基于外来生物B型烟粉虱重要唾液组分的入侵机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重大入侵生物B型烟粉虱自20世纪末传入我国以来,对我国的生态系统和农业生产造成了严重危害,极强的竞争能力和极高的寄主适应性是其暴发成灾的主要原因。当B型烟粉虱传入到一个新的生境,通过口针从寄主植物持续地获取营养物质,是其完成世代发育和种群扩增的必备因素;与此同时,B型烟粉虱还通过口针将其唾液注入到植物组织,实现两者之间的液体物质交流,这种交流是入侵粉虱对本地生物群落产生作用最主要的方式之一。外来物种的入侵机制是入侵生物学的核心问题,各种入侵假说已成为生物入侵研究的重要理论和蓝本。“内在优势假说”阐明了成功入侵者相对于本地竞争者的潜在优势,“新式武器假说”则强调了入侵者对本地生物群落的化感作用。因此,B型烟粉虱是否可以利用唾液作为武器影响本地生物群落,而这种影响是否为本地近缘种温室粉虱所不具备的竞争优势,成为了本研究最核心的科学问题。
     本文首先通过比较不同饲养时间,密度效应,饲料蔗糖浓度和饲料pH值对B型烟粉虱和温室粉虱死亡率的影响,优化了粉虱的人工饲养体系,结果表明采用400头粉虱,饲料蔗糖浓度10%,pH值6.5,饲养两天后能够确保大部分粉虱稳定取食。随后采用人工饲养结合生物化学的方法,对两种粉虱的唾液水解酶、氧化酶和果胶酶进行了鉴定和分析。对两种粉虱唾液水解酶的分析表明,其在各自的特异嗜好寄主上都有更高的唾液碱性磷酸酶比活力,同时B型烟粉虱番茄和棉花种群的唾液碱性磷酸酶比活力要显著大于温室粉虱对应种群的酶比活力。两种粉虱唾液碱性磷酸酶活性随着饲料蔗糖浓度的降低而升高,表明其可能帮助粉虱代谢植物中的蔗糖。对两种粉虱唾液氧化酶的分析表明,B型烟粉虱唾液多酚氧化酶与过氧化物酶的比活力显著高于温室粉虱对应酶的比活力,两种粉虱唾液多酚氧化酶均能与五种酚类底物反应,特异性反应顺序为:五倍子酸>栎精>邻苯二酚>咖啡酸>绿原酸,B型烟粉虱唾液多酚氧化酶对不同酚类底物的降解能力均显著高于温室粉虱。致病疫霉菌侵染、机械损伤、B型烟粉虱预取食、外施水杨酸四种诱导抗性处理能在不同程度上诱导影响两种粉虱唾液多酚氧化酶的比活力上升,这四种处理后B型烟粉虱唾液多酚氧化酶的比活力变化均显著高于温室粉虱。同时B型烟粉虱取食能够使番茄叶片的总酚含量升高,这可能对两种粉虱具有偏利效应。本研究未能在两种粉虱唾液中鉴定出果胶甲酯酶和多聚半乳糖醛酸酶。
     克隆了B型烟粉虱多酚氧化物家族漆酶-1基因,序列分析表明B型烟粉虱唾液腺很可能将水溶且高活性的漆酶-1分泌到唾液中,一方面促进胶状唾液的快速氧化而形成口针鞘,另一方面降解植物组织中特定的酚类物质而帮助取食,而这些功能很可能在刺吸式昆虫漆酶-1基因中高度保守。总的来说,B型烟粉虱利用碱性磷酸酶和多酚氧化酶适应寄主的能力要强于温室粉虱,这可能是其能够成功入侵的内在优势之一。
Bemisia tabaci (Gennadius) biotype B was introduced to China at the end of20th century andposed huge threat to the ecosystem and agricultural industry. Strong competitiveness and high hostadaptation were the main causes for its outbreak. B.tabaci biotype B is piercing-sucking insect, whichwill secrete gell saliva and watery saliva when it sucks phloem sap from the plants. This liquidsexchange between whitefly and plant is one of the most important ways how invasive whitefly affectsthe local biota. Invasion hypothesis are the key theories of invasion biology. Inherent superiorityhypothesis describes the potential advantages of successful invader, while novel weapon hypothesisemphasis the allelopathic effect of invader on the local community. Thus the key scientific questions inthis study are: Is saliva a novel weapon for B.tabaci biotype B? Can this be the Inherent superiority forB.tabaci biotype B when compare to the indigenous species Trialeurodes vaporariorum?
     In this study, we first tested the effects of rearing time, density, sucrose concentration of diet andpH value of diet on the mortality of the B.tabaci biotype B and T. vaporariorum. The results showedrearing400whiteflies on10%sucrose concentration and pH6.5diet for2days is the best combinationfor saliva collection. This artificial feeding system and biochemical methods were used to identify andanalyze different enzymes in whitefly saliva. For salivary hydrolase, both B.tabaci biotype B and T.vaporariorum have higher salivary alkaline phosphatase activities on their preferred hosts compared tothose from unsuitable hosts. B. tabaci B-biotype maintained higher salivary alkaline phosphataseactivity than T. vaporariorum on tomato and cotton. The salivary alkaline phosphatase activities fromboth whiteflies increased when the sucrose concentration in diet decrease, which suggest alkalinephosphatase plays a role in sucrose metabolism. For salivary pectinase, Pectin methylesterase andpolygalacturonase were not identified in the saliva of two whitefly species in this study.
     For salivary oxides, polyphenol oxidase and peroxidase were found in the gel and watery saliva ofboth B. tabaci B-biotype and T.vaporariorum. For tomato colonies, the polyphenol oxidase andperoxidase activities in the watery saliva of B. tabaci B-biotype were2.27and1.34fold higher thanthose of T. vaporariorum. The polyphenol oxidase activities against specific phenolic compoundscommonly found in plants were compared. while the order of activity remained the same for bothwhitefly species, gallic acid>quercetin> pyrocatechol> caffeic acid>chlorogenic acid, the level ofactivity was markedly different with B. tabaci B-biotype consistently demonstrating much higher levelsof activity We also measured polyphenol oxidase activity in both species after they had feed on plantsthat were undamaged or had been previously damaged with either a plant pathogen (Phytophthorainfestans) infection, mechanical damage, B. tabaci B-biotype infestation or exogenous salicylic acid.For B. tabaci B-biotype, polyphenol oxidase activities in watery saliva increased229%,184%,152%,and139%in response to the four treatments while those of T. vaporariorum only increased133%,119%,113%,103%, respectively. B. tabaci B-biotype infestation can significantly increase the total phenolicscontent of tomato leaves. Meanwhile, feeding on tomato pre-infested with B. tabaci B-biotype had no significant effect on the survival rate of B. tabaci B-biotype but can decrease the survival rate of T.vaporariorum significantly.
     Laccase belong to the polyphenol oxidase family and is known to be present in the saliva andsalivary gland of several insect species. The full-length cDNA sequence of Laccase-1gene(BtLac-1)was cloned from B.tabaci biotype B, which was sequenced to be3261bp and encoded911amino acid.BtLac-1has the typical features of Cu-oxidase domain, which belongs to blue copper-containingpolyphenol oxidases family. Homology analysis of amino acid sequence showed that BtLac-1shares58%identity with Nephotettix cincticeps and Acyrthosiphon pisum. The sequence analyses suggest thatB.tabaci biotype B produce soluble laccase in an active form. This indicates that the salivary laccasecauses rapid oxidation of phenolic substances just after being released into the saliva. In general, theseresults suggest that B. tabaci B-biotype is better adapted with the greater alkaline phosphatase andpolyphenol oxidase activities to metabolize sucrose or detoxify high concentrations of phenolics than T.vaporariorum, and have a significant advantage to help itself hold high fitness on plants, resulting rapidand successful invasion.
