棉花抗蚜基因的筛选及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉蚜(Aphis gossypii Glover)是世界性经济作物棉花的重要害虫之一,刺吸式口器,以成虫、若虫群集于棉叶背面或嫩茎上刺吸汁液造成直接危害。同时,棉蚜还可通过传播植物病毒病和分泌蜜露引起煤污病造成间接危害。受到危害的棉花,不仅产量受到影响,而且棉纤维含糖量增加,严重影响棉纤维品质。棉蚜个体小,繁殖力强,生活周期短,世代重叠严重等特点,致使农药的使用十分频繁,再加上农药的不合理使用,导致棉蚜对多种农药产生较高水平的抗性,使棉蚜的防治更加困难。此外,伴随着Bt棉的推广使用,棉蚜的危害有进一步上升的趋势。而利用寄主植物对蚜虫的抗性控制蚜虫是一种有效而且环境友好型的控制蚜虫方式,它被认为是控制蚜虫危害的综合作物管理系统中的重要方法之一,受到植物保护研究人员的普遍重视。随着植物抗虫性研究的发展,许多抗蚜作物的培育已为农业生产带来了巨大生态和经济效益,许多研究结果还显示抗蚜品种可减少以蚜虫为媒介的植物病毒的传播。但是,新的问题亦开始出现,植物抗蚜基因的毒力在17种蚜虫中已经产生,其占所有展示毒力的节肢动物生物型的一半多。为了延迟和防止蚜虫生物型的出现,不断寻求新的抗蚜基因,揭示植物和蚜虫相互作用的分子机制,实现在生产系统中作物对蚜虫抗性的长期持久使用具有十分重要的意义。本项目从棉花对棉蚜的抗性入手,以抗蚜品种鸡脚红叶棉作为主要试验材料,采用抑制差减杂交法构建了棉蚜诱导的棉花叶片的抑制差减杂交cDNA文库。通过生物信息学分析,从文库中获得了253个与棉蚜诱导相关的表达序列标签(ESTs)。以其为信息来源,克隆了GhTCTP1和GhPSAK1两个与棉蚜诱导有关的基因,并对它们的抗蚜功能及其机制进行了研究。获得的主要研究结果如下:
     1.棉蚜诱导棉叶的抑制差减杂交cDNA文库构建与分析
     利用抑制差减杂交(Suppression subtractive hybridization, S SH)的方法构建了棉蚜诱导的棉花叶片的抑制差减杂交cDNA文库。从中随机选取253个克隆进行了分析,其片段大小约在250bp至2000bp之间。这些cDNA克隆测序后,对所获得的EST序列进行了生物信息学分析,从胁迫的角度归类,其中有38cDNA克隆只与生物胁迫有关的序列相匹配,95cDNA克隆只与非生物胁迫有关的序列匹配,93cDNA克隆同时和生物胁迫和非生物胁迫有关的序列匹配。以上结果暗示,棉蚜对棉花的诱导防御是相当复杂的,可能涉及多个信号诱导途径,并且各信号途径之间存在交叉对话。此外,在文库中还获得了一些有趣的基因信息,如糖原合成激酶(Glycogen synthase kinase3, GSK3),翻译控制肿瘤蛋白(‘Translationally controlled tumor protein, TCTP), MYB蛋白,植物细胞色素P450(Plant cytochromes450, P450), NAC蛋白,Rac蛋白和一些与光合作用有关的蛋白等。
     2. GhTCTP1序列和进化分析及在棉蚜诱导下或伤害诱导后的表达水平变化
     依据建立的鸡脚红叶棉叶片的抑制差减杂交cDNA文库所提供的信息,克隆了一个翻译控制肿瘤蛋白基因,将其命名为GhTCTP1(Accession number in GenBank:KC787689)。 GhTCTP1属于TCTP亚家族,编码一个168个氨基酸的蛋白质。该蛋白与水稻、小麦、拟南芥等植物的TCTP蛋白具有高度的相似性,具有相同的氨基酸95个,在进化上GhTCTP1与油桐TCTP亲缘关系较近。此外,该基因的表达水平在棉蚜攻击的棉花根、下胚轴、子叶和真叶中被抑制,而在受到伤害诱导后上调,暗示着GhTCTP1的表达水平与棉蚜的诱导或伤害诱导有关。
