桥,等.武汉地区烟粉虱的危害及生物型鉴定[J].华中农业大学学报,2009,28(5):540-545
    任顺祥,黄振,姚松林.烟粉虱捕食性天敌研究进展[J].昆虫天敌,2004,26(1):36-44
    宋爱颖,吕新强,孙颖.九种药剂防治烟粉虱效果比较[J].长江蔬菜,2003(12):43-44.
    沈晋良,吴益东.棉铃虫抗药性及其治理[M].北京:中国农业出版社,1995,2-3.
    唐振华.昆虫抗药性及其治理[M].北京:中国农业出版社,1993,217-297
    唐振华,陶黎明,李忠.新烟碱类杀虫剂选择作用的分子机理[J].农药学学报,2006,8(4):27-31
    唐振华.新烟碱类杀虫剂的结构与活性及其药效基因[J].现代农药,2002,1:1-6.
    王利华,吴益东.与拟除虫菊酯抗性相关的烟粉虱钠通道基因突变及其检测[J].昆虫学报,2004,47(4):449-453.
    王利华,吴益东. kdr突变和解毒代谢在B型烟粉虱对高效氯氰菊酯抗性中的作用[J].昆虫学报,2008,51(3):277-283.
    王联德,黄建.烟粉虱的为害及其生物防治策略[J].福建农林大学学报,2006,35(4):365-371.
    文吉辉,侯茂林,卢伟,等.印棘素的杀虫活性及其对烟粉虱的驱避作用[J].昆虫知识,2007,44(4):491-496.
    王小艺.杀虫剂对昆虫的亚致死效应[J].世界农药,2004,26(3):24-27.
    万方浩,郭建英,张峰,等.中国生物入侵研究[M].北京:科学出版社,2009
    吴咚咚.吡虫啉对烟粉虱实验种群的亚致死影响[D].硕士论文,2009,3-10
    吴明光,吴兵.天然结晶辣椒碱的分析测定[J].厦门大学学报(自科版),1993,32(6):749-752.
    徐彩霞,吴建辉,任顺祥,等. B型烟粉虱在四种葫芦科植物上的生长和发育[J].应用生态学报,2008,19(5):1099-1103.
    徐婧,栾军波,刘树生.重大外来害虫B型烟粉虱的入侵行为和生态机制[J].昆虫知识,2008,45(3):347-348.
    徐建国,范惠,杨恩华,等.烟粉虱的危害及防治对策[J].蔬菜,2002(9):24-25.
    徐维红,朱国仁,李桂兰,等.七种寄主植物对烟粉虱生长发育、存活和增殖的影响[J].植物保护学报,2003,30(1):107-108.
    杨吉春,李森,柴宝山,等.新烟碱类杀虫剂最新研究进展[J].农药,2007,46(7):433-438.
    姚松林,任顺祥,黄振.日本刀角瓢虫形态特征及生物学特性研究[J].昆虫天敌,2004,(1):22-24
    减连生,江彤,徐蜻,等.烟粉虱B型及二个非B型种群的SCAR分子标记[J].农业生物技术学报,2006,14(2):205-212.
    臧连生,刘树生,刘银泉,等.浙江B型与一非B型(China-ZHJ-1)烟粉虱形态学和生物学特性的比较研究[J].昆虫学报,2005,48(5):742-748.
    臧连生,刘树生,刘银泉,等. B型烟粉虱与浙江非B型烟粉虱的竞争[J].生物多样性,2005,13(3),181-187.
    张国生,侯广新.烟碱类杀虫剂的应用开发现状及展望[J].农药科学与管理,2004,25(3):22-26.
    张宏宇.烟粉虱及其防治[M].北京:金盾出版社,2010.
    张丽萍,张文吉,张贵云,等.山西烟粉虱寄主植物及其被害程度调查[J].植物保护,2005,31(l):24-27.
    张世泽,万方浩,花保桢,等.烟粉虱的生物防治[J].中国生物防治,2004,20(1):57-60.
    张芝利,罗晨.我国烟粉虱的发生危害和防治对策[J].植物保护,2001,27(2):25-26.
    张芝利.关于烟粉虱大发生的思考[J].北京农业科学,2000,18(增刊):1-3.
    周福才,杜予州,孙伟,等.江苏省烟粉虱寄主植物调查及其危害评价[J].扬州大学学报,2003,20(1):71-74,78.
    周国珍,董长珊.湖北省蔬菜烟粉虱发生与危害初步调查[J].湖北植保,2006,2:19-20
    周尧.中国粉虱名录[M].中国昆虫学,1949,3(4):1-18.
    邹华娇.9%辣椒碱烟碱微乳剂防治菜青虫和菜蚜效果试验[J].植物保护,2002,28(1):45-47.
    朱国仁,乔德禄,徐宝云.丽蚜小蜂防治白粉虱的应用技术[M].北京:中国科学技术出版社,1992,130-134.
    Abdullahi, I, Atiri, G I, Thottappilly, G, et al. Discrimination of cassava-associated Bemisia tabaciin Africa from polyphagous populations, by PCR–RFLP of the internal transcribed spacerregions of ribosomal DNA. Journal of Applied Entomology,2004,128(2):81–87.