引文
1.安志兰,郭笃发,范仲学,陶云荔,刘国霞,张友军.寄主植物对B型烟粉虱(Bemisia tabaci)几种主要解毒酶活性的影响.生态学报,2008,28(4):1536~1542
    2.杜孟浩,严兴成,娄永根,程家安.褐飞虱唾液中诱导水稻释放挥发物的活性组分研究.浙江大学学报(农业与生命科学版),2005,31(3):237~244
    3.郭光喜,刘勇,杨景娟,马向真.长管蚜唾液中几种酶的鉴定、活力测定与功能分析.昆虫学报,2006,49(5):768~774
    4.高庆刚,罗晨,郭晓军,墨铁路,张芝利.烟粉虱和温室粉虱在甘蓝上的刺探取食行为比较.昆虫知识,2006,43(6):802~805
    5.胡敦孝,吴杏霞.烟粉虱和温室白粉虱的区别.植物保护,2001,27(5):l5~l8
    6.罗晨,郭晓军,岳梅,向玉勇,张芝利.寄主植物对B型烟粉虱形态学和生物学特性的影响.生物多样性,2006,14(4):333~339
    7.雷芳,张桂芬,万方浩,马骏.寄主转换对B型烟粉虱和温室粉虱海藻糖含量和海藻糖酶活性的影响.中国农业科学,2006,39(7):1387~1394
    8.罗晨,王素芹,崔文清,张芝利.京郊粉虱与天敌的种群动态.当代昆虫学研究.中国昆虫学会成立60周年纪念大会暨学术讨论会论文集,2004,465~468
    9.罗晨,姚远,王戎疆,阎风鸣,胡敦孝,张芝利.利用mtDNA COI基因序列鉴定我国烟粉虱的生物型.昆虫学报,2002,45(6):759~763
    10.邱宝利,任顺祥,温硕洋,Nasser S,Mandour.利用RAPD.PCR方法鉴定我国烟粉虱的生物型(英文).昆虫学报,2003,46(5):605~608
    11.钦俊德.昆虫与植物的关系.北京:科学出版社,1987,79~92
    12.万方浩.生物入侵及其控制.见:王宏广编.2002中国生物技术发展报告.北京:中国农业出版社,2003,220~225
    13.万方浩,郑小波,郭建英.重要农林外来入侵物种的生物学与控制.北京:科学出版社,2005,820
    14.万方浩,郭建英.农林危险生物入侵机理及控制基础研究.中国基础科学,2007,9(59):8~14
    15.万方浩.“973”项目“农林危险生物入侵机理与控制基础研究”简介.昆虫知识,2007,44(6):790~797
    16.万方浩,李保平,郭建英.生物入侵:生物防治篇,北京:科学出版社,2008,596
    17.万方浩,谢丙炎,禇栋.生物入侵:管理篇,北京:科学出版社,2008,316
    18.万方浩,谢丙炎,杨国庆.入侵生物学.北京:科学出版社,2011,515
    19.万方浩,郭建英.入侵生物学学科发展.见:中国科学技术协会主编,中国植物保护学会编著.植物保护学学科发展报告2007~2008,北京:中国科学技术出版社,2008,145~164
    20.万方浩,郭建英,张峰.中国生物入侵研究,北京:科学出版社,2009,302
    21.万方浩,褚栋,郭建英.外来入侵昆虫研究领域发展报告.见:中国科学技术协会主编,中国昆虫学会编著.昆虫学学科发展报告2008~2009,北京:中国科学技术出版社,2009,158~172
    22.万方浩,彭德良,王瑞.生物入侵:预警篇,北京:科学出版社(印刷中),2010
    23.王学霞,王国红,戈峰.大气CO2浓度升高对B型烟粉虱大小、酶活及其寄主的选择性影响.生态学报,2010,31(3):629~637
    24.余昊,万方浩. B型烟粉虱和温室粉虱热激蛋白90基因(hsp90)的全长cDNA克隆与系统发育分析.昆虫学报,2009,52(4)363~371
    25.岳梅,罗晨,郭晓军,张芝利. B型烟粉虱在甘蓝、西葫芦和辣椒上的刺吸取食行为.昆虫学报,2006,49(4):625~629
    26.杨秀清,高希武,郑炳宗.烟粉虱与温室粉虱羧酸酯酶、谷胱甘肽转移酶和乙酰胆碱酯酶性质的比较研究.农药学学报,2001,3(4):38~43
    27.严盈,刘万学,万方浩. B型烟粉虱与温室粉虱不同虫态的碱性磷酸酶性质比较,昆虫学报,2008,51(1):1~8
    28.周福才,李传明,周桂生,顾爱祥,王萍烟.粉虱体内几种抗性酶对寄主转换的响应.生态学报,2010,30(7):1806~1811
    29.张桂芬,雷芳,万方浩,马骏,杨玉国.寄主植物转换对B型烟粉虱和温室粉虱淀粉酶及蛋白酶活性的影响.生物多样性,2008,16(4):313–320
    30. Adams J B, Drew M E. A cellulose-hydrolyzing factor in aphid saliva. Canadian Journal ofZoology,1963,41:489-496.
    31. Adams J B, Drew M E. The effects of heating on the hydrolytic activity of aphid extracts onsoluble cellulose substrates. Canadian Journal of Zoology,1963,41(7):1263-1263
    32. Adams J B, McAllan J W. Pectinase in the saliva of myzus persicae (sulz.)(homoptera: aphididae).Canadian Journal of Zoology,1956,34(6):541-543
    33. Adams J B, McAllan J W. Pectinase in certain insects. Canadian Journal of Zoology,1958,36:305-308.
    34. Agusti N, Cohen A C. Lygus Hesperus and L. lineolaris (Hemiptera: Miridae), phytophages,zoophages, or omnivores: Evidence of feeding adaptations suggested by the salivary and midgutdigestive enzymes. Journal of Entomological Science,2000,35:176-186
    35. Akad F, Dotan N, Czosnek H. Trapping of tomato yellow leaf curl virus (TYLCV) and other plantviruses with a GroEL homologue from the whitefly Bemisia tabaci. Archives of virology,2004,149(8):1481-1497
    36. Alborn H T, Jones T H, Stenhagen G S, Tumlinson J H. Identification and synthesis of volicitin andrelated components from beet armyworm oral secretions. Journal of Chemical Ecology,2000,26(1):203-220
    37. Alborn H T, Turlings T C J, Jones T H, Stenhagen G, Loughrin J H, Tumlinson J H. An elicitor ofplant volatiles from beet armyworm oral secretion. Science,1997,276(5314):945-949
    38. An Z L, Chu D, Guo D F, Fan Z X, Tao Y L, Liu G X, Zhang Y J. Effects of host plant on activitiesof some detoxification enzymes in Bemisia tabaci biotype B. Acta Ecol. Sin.,2008,28:1536-1543
    39. Anesini C, Ferraro G E, Filip R. Total polyphenol content and antioxidant capacity ofcommercially available tea (Camellia sinensis) in Argentina. Journal of agricultural and foodchemistry,2008,56(19):9225-9229
    40. Arakane Y, Muthukrishnan S, Beeman R, Kanost M, Kramer K. Laccase2is the phenoloxidasegene required for beetle cuticle tanning. Proc. Natl. Acad. Sci. U. S. A.,2005,102:11337-11342
    41. Arun K T. DDT-induced neurosecretory activity in Odoiporus longicollisolivier. EnvironmentalPollution Series A, Ecological and Biological,1982,28(2):77-80
    42. Ashida M, Yamazaki I H. Biochemistry of phenoloxidase system in insects. With special referenceto its activation. In: Ohnishi E, Ishizaki H. eds. Molting and Metamorphosis, Japan Science SocietyPress, Tokyo/Springer, Berlin,1990,239-265
    43. Ashrafi S H, Fisk F W. Histochemical localization of phosphatases in the stable fly Stomoxyscalcitrans (L.) using naphthol as-phosphate. The Ohio Journal of Science,1961,(1):7-13
    44. Ashrafi S H, Naqvi S N H, Qadri M A H. Alkaline phosphatase in the digestive system of the desertlocust, Schistocerca gregaria (Forskal). The Ohio Journal of Science,1969,69(3):183-191
    45. Baker H G. The evolution of weeds. Annual review of ecology and systematics,1974,5(1):1-24
    46. Baker H G. Characteristics and modes of origin of weeds. In: Baker H G, Stebbins G L. eds. Thegenetics of colonizing species, New York, Academic Press,1965,147-168
    47. Bao W, O’Malley D M, Whetten R, Sederoff R R. A laccase associated with lignification inloblolly pine xylem. Science,1993,260:672-674
    48. Barinaga M. Is devastating whitefly invader really a new species? Science,1993,259(5091):30
    49. Barney J, Whitlow T. A unifying framework for biological invasions: the state factor model.Biological invasions,2008,10(3):259-272
    50. Baumann L, Baumann P. Soluble salivary protein secreted by Schizaphis graminum. EntomologiaExperimentalis et Applicata,1995,77:57-60.
    51. Berlin D H, Hibbs E T. Digestive system morphology and salivary enzymes of the potatoleafhopper, Empoasca fabae (Harris). Iowa Academy of Science,1963,70:527-540
    52. Besson E, Dellamonica G, Chopin J, Markham K R, Kim M, Koh H, Fukami H.C-glycosylflavones from Oriza sativa. Phytochemistry,1985,24:1061-1064
    53. Blackburn T M, Cassey P. Lockwood J L. The role of species traits in the establishment success ofexotic birds. Global Change Biology,2009,15(12):2852-2860
    54. Blossey B, Notzold R. Evolution of increased competitive ability in invasive nonindigenous plants:a hypothesis. The Journal of ecology,1995,83(5):887-889
    55. Blumenthal D M. Interactions between resource availability and enemy release in plant invasion.Ecology letters,2006,9(7):887-895
    56. Boyd D W. Digestive enzymes and stylet morphology of deraeocoris nigritulus (Uhler)(Hemiptera:Miridae) reflect adaptations for predatory habits. Annals of the Entomological Society of America,2003,96(5):667-671
    57. Brown J K, Frohlich D R, Rosell R C. The sweetpotato or silverleaf whiteflies: biotypes of Bemisiatabaci or a species complex? Annual review of entomology,1995,40(1):511-534
    58. Brown J M, Pellmyr O, Thompson J N, Harrison R G. Phylogeny of Greya (Lepidoptera:Prodoxidae), based on nucleotide sequence variation in mitochondrial cytochrome oxidase I and II:congruence with morphological data. Molecular biology and evolution,1994,11(1):128-141
    59. Cabrero P, Pollock V P, Davies S A, Dow J A. A conserved domain of alkaline phosphataseexpression in the Malpighian tubules of dipteran insects. The Journal of experimental biology,2004,207(Pt19):3299-3305
    60. Callaway R M, Aschehoug E T. Invasive plants versus their new and old neighbors: a mechanismfor exotic invasion. Science,2000,290(5491):521-523
    61. Callaway R M, Maron J L. What have exotic plant invasions taught us over the past20years?Trends in ecology&evolution,2006,21(7):369-374
    62. Callaway R M, Ridenour W M. Novel weapons: invasive success and the evolution of increasedcompetitive ability. Frontiers in Ecology and the Environment,2004,2(8):436-443
    63. Campbell D C, Dreyer D L. Host-plant resistance of sorghum: differential hydrolysis of sorghumpectic substances by polysaccharases of greenbug biotypes (Schizaphis graminum, Homoptera:Aphididae). Archives of Insect Biochemistry and Biophysics,1985,2:203-215.
    64. Campbell D C, Jones K C, Dreyer D L. Discriminative behavioral responses by aphids to variousplant matrix polysaccharides. Entomologia experimentalis et applicata,1986,41(1):17-24
    65. Campbell D C, Dreyer D L. The role of plant matrix polysaccharide in aphid-plant interactions. In:Campbell R K, Eikenbary R D. eds. Aphid-Plant Genotype Interactions, Amsterdam, Elsevier,1990,149-170
    66. Catford J A, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integratinghypotheses into a single theoretical framework. Diversity and Distributions,2009,15(1):22-40
    67. Chang W S, Zachow K R, Bentley D. Expression of epithelial alkaline phosphatase in segmentallyiterated bands during grasshopper limb morphogenesis. Development,1993,118(2):651-663
    68. Chapman R F. ed. The insects: structure and function, Cambridge, UK, Cambridge UniversityPress,1998
    69. Chen Y H, Cui X H, Xie M. Growth and reproduce characteristics of Bemisia tabaci B-biotype andTrialeurodes vaporariorum (Homoptera: Aleyrodidae) after exposure to low temperatureconditions. Chin J Eco-Agri,2008,16(6):
    70. Cherqui A, Tjallingii W F. Salivary proteins of aphids, a pilot study on identification, separationand immunolocalisation. Journal of insect physiology,2000,46(8):1177-1186
    71. Cohen A C. Solid-to-Liquid feeding: The Inside(s) story of extra-oral digestion in PredaceousArthropoda. American Entomologist,1998,44(2):103-117
    72. Cohen A C, Chu C C, Henneberry T J, Freeman T, Nelson D, Buckner J, Margosan D, Vail P, AungL H. Feeding biology of the silverleaf whitefly (Homoptera: Aleyrodidae). Chin. J. Entomol,1998,18:65-82
    73. Cohen A C. Plant feeding by predatory Heteroptera: evolutionary and adaptational aspects oftrophic switching. In: Alomar O, Wiedenmann R N. eds. Zoophagous Heteroptera: Implications forLife History and Integrated Pest Management, Lanham, MD, Thomas Say Publications inEntomology, Entomological Society of America,1996,1-17
    74. Colautti R I, Ricciardi A, Grigorovich I A, MacIsaac H J. Is invasion success explained by theenemy release hypothesis? Ecology letters,2004,7(8):721-733
    75. Costa H S, Brown J K, Sivasupramaniam S, Bird J. Regional distribution, insecticide resistance,and reciprocal crosses between the A and B biotypes of Bemisia tabaci. International Journal ofTropical Insect Science,1993,14(02):255-266
    76. Costa H S, Johnson M W, Ullman D E, Omer A D, Tabashnik B E. Sweet potato whitefly(Homoptera: Aleyrodidae): Analysis of biotypes and distribution in hawaii. EnvironmentalEntomology,1993,22(1):16-20
    77. Costa H S, Ulmanh D E, Johnson M W, Tabashnik B E. Squash silverleaf symptoms induced byimmature but not adult Bemisia tabaci. Phytopathology,1993,83(7):763-766
    78. Crane R K. Intestinal absorption of sugars. Physiological reviews,1960,40:789-825
    79. Crowder D W, Horowitz A R, De Barro P J, Liu S S, Showalter A M, Kontsedalov S, Khasdan V,Shargal A, Liu J, Carriere Y. Mating behaviour, life history and adaptation to insecticides determinespecies exclusion between whiteflies. The Journal of animal ecology,2010,79(3):563-570
    80. Cui X, Wan F, Xie M, Liu T. Effects of heat shock on survival and reproduction of two whiteflyspecies, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science,2008,8(24):1-10
    81. Daehler C C. Performance comparisons of co-occurring native and alien invasive plants:Implications for conservation and restoration. Annual Review of Ecology, Evolution, andSystematics,2003,34(1):183-211
    82. Darwin C. ed. The Origin of Species by Means of Natural Selection, London, John Murray,1859
    83. Davidson E W, Farmer F E, Jones W A. Artificially-rearing whiteflies, Bemisia argentifolii,(Homoptera:Aleyrodidae) as hosts for parasitic wasps. The Florida entomologist,2002,85(3):474-480
    84. Davidson E W, Fay M L, Blackmer J, Lavine M. Improved artificial feeding system for rearing thewhitefly Bemisia argentifolii. Fla. Entomol,2000,83(4):459-468
    85. Davis M A, Grime J P, Thompson K. Fluctuating resources in plant communities: a general theoryof invasibility. Journal of Ecology,2000,88(3):528-534
    86. De Barro P J, Bourne A, Khan S, Brancatini V. Host plant and biotype density interactions–theirrole in the establishment of the invasive B biotype of Bemisia tabaci. Biological invasions,2006,8(2):287-294
    87. De Barro P J,Hart P J. Mating interactions between two biotypes of the whitefly, Bemisia tabaci(Hemiptera: Aleyrodidae) in Australia. Bulletin of Entomological Research,2000,90(02):103-112
    88. De Barro P J, Liu S S, Boykin L M, Dinsdale A B. Bemisia tabaci: a statement of species status.Annual review of entomology,2011,56:1-19
    89. De Vos M, Van Oosten V R, Van Poecke R M, Van Pelt J A, Pozo M J, Mueller M J, Buchala A J,Metraux J P, Van Loon L C, Dicke M, Pieterse C M. Signal signature and transcriptome changes ofArabidopsis during pathogen and insect attack. Molecular plant-microbe interactions: MPMI,2005,18(9):923-937
    90. Dimitriadis V K,Kastritsis C D. Ultrastructural analysis of the midgut of Drosophila aurarialarvae-distribution of alkaline phosphatase, acid phosphatase, leucine aminopeptidase, andglycogen. Cytologia,1985,50(4):689-700
    91. Dinsdale A, Cook L, Riginos C, Buckley Y M, Barro P D. Refined Global Analysis of Bemisiatabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) Mitochondrial CytochromeOxidase1to Identify Species Level Genetic Boundaries. Annals of the Entomological Society ofAmerica,2010,103(2):196-208
    92. Dittmer N, Suderman R, Jiang H, Zhu Y, Gorman M, Kramer K, Kanost M. Characterization ofcDNAs encoding putative laccase-like multicopper oxidases and developmental expression in thetobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. InsectBiochem. Mol. Biol,2004,34:29e41.