    Abdullahi, I, Winter, S, Atiri, G I, et al. Molecular characterization of whitefly Bemisia tabaci(Hemiptera: Aleyrodidae) populations infesting cassava. Bulletin of Entomological Research,2003,93(2):97-106
    Alon M, Benting J, Lueke B, et al. Multiple origins of pyrethroid resistance in sympatric biotypesof Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology,2006,36(1):71-79.
    Bellows T S, Perring T M, Gill R J, et al. Description of a species of Bemisia tabaci (Homoptera:Aleyrodidae). Annals of the Entomological Society of America,1994,87(2):195-206.
    Berry S D, Fondong V N, Rey C, et al. Molecular evidence for five distinct Bemisia tabaci(Homoptera: Aleyrodidae) geographic haplotypes associated with cassava plants inSub-Saharan Africa. Annals of the Entomological Society of America,2004,97(4):852-859.
    Brown J K, Bird J. Variability within the Bemisia tabaci species complex and its relation to newepidemics caused by geminiviruses. Bulletin of Entomological Research,1995,36(1):73–80.
    Brown J K, Frohlich D R, Rosell R C. The sweetpotato or silverleaf whiteflies: biotypes ofBemisia tabaci or a species complex. Annual Review Entomology,1995,40:511-534.
    Brown J K. Current status of Bemisia tabaci as a plant pest and virus vector in agroecosystemsworldwide. FAO Plant Protection Bulletin,1993,13(3):265-267.
    Brown J K. Molecular markers for the identification and global tracking of whiteflyvector--begomovirus complexes.Virus Research,2000,71(1-2):233-260.
    Byrne E J, Devonshire A L. Insensitive acetylcholinesterase and esterase polymorphism insusceptible and resistant populations of the tobacco whitefly Bemisia tabaci (Genn.).Pesticide Biochemistry and Physiology,1993,45:34-42.
    Byrne F J, Gorman K J, Cahill M, et al. The role of B type esterases in conferring in secticideresistance in the tobacco whitefly Bemisia tabaci (Genn.). Pest Management Science,2000,56(10):867-874.
    Cao F Q, Liu W X, Fan Z N, et al. Behavioural responses of Bemisia tabaci B-biotype to threehost plants and their volatiles. Acta Entomologica Sinica,2008,51(8):830-838.
    Chow Y L. Sublethal effects of insecticides on longevity, fecundity and behaviour of insect pests areview. Journal of Bioscience,2000,11(1):107-112.
    Costa H S, Brown J K, Sivasupamaniam S, et al. Regional distribution, insecticide resistance, andreciprocal crosses between the A and B biotypes of Bemisia tabaci. International Journal ofTropical Insect Science,1993,14(2):255-266.
    De Barro P J, Scott K D, Graham G C, et al. Isolation and characterization of microsatellite loci inBemisia tabaci. Molcular Ecology,2003,3(1):40-43
    Delatte H, Reynaud B, Granier M, et al. A new silverleaf-inducing biotype Ms of Bemisia tabaci(Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. Bulletinof Entomological Research,2005,95(1):29-35.
    Devine G J, Ishaaya I, Horowitz A R, et al. The response of pyriproxyfen-resistant and susceptibleBemisia tabaci Genn (Homoptera: Aleyrodidae) to pyriproxyfen and fenoxycarb alone and incombination with piperonyl butoxide. Pest Management Science,1999,55(4):405-411.
    Dittrich V, Ernst G H, Ruesch O, etal. Resistance mechanisms in sweetpotato whitefly (Homoptera:Aleyrodidae)populations from Sudan. Biochemical Genetics,2000,38(12):13-25.
    Dittrich V, Hassan S O, Ernst G H. Sudanese cotton and the whitefly: a case study of theemergence of a new primary pest. Crop Protection,1985,4(2):161-176.
    Elbert A, Nauen R. Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides insouthern Spain with special reference to neonicotinoids. Pest Management Science,2000,56(1):60-64
    Enkegaard A. The poinsettia strain of the cotton whitefly, Bemisia tabaci (Homoptera:Aleyrodidae),biological and demographic parameteters on poinsettia (Euphorbia pulcherrima)in relation to temperature. Bulletin of Entomological Research,1993,83(4):535-546
    Fernández E, Grávalos C, Haro P J, et al. Insecticide resistance status of Bemisia tabaci Q Biotypein south-eastern Spain. Pest Management Science,2009,65(8):885-891.
    Frohlich D R, Torres-Jerez I, Bedford I D, et al. A phylogeographical analysis of the Bemisiatabaci species complex based on mitochondrial DNA markers. Molecular Ecology,1999,8(10):1683-1691.
    Guirao P, Beitia F, Cenis J L. Biotype determination of Spanish populations of Bemisia tabaciHemiptera: Aleyrodidae). Bulletin of Entomological Research,1997,87(6):587-593.
    Hoddle M, Driesche R V, Sanderson J. Biological control of Bemisia argentifolii (Homoptera:Aleyrodidae) on poinsettia with inundative releases of Encarsia formosa Beltsville Strain(HYmenoptera: Aphelinidae): Are Higher Release Rates Necessarily Better? BiologicalControl,1997,10(3):166-179.