    93. Dreyer D L, Campbell B C. Chemical basis of host-plant resistance to aphids. Plant, cell&environment,1987,10(5):353-361
    94. Echeverría E, Salerno G. Intracellular localization of sucrose-Phosphate Phosphate inphotosynthetic cells of lettuce (Lactuca sativa). Physiologia plantarum,1993,88(3):434-438
    95. Eguchi M. Alkaline phosphatase isozymes in insects and comparison with mammalian enzyme.Comparative biochemistry and physiology. Part B. Biochemistry&molecular biology,1995,111(2):151-162
    96. Eguchi M, Azuma M, Yamamoto H, Takeda S. Genetically defined membrane-bound and solublealkaline phosphatases of the silkworm: their discrete localization and properties. In: Ogita Z,Markert C L. eds. Isozymes: Structure, Function and Use in Biology and Medicine, New York,Wiley-Liss,1990,267-287
    97. Elton C S. ed. The ecology of invasions by animals and plants, Methuen, London,1958
    98. Fang J C, Wan F H. Invasive species and their impacts on endemic ecosystems in China. In: KohliR, Jose S, Batish D, Singh H, eds. Invasive Plants and Forest Ecosystems, Boca Raton/London/New York, CRC Press/Taylor and Francis Group,2008,157-175
    99. Felton G W, Gatehouse J A. Antinutritive plant defence mechanisms. In: Lehane M J, Billingsley PF. eds. Biology of the Insect Midgut. Chapman and Hall, London,1996,373-416
    100. Ferreres F, Fernandes F, Pereira D M, Pereira J A, Valentao P, Andrade P B. Phenolics metabolismin insects: Pieris brassicae-Brassica oleracea var. costata ecological duo. Journal of agriculturaland food chemistry,2009,57(19):9035-9043
    101. Fidantsef A L, Stout M J, Thaler J S, Duffey S S, Bostock R M. Signal interactions in pathogen andinsect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related proteinP4in the tomato, Lycopersicon esculentum. Physiological and molecular plant pathology,1999,54(3/4):97-114
    102. Fischer R L, Bennett A B. Role of Cell Wall Hydrolases in Fruit Ripening. Annual Review of PlantPhysiology and Plant Molecular Biology,1991,42(1):675-703
    103. Frankham R. Resolving the genetic paradox in invasive species. Heredity,2005,94(4):385
    104. Frohlich D R, Torres-Jerez I I, Bedford I D, Markham P G, Brown J K. A phylogeographicalanalysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecularecology,1999,8(10):1683-1691
    105. Funk C J. Alkaline phosphatase activity in whitefly salivary glands and saliva. Archives of insectbiochemistry and physiology,2001,46(4):165-174
    106. Gao Q G, Luo C, Guo X J, Mo T L, Zhang Z L. EPG-recorded probing and feeding behaviors ofBemisia tabaci and Trialeurodes vaporariorum on cabbage. Chinese Bulletin of Entomology,2006,43:802-805
    107. Gelman D B, Blackburn M B, Hu J S. Identification of the molting hormone of the sweet potato(Bemisia tabaci) and greenhouse (Trialeurodes vaporariorum) whitefly. Journal of insectphysiology,2005,51(1):47-53
    108. Gennadius P. Disease of tobacco plantations in Trikonia: the aleurodid of tobacco. Ellenike Georgia,1889,5:1-3
    109. Gerling D, Lindenbaum M. Host plant related behavior of Bemisia tabaci (Gennadius). WPRS Bull,1991,14:83-88
    110. Gorman M J, Dittmer N T. Marshall J L, Kanost M R. Characterization of the multicopper oxidasegene family in Anopheles gambiae. Insect Biochem. Mol.Biol,2008,38:817-824
    111. Greathead A H. Host plants. In: Cock M J W. ed. Bemisia tabaci-A Literature Survey on the CottonWhitefly with an Annotated Bibliography, UK, CAB International Institute of Biological Control,Ascot,1986,17-25
    112. Gunning R V, Byrne F J, Condé B D, Connelly M I, Hergstrom K, Devonshire A L. First Report ofB-Biotype Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae) in Australia. Australian Journalof Entomology,1995,34(2):116-116
    113. Guo G X, Liu Y, Yang J J, Ma X Z. Identification, activity and function determination of severalsalivary enzymes secreted by Macrosiphum avenae.. Acta Entomologica Sinica,2006,49(5):768-774
    114. H nfling B, Kollmann J. An evolutionary perspective of biological invasions. Trends inEcology&Evolution,2002,17(12):545-546
    115. Habibi J, Backus E A, Coudron T A, Brandt S L. Effect of different host substrates on hemipteransalivary protein profiles. Entomologia experimentalis et applicata,2001,98(3):369-375
    116. Hammerschmidt R. Phenols and plant-pathogen interactions: The saga continues. Physiol MolPlant P.,2005,66:77-78
    117. Himler A G, Adachi-Hagimori T, Bergen J E, Kozuch A, Kelly S E, Tabashnik B E, Chiel E,Duckworth V E, Dennehy T J, Zchori-Fein E, Hunter M S. Rapid spread of a bacterial symbiont inan invasive whitefly is driven by fitness benefits and female bias. Science,2011,332(6026):254-256
    118. Houk E J, Hardy J L. Alkaline phosphatases of the mosquito, Culex tarsalis coquillett. ComparativeBiochemistry and Physiology Part B: Comparative Biochemistry,1984,78(2):303-310
    119. Hu D X, Wu X X. The diference between Bemisla tabaci(Gennadius) biotype B and Trialeurodesvaprorariorum. Plant Protection,2001,27:15-18
    120. Hufbauer R A, Torchin M E. Integrating ecological and evolution theory of biological invasions. In:Nentwig W. ed. Biological Invasions, Heidelberg, Germany, Springer,2007,79-96
    121. Igbokwe E C, Mills M. Electrophoretic variability in the phosphatase system of the yellow-fevermosquito, Aedes aegypti. Comparative Biochemistry and Physiology Part B: ComparativeBiochemistry,1982,73(3):457-458
    122. Inbar M, Doostdar H, Leibee G L, Mayer R T. The Role of Plant Rapidly Induced Responses inAsymmetric Interspecific Interactions Among Insect Herbivores. Journal of Chemical Ecology,1999,25(8):1961-1979
    123. Inbar M, Doostdar H, Mayer R T. Effects of Sessile Whitefly Nymphs (Homoptera: Aleyrodidae)on Leaf-Chewing Larvae (Lepidoptera: Noctuidae). Environmental Entomology,1999,28(3):353-357
    124. Jancovich J K, Davidson E W, Lavine M, Hendrix D L. Feeding Chamber and Diet for Culture ofNymphal Bemisia argentifolii (Homoptera: Aleyrodidae). Journal of Economic Entomology,1997,90(2):628-633
    125. Jiang Y, Miles P W. Generation of H2O2during enzymatic oxidation of catechin. Phytochemistry,1993,33:29-34
    126. Jimenez D R, Gilliam M. Ultrastructure of the ventriculus of the honey bee, Apis mellifera (L.):cytochemical localization of acid phosphatase, alkaline phosphatase, and nonspecific esterase. Celland Tissue Research,1990,261(3):431-443
    127. Jiu M, Zhou X P, Tong L, Xu J, Yang X, Wan F H, Liu S S. Vector-virus mutualism acceleratespopulation increase of an invasive whitefly. PloS one,2007,2(1): e182
    128. Kahl J, Siemens D H, Aerts R J, Gabler R, Kuhnemann F, Preston C A, Baldwin I T.Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense againstan adapted herbivore. Planta,2000,210(2):336-342
    129. Kaloshian I, Walling L L. Hemipterans as plant pathogens. Annual review of phytopathology,2005,43:491-521
    130. Karban R, Agrawal A A, Thaler J S, Adler L S. Induced plant responses and information contentabout risk of herbivory. Trends in Ecology&Evolution,1999,14(11):443-447
    131. Kazzazi M, Bandani A R, Hosseinkhani S. Biochemical characterization of α-amylase of the Sunnpest, Eurygaster integriceps. Entomological Science,2005,8(4):371-377
    132. Keller H, Hohlfeld H, Wray V, Hahlbrock K, Scheel D, Strack D. Changes in the accumulation ofsoluble and cell wall-bound phenolics in elicitor-treated cell suspension cultures andfungus-infected leaves of Solanum tuberosum. Phytochemistry,1996,42(2):389-396
    133. Kempema L A, Cui X, Holzer F M, Walling L L. Arabidopsis transcriptome changes in response tophloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids.Plant physiology,2007,143(2):849-865
    134. Kliebenstein D J. Secondary metabolites and plant/environment interactions: a view throughArabidopsis thaliana tinged glasses. Plant, cell&environment,2004,27(6):675-684
    135. Knoblauch M, Peters W S, Ehlers K, van Bel A J. Reversible calcium-regulated stopcocks inlegume sieve tubes. The Plant cell,2001,13(5):1221-1230
    136. Knoblauch M, van Bel A J E. Sieve Tubes in Action. Plant Cell,1998,10(1):35-50
    137. Krugelis E J. Distribution and properties of intracellular alkaline phosphases. The Biologicalbulletin,1946,90:220-233
    138. Kumar D, Ray A, Ramamurty P S. Studies on the salivary glands of Lygaeus sp.(Lygaeidae-Heteroptera): Histological, histochemical, autoradiographic and electron microscopicinvestigations. Z. Mikrosk. Anat. Forsch,1980,94:669-695
    139. Laurema S, Varis A-L, Miettinen H. Studies on enzymes in the salivary glands of Lygusrugulipennis (Hemiptera, miridae). Insect Biochemistry,1985,15(2):211-224
    140. Lee M, De Barro P J. Characterization of different biotypes of Bemisiatabaci(Gennadius)(Homoptera, Aleyradidae) in South Korea based on16S ribosomal RNAsequences. Korean Journal of Entomology,2000,30(2):125-130
    141. Lei F, Zhang G F, Wan F H, Ma J. Effects of plant species switching on contents and dynamics oftrehalose and trehalase activity of Bemisia tabaci B-biotype and Trialeurodes vaporariorum. Sci.Agri. Sin.,2006,39(7):1387-1394
    142. Liang P, Cui J Z, Yang X Q, Gao X W. Effects of host plants on insecticide susceptibility andcarboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodesvaporariorum. Pest management science,2007,63(4):365-371
    143. Lima L H C, Campos L, Moretzsohn M C, Návia D, Oliveira M R Vd. Genetic diversity ofBemisia tabaci (Genn.) Populations in Brazil revealed by RAPD markers. Genetics and MolecularBiology,2002,25:217-223
    144. Lin K, Wu K, Zhang Y, Guo Y. Overwintering and population dynamics of Bemisia tabaci biotypeB in greenhouse during the spring in northern China. Crop protection,2007,26(12):1831-1838
    145. Lin T B, Wolf S, Schwartz A, Saranga Y. Silverleaf whitefly stress impairs sugar export fromcotton source leaves. Physiologia plantarum,2000,109(3):291-297
    146. Liu J, Zhao H, Jiang K, Zhou X P, Liu S S. Differential indirect effects of two plant viruses on aninvasive and an indigenous whitefly vector: implications for competitive displacement. Annals ofApplied Biology,2009,155:439-448
    147. Liu S S, De Barro P J, Xu J, Luan J B, Zang L S, Ruan Y M, Wan F H. Asymmetric matinginteractions drive widespread invasion and displacement in a whitefly. Science,2007,318(5857):1769-1772
    148. Lonsdale W M. Global patterns of plant invasions and the concept of invasibility. Ecology,1999,80(5):1522-1536
    149. Lu Z C, Wan F H. Differential gene expression in whitefly (Bemisia tabaci) B-biotype females andmales under heat-shock condition. Comparative biochemistry and physiology. Part D, Genomics&proteomics,2008,3(4):257-262
    150. Lunan K D, Mitchell H K. The metabolism of tyrosine-O-phosphate in Drosophila. Archives ofbiochemistry and biophysics,1969,132(2):450-456
    151. Luo C, Wang S Q, Cui W Q, Zhang Z L. Contemporary Entomology Research. Proceedings ofConference for the60th Anniversaries of the Entomology Society of China,2004
    152. Luo C, Xiang Y Y, Guo X J, Zhang F, Zhang Z L. Comparative on development and reproductionbetween Bemisla tabaci biotype B and Trialeurodes vaporariorum on four species of host plants.Acta Ecol. Sin.,2007,27:1035-1041
    153. Coy M R, Salem T Z, Denton J S, Kovaleva E S, Liu Z, Barber D S, Campbell J H, Davis D C,Buchman G W, Boucias D G, Scharf M E. Phenol-oxidizing laccases from the termite gut. InsectBiochemistry and Molecular Biology,2010,10(40):723–732
    154. Ma R, Reese J, Black W C, Bramel C P. Chlorophyll loss in a greenbug-susceptible sorghum due topectnases and pectin fragments. Journal of the Kansas Entomological Society,1998,71(1):51-60
    155. Ma R, Reese J C, Black Iv W C, Bramel-Cox P. Detection of pectinesterase and polygalacturonasefrom salivary secretions of living greenbugs, Schizaphis graminum (Homoptera: Aphididae).Journal of insect physiology,1990,36(7):507-512
    156. Madhusudhan V V. Interaction of the Spotted Alfalfa Aphid and Its Food Plant. PhD Thesis,University of Adelaide, South Australia,1998,81pp.