    Horowitz A R, Gorman K, Ross Q, et al. Inheritance of pyriproxyfen resistance in the whitefly,Bemisia tabaci (Q Biotype). Archives of Insect Biochemistry and Physiology Insect,2003,54(4):177-186.
    Horowitz A R, Kontsedalov S, Khasdan V, et al. Biotypes B and Q of Bemisia tabaci and theirrelevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry andPhysiology Insect,2005,58(4):216-225.
    Horowitz R, Kontsedalov S, Khasdan V, et al. The biotypes B and Q of Bemisia tabaci inIsrael-Distribution, resistance to insecticides and implications for pest management. Journalof Insect Science,2008,8:23-24.
    Hsieh C H, Wang C H, Ko C C. Evidence from molecular markers and population geneticanalyses suggests recent invasions of the western north pacific region by biotypes B and Q ofBemisia tabaci (Gennadius). Environmental Entomology,2007,36(4):952-961.
    Huang J, Polaszek A. A revision of the Chinese species of Encarsia Forster (Hymenoptera:Aphelinidae): parasitoids of whiteflies, scales and aphids (Hemiptera: Aleyrodidae,Diaspididae, Aphidoidea). Journal of Natural History,1998,32(12):1825-1966.
    Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary geneticanalysis and sequence alignment. Brief Bioinform,2004,5(2):150-163.
    Liu S S, De Barro P J, Xu J, et al. Asymmetric mating interactions drive widespread invasion anddisplacement in a whitefly. Science,2007,318(5857):1769-1772.
    Miller J R, Stricker K L. Finding and accepting host plants in Bell W J, Carde R T, eds. TheChemical Ecology of Insects. London: Campman and Hall,1984:125-157.
    Mound, L A. Host-correlated variation in Bemisia tabaci (Gennadius)(Homoptera: Aleyrodidae).Proceedings of the Royal Entomological Society of London,1963,38:171-180.
    Moya A, Guirao P, Cifuentes D, et al. Genetic diversity of Iberian populations of Bemisia tabaci(Hemiptera: Aleyrodidae) based on random amplified polymorphic DNA-polymerase chainreaction. Molecular Ecology,2001,10(4):891-897.
    Nauen R, Stumpf N, Elbert A. Toxicological and mechanistic studies on neonicotinoid crossresistance in Q-type Bemisia tabaci (Hemiptera:Aleyrodidae). Pest Management Scicience,2002,58(9):868-875.
    Oliveira M R V, Henneberry T J, Anderson P. History, current status, and collaborative researchprojects for Bemisia tabaci. Crop Protection,2001,20(9):709-723.
    Omer A D, Johnson M W, Tabashnik B E, et al. Sweetpotato whitefly resistance to insecticides inHawaii: Intra-island variation is related to insecticide use. Entomologia Experimentalis etApplicata,1993,67(2):173-182.
    Osborne L S, Landa Z. Biological control of whiteflies with entomopathogenic fungi. The FloridaEntomologist,1992,75(4):456-471.
    Perring T M. The Bemisia tabaci species complex. Crop Protection,2001,20(9):725-737.
    Ranch N, Nauen R. Identification of biochemical markers linked to neonicotinoid cross resistancein Bemisia tabaci (Hemiptera: Aleyrodidae). Archchives Insect Biochemistry and Physiology,2003,54(4):165-l76.
    Prabhaker N, Toscano N C, Coudriet D L. Susceptibility of the immature and adult stages of thesweetpotato whitefly (Homoptera: Aleyrodidae) to selected insecticides. Journal of EconomicEntomology,1989,82(4):983-988.
    Prabhaker N, Castle S, Henneberry T J, et al. Assessment of cross-resistance potential amongneonicotinoid insecticides in Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin ofEntomological Research,2005,95(6):535-543.
    Simón B, Cenis J L, Beitia F, et al. Genetic structure of field populations of begomoviruses and oftheir Vector Bemisia tabaci in Pakistan. Phytopathology,2003,93(11):1422-1429.
    Tang X, Wan F H, Chu D. Bemisia tabaci Biotype Q Dominates other Biotypes across China.Florida Entomologist2010,93(3):363-368.
    Yue M, Luo C, Guo X J,et al. Probing and feeding behaviors of the whitefly Bemisia tabaci(Gennadius) B biotype on three host plants. Acta Entomologica Sinica,2006,49(4):625-629
    Zhang L P, ZhangY J, ZhangW J, et al. Analysis of genetic diversity among different geographicalpopulations and determination of biotypes of Bemisia tabaci in China. Journal of AppliedEntomology,2005,129(3):121-128.
    Zhang Y J,Liang G M, Ni YX,et al. Selection of the adult of Bemisia tabaci (Gennadius) todifferent host plants. Plant Protection,2003,29(2):20-21.
    Zhou F C, Huang Z, Wang Y, et al. Host plant selection of Bemisia tabaci Gennadius (Hemipera:Alyrrodidae). Acta Ecologica Sinica,2008,28(8):3825-3831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700