    157. Madhusudhan V V, Miles P W. Mobility of salivary components as a possible reason fordifferences in the responses of alfalfa to the spotted alfalfa aphid and pea aphid. Entomologiaexperimentalis et applicata,1998,86(1):25-39
    158. Mattiacci L, Dicke M, Posthumus M A. beta-Glucosidase: an elicitor of herbivore-induced plantodor that attracts host-searching parasitic wasps. Proceedings of the National Academy of Sciencesof the United States of America,1995,92(6):2036-2040
    159. Mayer R T, Inbar M, McKenzie C L, Shatters R, Borowicz V, Albrecht U, Powell C A, Doostdar H.Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, andphytopathogens. Archives of insect biochemistry and physiology,2002,51(4):151-169
    160. McAllan J W, Adams J B. The significance of pectinase in plant penetration by aphids. CanadianJournal of Zoology,1961,39(3):305-310
    161. McCloud E S, Baldwin I T. Herbivory and caterpillar reguritants amplify the wound-inducedincreases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta,1997,203:430-435
    162. McKenzie C L, Shatters R G Jr., Doostdar H, Lee S D, Inbar M, Mayer R T. Effect of geminivirusinfection and Bemisia infestation on accumulation of pathogenesis-related proteins in tomato.Archives of insect biochemistry and physiology,2002,49(4):203-214
    163. Mewis I, Ulrich C, Schnitzler W H. The role of glucosinolates and their hydrolysis products inoviposition and host-plant finding by cabbage webworm, Hellula undalis. Entomologiaexperimentalis et applicata,2002,105(2):129-139
    164. Michael W C. Understanding the roles of phenolics and terpenoids in pine defense against fungalpathogens. Ohio State University,2007, Dissertation.
    165. Miles P W. Studies on the salivary physiology of plant-bugs: the salivary secretions of aphids.Journal of insect physiology,1965,11(9):1261-1268
    166. Miles P W. The saliva of Hemiptera. Advances in Insect Physiology,1972,9:183-255.
    167. Miles P W. Dynamic aspects of the chemical relation between the rose aphid and rose buds.Entomologia experimentalis et applicata,1985,37(2):129-135
    168. Mile P W. Plant-sucking bugs can remove the contents of cells without mechanical damage.Experientia,1987,43:937-939.
    169. Miles P W. Feeding process of Aphidoidea in relation to effects on their food plants. In: Minks A K,Harrewijn P. eds. Aphids, Their Biology, Natural Enemies and Control, Amsterdam, Netherlands,Elsevier,1987,321-335
    170. Miles P W. Aphid salivary secretions and plant toxicoses. In: Campbell R K, Eikenbary R D. eds.Aphid-Plant Genotype Interactions, Amsterdam, Elsevier,1990,131-147
    171. Miles P W. Aphid salivary functions: the physiology of deception. In: Nieto Nafría J M, Dixon A FG. eds. Aphids in Natural and Managed Ecosystems, León, Spain, Universidad de León(Secretariado de publicaciones),1998,255-263
    172. Miles P W. Aphid saliva. Biological Reviews,1999,74(1):41-85
    173. Miles P W, Harrewijn P. Discharge by aphids of soluble secretions into dietary sources.Entomologia Experimentalis et Applicata,1991,59:123-134.
    174. Miles P W, Hori K. The etiology of damage to lucerne by the green mirid, Creontidaes dilutus(St l). Australian Journal of Experimental Agriculture,1993,33:327-331.
    175. Miles P W, Oertli J J. The significance of antioxidants in the aphid-plant interaction: the redoxhypothesis. Entomologia experimentalis et applicata,1993,67(3):275-283
    176. Miles P W, Peng Z. Studies on the salivary physiology of plant bugs: Detoxification ofphytochemicals by the salivary peroxidase of aphids. Journal of insect physiology,1989,35(11):865-872
    177. Miles P, Taylor G."Osmotic pump" feeding by coreids. Entomologia experimentalis et applicata,1994,73(2):163-173
    178. Misbahuddin R S, Ehteshamuddin S. Effect of phosphamidon on the alkaline phosphatase activityin the haemolymph of sap feeding insect pests Aspongopus janus, Chrysocoris stollii andDysdercus cingulatus. Environment and Ecology,2000,18:323-325
    179. Mittler T E. Application of artificial feeding techniques for aphids. In: Minks A K, Harrewijn P. eds.Aphids, Their Biology, Natural Enemies and Control, Amsterdam, Netherlands, Elsevier,1988,145-170
    180. Mound L A, Halsey S H. eds. Whitefly of the world, London, British Museum and John Wiley&Sons,1978
    181. Muller-Scharer H, Schaffner U, Steinger T. Evolution in invasive plants: implications for biologicalcontrol. Trends in ecology&evolution,2004,19(8):417-422
    182. Musser R O, Cipollini D F, Hum-Musser S M, Williams S A, Brown J K, Felton G W. Evidencethat the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceousplants. Archives of insect biochemistry and physiology,2005,58(2):128-137
    183. Musser R O, Hum-Musser S M, Eichenseer H, Peiffer M, Ervin G, Murphy J B, Felton G W.Herbivory: caterpillar saliva beats plant defences. Nature,2002,416(6881):599-600
    184. Musser R O, Kwon H S, Williams S A, White C J, Romano M A, Holt S M, Bradbury S, Brown JK, Felton G W. Evidence that caterpillar labial saliva suppresses infectivity of potential bacterialpathogens. Archives of insect biochemistry and physiology,2005,58(2):138-144
    185. Mutti N S, Louis J, Pappan L K, Pappan K, Begum K, Chen M S, Park Y, Dittmer N, Marshall J,Reese J C, Reeck G R. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, isessential in feeding on a host plant. Proceedings of the National Academy of Sciences of theUnited States of America,2008,105(29):9965-9969
    186. Nathan S S. Effects of Melia azedarach on nutritional physiology and enzyme activities of the riceleaffolder Cnaphalocrocis medinalis (Guenée)(Lepidoptera: Pyralidae). Pesticide Biochemistryand Physiology,2006,84(2):98-108
    187. Newsome A E, Noble I R. Ecological and physiological characters of invading species. In: GrovesR H, Burdon J J. eds. Ecology of biological invasions, Cambridge, Cambridge Univ. Press,1986,1-20
    188. Ng J C, Perry K L. Transmission of plant viruses by aphid vectors. Molecular plant pathology,2004,5(5):505-511
    189. Niu H B, Liu W X, Wan F H, Liu B. An invasive aster (Ageratina adenophora) invades anddominates forest understories in China: altered soil microbial communities facilitate the invaderand inhibit natives. Plant and Soil,2007,294(1):73-85
    190. Nombela G, Garzo E, Duque M, Muniz M. Preinfestations of tomato plants by whiteflies (Bemisiatabaci) or aphids (Macrosiphum euphorbiae) induce variable resistance or susceptibility responses.Bulletin of Entomological Research,2009,99(2):183-191
    191. Oliveira M R V, Henneberry T J, Anderson P. History, current status, and collaborative researchprojects for Bemisia tabaci. Crop protection,2001,20(9):709-723
    192. Pascual S, Callejas C. Intra-and interspecific competition between biotypes B and Q of Bemisiatabaci (Hemiptera: Aleyrodidae) from Spain. Bulletin of Entomological Research,2004,94(04):369-375
    193. Patil B V. Competitive displacement of Bemisia with leafhoppers and aphids in a cotton ecosystem.In: Gerling D, Mayer R T. eds. Bemisia1995: Taxonomy, Biology, Damage, Control andManagement, Andover, Hants, UK, Intercept Ltd,1996,243-245
    194. Peiffer M, Felton G W. The host plant as a factor in the synthesis and secretion of salivary glucoseoxidase in larval Helicoverpa zea. Archives of insect biochemistry and physiology,2005,58(2):106-113
    195. Pelletier Y, Pompon J, Dexter P, Quiring D. Biological performance of Myzus persicae andMacrosiphum euphorbiae (Homoptera: Aphididae) on seven wild Solanum species. Annals ofApplied Biology,2010,156(3):329-336
    196. Peng Z, Miles P W. Acceptability of catechin and its oxidative condensation products to the roseaphid, Macrosiphum rosae. Entomologia experimentalis et applicata,1988a,47(3):255-265
    197. Peng Z, Miles P W. Studies on the salivary physiology of plant bugs: function of the catecholase ofthe rose aphid. Journal of Insect Physiology,1988b,34:1027-1033
    198. Peng Z, Miles P W. Oxidases in the gut of an aphid, Macrosiphum rosae (L.) and their relation todietary phenolics. Journal of insect physiology,1991,37(10):779-787
    199. Perring T M. The Bemisia tabaci species complex. Crop protection (Guildford, Surrey),2001,20(9):725-737
    200. Perring T M, Cooper A D, Rodriguez R J, Farrar C A, Bellows T S Jr. Identification of a whiteflyspecies by genomic and behavioral studies. Science,1993,259(5091):74-77
    201. Perring T M, Cooper A D, Kazmer D J, Shields C, Shields J. New strain of sweet potato whiteflyinvades California vegetables. California agriculture,1991,45(6):10-12
    202. Perring T M, Symmes E J. Courtship Behavior of Bemisia argentifolii (Hemiptera: Aleyrodidae)and Whitefly Mate Recognition. Annals of the Entomological Society of America,2006,99(3):598-606
    203. Pollard D G. Plant penetration by feeding aphids (Hemiptera, Aphidoidea): a review. Bulletin ofEntomological Research,1973,62(04):631-714
    204. Py ek P, Richardson D M. The biogeography of naturalization in alien plants. Journal ofBiogeography,2006,33(12):2040-2050
    205. Quintero C, Cardona C, Ramirez D, Jimenez N. First report of biotype B of Bemisia tabaci(Homoptera: Aleyrodidae) in Colombia. Rev. Colombiana Entomol,1998,24(12):23-28
    206. Quintero C, Rendon F, Garcia J, Cardona C, Lopez A A, Hernandez P. Species and biotypes ofwhiteflies (Homoptera: Aleyrodidae) affecting annual crops in Colombia and Ecuador. Rev.Colombiana Entomol,2001,27:27-31
    207. Reitz S R, Trumble J T. Competitive displacement among insects and arachnids. Annual review ofentomology,2002,47:435-465
    208. Ricciardi A, Cohen J. The invasiveness of an introduced species does not predict its impact.Biological invasions,2007,9(3):309-315
    209. Richardson D M, Py ek P. Plant invasions: merging the concepts of species invasiveness andcommunity invasibility. Progress in Physical Geography,2006,30(3):409-431
    210. Ridley B L, O'Neill M A, Mohnen D. Pectins: structure, biosynthesis, andoligogalacturonide-related signaling. Phytochemistry,2001,57(6):929-967
    211. Rojo E, Solano R, Sánchez-Serrano J. Interactions Between Signaling Compounds Involved inPlant Defense. Journal of plant growth regulation,2003,22(1):82-98
    212. Rosell R C, Torres-Jerez I, Brown J K. Tracing the geminivirus-whitefly transmission pathway bypolymerase chain reaction in whitefly extracts, saliva, hemolymph, and honeydew. Phytopathology,1999,89(3):239-246
    213. Ryan J D, Dorschner K W, Girma M, Johnson R C, Eikenbary R D. Feeding Behavior, Fecundity,and Honeydew Production of Two Biotypes of Greenbug (Homoptera: Aphididae) on Resistant andSusceptible Wheat. Environmental Entomology,1987,16(3):757-763
    214. Ryan J D, Mort A J, Johnson R C. Middle lamellar pectins and greenbug resistance in wheat. PlantPhysiology (Suppl.),1986,80:18
    215. Ryan J D, Morgan A T, Richardson P E, Johnson R C, Mort A J. Greenbugs and wheat: a modelsystem for the study of phytotoxic Homoptera. In: Campbell R K, Eikenbary R D. eds. Aphid-PlantGenotype Interactions, Amsterdam, Elsevier,1990,171-186
    216. Sax D F, Brown J H. The paradox of invasion. Global Ecology and Biogeography,2000,9(5):363-371
    217. Sch ller G. Papierchromatographische Analyse der Aminos uren und Amide des Speichels undHonigtaus von10Aphidenarten mit unterschiedliche Phytopathogenit t. Zoologische Jarhbücher(Abteilung Allgemeine Zoologie und Physiologie der Tiere),1963,70:399-406.
    218. Sch ller G. Untersuchungen über den β-indolessigs uregehalt des Speichels von Aphidenarten mitunterschiedlicher Phytopathogenit t. Zoologische Jarhbücher (Abeilung Allgemeine Zoologie undPhysiologie der Tiere),1965,71:385-392.
    219. Senthil N S, Choi M Y, Paik C H, Seo H Y. Food consumption, utilization, and detoxificationenzyme activity of the rice leaffolder larvae after treatment with Dysoxylum triterpenes. PesticideBiochemistry and Physiology,2007,88(3):260-267
    220. Sher A A, Hyatt L A. The Disturbed Resource-Flux Invasion Matrix: A New Framework forPatterns of Plant Invasion. Biological invasions,1999,1(2):107-114
    221. Silveri A, Dunwiddie P, Michaels H. Logging and Edaphic Factors in the Invasion of an AsianWoody Vine in a Mesic North American Forest. Biological invasions,2001,3(4):379-389
    222. Simberloff D. Invasional meltdown6years later: important phenomenon, unfortunate metaphor, orboth? Ecology letters,2006,9(8):912-919
    223. Smith J J B. Feeding mechanisms. In: Kerkut G A, Bilbert L I, eds. Comprehensive InsectPhysiology, Biochemistry and Pharmacology, Oxford, UK, Pergamon Press,1985,33-85
    224. Sogawa K. Studies of the salivary glands of rice plant leafhoppers. V. Formation of the Styletsheath. Japanese Journal of Applied Entomology and Zoology,1971,15:132-138(in Japanese withEnglish abstract.).
    225. Sogawa K. Feeding of the rice plant and leafhoppers. Review of Plant Protection Research,1973,6:31-43
    226. Spiteller D, Dettner K, Bolan W. Gut bacteria may be involved in interactions between plants,herbivores and their predators: microbial biosynthesis of N-acylglutamine surfactants as elicitors ofplant volatiles. Biological chemistry,2000,381(8):755-762
    227. Sridhara S, Bhat J V. Alkaline and acid phosphatases of the silkworm, Bombyx mori L. Journal ofinsect physiology,1963,9(5):693-701
    228. Srivastava J P, Saxena S C. On the alkaline and acid phosphatase in the alimentary tract ofPeriplaneta Americana L.(Blattaria: Blattidae). Appl. Entomol. Zool.,1967,2:85-92
    229. Steinbauer M J, Taylor G S, Madden J L. Comparison of damage to Eucalyptus caused by Amorbusobscuricornis and Gelonus tasmanicus. Entomologia experimentalis et applicata,1997,82(2):175-180
    230. Stewart R J, Sawyer B J B, Bucheli C S, Robinson S P. Polyphenol oxidase is induced by chillingand wounding in pineapple. Functional Plant Biology,2001,28(3):181-191
    231. Strong F E, Kruitwagen E C. Polygalacturonase in the salivary apparatus of Lygus hesperus(Hemiptera). Journal of insect physiology,1968,14(8):1113-1119
    232. Sugumaran M, Gliglio L, Kundzicz H, Saul S, Semensi V. Studies on the enzymes involved inpuparial cuticle sclerotization in Drosophila melanogaster. Archives of Insect Biochemistry andPhysiology,1992,19:271-283
    233. Su Y L, Li J M, Li M, Luan J B, Ye X D, Wang X W, Liu SS, Vontas J. Transcriptomic analysis ofthe salivary glands of an invasive whitefly. PLoS ONE,2012,7(6):39303
    234. Sun D B, Xu J, Luan J B, Liu S S. Reproductive incompatibility between the B and Q biotypes ofthe whitefly Bemisia tabaci in China: genetic and behavioural evidence. Bulletin of EntomologicalResearch,2011,101(2):211-220
    235. Takemura M, Kuwahara Y, Nishida R. Feeding responses of an oligophagous bean aphid, Megouracrassicauda, to primary and secondary substances in Vicia angustifolia. Entomologiaexperimentalis et applicata,2006,121(1):51-57
    236. Taylor G S, Miles P W. Composition and variability of the saliva of coreids in relation tophytoxicoses and other aspects of the salivary physiology of phytophagous Heteroptera.Entomologia experimentalis et applicata,1994,73(3):265-277
    237. Thompson G A, Goggin F L. Transcriptomics and functional genomics of plant defence inductionby phloem-feeding insects. Journal of experimental botany,2006,57(4):755-766
    238. Thurston C F. The structure and function of fungal laccases. Microbiology,1994,140:19-26
    239. Tjallingii W F. Salivary secretions by aphids interacting with proteins of phloem wound responses.Journal of experimental botany,2006,57(4):739-745
    240. Tjallingii W F, Esch T H. Fine structure of aphid stylet routes in plant tissues in correlation withEPG signals. Physiological Entomology,1993,18(3):317-328
    241. Tjallingii W F. Regulation of phloem sap feeding by aphids. In: Chapman R F, de Boer G. eds.Regulatory Mechanisms Insect Feeding, New York, Chapman and Hall,1995,190-209
    242. Urbanska A. Hydrogen peroxide, catalase activity and response to dietary phenolics in aphids. TheFEBS Journal,2008,275-277
    243. Urbanska A, Leszczynski B, Matok H. Defence metabolism of grain aphid against cereal phenolics.Polyphenols Communications,1998,98:477-478
    244. Urbanska A, Leszczynski B, Matok H, Dixon A. Cyanide detoxifying enzymes of bird cherry oataphid. EJPAU,2002,5(2):#01
    245. Urbanska A, Tjallingii W F, Dixon A F G, Leszczynski B. Phenol oxidising enzymes in the grainaphid’s saliva. Entomologia experimentalis et applicata,1998,86(2):197-203
    246. van de Ven W T, LeVesque C S, Perring T M, Walling L L. Local and systemic changes in squashgene expression in response to silverleaf whitefly feeding. The Plant cell,2000,12(8):1409-1423
    247. Vilà M, Weiner J. Are invasive plant species better competitors than native plant species?–evidence from pair-wise experiments. Oikos,2004,105(2):229-238
    248. Walling L L. The Myriad Plant Responses to Herbivores. Journal of plant growth regulation,2000,19(2):195-216
    249. Wan F, Zhang G, Liu S, Luo C, Chu D, Zhang Y, Zang L, Jiu M, Lü Z, Cui X, Zhang L, Zhang F,Zhang Q, Liu W, Liang P, Lei Z, Zhang Y. Invasive mechanism and management strategy ofBemisia tabaci (Gennadius) biotype B: Progress report of973Program on invasive alien species inChina Science in China Series C: Life Sciences,2009,52(1):88-95
    250. Will T, Tjallingii W F, Thonnessen A, van Bel A J. Molecular sabotage of plant defense by aphidsaliva. Proceedings of the National Academy of Sciences of the United States of America,2007,104(25):10536-10541
    251. Will T, van Bel A J. Physical and chemical interactions between aphids and plants. Journal ofexperimental botany,2006,57(4):729-737
    252. Williamson M. ed. Biological Invasions, London, Chapman and Hall,1996,425-427
    253. Williamson M H, Fitter A. The characters of successful invaders. Biological conservation,1996,78(1–2):163-170
    254. Xie M, Wan F H, Chen Y H, Wu G. Effects of temperature on the growth and reproductioncharacteristics of Bemisia tabaci B-biotype and Trialeurodes vaporariorum. Journal of AppliedEntomology,2011,135(4):252-257
    255. Xu J, De Barro P J, Liu S S. Reproductive incompatibility among genetic groups of Bemisia tabacisupports the proposition that the whitefly is a cryptic species complex. Bulletin of EntomologicalResearch,2010,100(3):359-366
    256. Xu R M. The occurrence and distribution of Bemisia in China. In: Gerling D. ed. Bemisia1995:Taxonomy, Biology, Damage, Control and Management, UK, Intercept, Andover,1996,125-131.
    257. Yamamoto H, Azuma M, Eguchi M. Further characterization of alkaline phosphatase isozymes inthe silkworm midgut: Effects of amino acids and metal ions and comparison of sugar chains.Comparative Biochemistry and Physiology Part B: Comparative Biochemistry,1991,99(2):437-443
    258. Yamazaki H I. Cuticular phenoloxidase from the silkworm, Bombyx mori: properties, solubilization,and purification. Insect Biochem,1972,2:431-444
    259. Yan Y, Liu W X, Wan F H. Comparison of alkaline phosphatase in Bemisia tabaci B-biotype(Homoptera: Aleyrodidae) and Trialeurodes vaporaiorum (Homoptera:Aleyrodidae) at differentdevelopmental stages. Acta Entomol. Sin.,2008,51:1-8
    260. Yan Y, Peng L, Liu W X, Wan F H. Research progress in insect alkaline phosphatases. ActaEntomol. Sin.,2009,1:95-105
    261. Yan Y, Peng L, Liu W X, Wan F H, Harris M K. Host plant effects on alkaline phosphatase activityin the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum. Journal of insectscience,2011,11:9
    262. Yang M Y, Wang Z, MacPherson M, Dow J A, Kaiser K. A novel Drosophila alkaline phosphatasespecific to the ellipsoid body of the adult brain and the lower Malpighian (renal) tubule. Genetics,2000,154(1):285-297
    263. Yatsu J, Asano T. Cuticle laccase if the silkworm, Bombyx mori: purification, gene identificationand presence of its anactive precursor in the cuticle. Insect Biochem. Mol. Biol.,2009,39:254-262
    264. Yi S X, Adams T S. Age-and diapause-related acid and alkaline phosphatase activities in theintestine and malpighian tubules of the Colorado potato beetle, Leptinotarsa decemlineata (Say).Archives of insect biochemistry and physiology,2001,46(3):152-163
    265. Yu H, Wan F H. Cloning and expression of heat shock protein genes in two whitefly species inresponse to thermal stress. Journal of Applied Entomology,2009,133(8):602-614
    266. Yu H, Wan F H. Different thermal tolerance and hsp gene expression in invasive and indigenousbiotypes of Bemisia tabaci. Biol Invasions,(accepted),2011
    267. Yu X, Yu D, Lu Z, Ma K. A new mechanism of invader success: Exotic plant inhibits naturalvegetation restoration by changing soil microbe community. Chinese Science Bulletin,2005,50(11):1105-1112
    268. Zalom F G, Castane C, Gabarra R. Selection of Some Winter-Spring Vegetable Crop Hosts byBemisia argentifolii (Homoptera: Aleyrodidae). Journal of Economic Entomology,1995,88(1):70-76
    269. Zang L S, Chen W Q, Liu S S. Comparison of performance on different host plants between the Bbiotype and a non-B biotype of Bemisia tabaci from Zhejiang, China. Entomologia experimentaliset applicata,2006,121(3):221-227
    270. Zang L S, Liu S S, Liu Y Q, Chen W Q. A comparative study on the morphological and biologicalcharacteristics of the B biotype and a non-B biotype (China-ZHJ-1) of Bemisia tabaci(Homoptera:Aleyrodidae) from Zhejiang, China. Acta Entomologica Sinica,2005,48(5):742-748
    271. Zarate S I, Kempema L A, Walling L L. Silverleaf whitefly induces salicylic acid defenses andsuppresses effectual jasmonic acid defenses. Plant physiology,2007,143(2):866-875
    272. Zeng F, Cohen A C. Comparison of alpha-amylase and protease activities of a zoophytophagousand two phytozoophagous Heteroptera. Comparative biochemistry and physiology. Part A,Molecular&integrative physiology,2000,126(1):101-106
    273. Zhang G F, Lei F, Wan F H, Ma J, Yang Y G. Effects of plant species switching on dynamics ofamylase and proteinase activity of Bemisia tabaci biotype B and·. Biodiversity Science,2008,16:313-320
    274. Zhang P J, Zheng S J, van Loon J J A, Boland W, David A, Mumm R, Dicke M. Whitefliesinterfere with indirect plant defense against spider mites in Lima bean. Proceedings of the NationalAcademy of Sciences,2009,106(50):21202-21207
    275. Zhu-Salzman K, Bi J L, Liu T X. Molecular strategies of plant defense and insect counter-defense.Insect science,2005,12(1):3-15
    276. Zong N, Wang C. Induction of nicotine in tobacco by herbivory and its relation to glucose oxidaseactivity in the labial gland of three noctuid caterpillars. Chinese Science Bulletin,2004,49(15):1596-1601

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700