     3.在拟南芥中过量表达GhTCTP1可提高转基因植株对桃蚜的抗性
     GhTCTP1过量表达转基因拟南芥植株通过农杆菌介导法获得。选取其中三个株系Line1, Line2和Line10进行抗蚜性试验。选择性试验证明桃蚜对转基因拟南芥选择性较低,而对野生型拟南芥的选择性较高。非选择性试验表明转基因拟南芥叶片上桃蚜的数量低于野生型拟南芥叶片。这些结果表明,与野生型拟南芥相比,转基因拟南芥对桃蚜具有更高的抗性,暗示着过量表达GhTCTP1可以提高转基因拟南芥对桃蚜的抗性。
     4. GhTCTP1过量表达转基因拟南芥对桃蚜的抗性机制研究
     在拟南芥中过量表达GhTCTP1可以提高拟南芥对桃蚜的抗性,故对其抗蚜机制进行研究是很有必要的。为此,我们测定了可溶性糖和总游离氨基酸两种营养物质的含量,检测了苯丙氨酸解氨酶、过氧化物酶和超氧化物歧化酶三种酶的活性,用苯胺蓝染色法观察了叶片胼胝质的沉积情况。结果表明,野生型拟南芥和转基因拟南芥之间可溶性糖含量和总游离氨基酸含量均发生了变化;与野生型拟南芥相比,转基因拟南芥中三种酶的活性均有所提高;而且,转基因拟南芥中有更多的胼胝质沉积。这些结果暗示在拟南芥中过量表达GhTCTP1提高了部分拟南芥对桃蚜的抗性指标,进而提高了拟南芥对桃蚜的抗性。此外,在转基因拟南芥中,水杨酸防御响应途径相关基因转录水平上调,显示GhTCTP1可能通过水杨酸途径调节转基因拟南芥对蚜虫的抗性。
     5. GhTCTP1转基因棉花对棉蚜的抗性研究
     选择性试验在过量表达GhTCTP1转基因棉花(Line2, Line4, Line5和Line6)和野生型棉花(对照)之间进行。试验结果表明,在棉蚜危害6h、12h和24h后,转基因棉花Line4和Line6叶片上棉蚜的数量均低于野生型棉花,二者之间存在显著或极显著差异,而转基因植株Line2, Line5叶片上棉蚜的数量均略低于野生型棉花。以上结果暗示转基因棉花比野生型棉花更不适宜于棉蚜的生存。非选择性试验在棉花品种Coker312和鸡脚红叶棉及四个转基因棉花株系(Line2, Line4, Line5和Line6)上进行。在棉蚜危害24h和48h后,抗蚜品种鸡脚红叶棉和四个转基因株系(Line2, Line4, Line5和Line6)叶片上棉蚜的数量均不同程度的低于Coker312。以上结果表明,过量表达GhTCTP1转基因棉花T1代植株比野生型棉花Coker312植株对棉蚜具有更高的抗性。
     6. GhPSAK1序列和进化分析及在棉蚜诱导下或伤害诱导后的表达水平变化
     序列分析表明,GhPSAK1属于PSI_PSAK超基因家族,编码一个162个氨基酸的与光合作用相关的蛋白。GhPSAK1与苜蓿、大豆、小麦和拟南芥的GhPSAK蛋白具有高度的同源性。系统发育分析显示,GhPSAK1在进化关系上与大豆和苜蓿亲缘关系较近。棉花受到棉蚜危害时或受到轻度伤害12h和24h后,GhPSAK1在叶片中的转录水上升,在24h达到最高水平,其后逐步下降。在此过程中,受到棉蚜诱导时GhPSAK1的上升水平明显快于伤害,但其表达水平在降低时却明显慢于伤害。
     7.过量表达GhPSAK1转基因拟南芥对桃蚜的抗性研究
     对桃蚜的抗性分析在过量表达GhPSAK1转基因拟南芥株系(Line1, Line2和Line6)和野生型拟南芥(对照)之间进行。选择性实验结果表明,转基因拟南芥叶片上桃蚜种群在6h、12h和24h后均小于野生型拟南芥,表明桃蚜对转基因拟南芥具有较低的选择性。非选择性实验显示,在转基因拟南芥上桃蚜的数量均少于野生型拟南芥。以上实验结果暗示过量表达GhPSAK1可以改善拟南芥对桃蚜的抗性。
     8.过量表达GhPSAK1转基因拟南芥的抗蚜机制
     过量表达GhPSAK1转基因拟南芥胼胝质沉积多于野生型拟南芥。此外,其可溶性糖含量和游离氨基酸含量也发生了一定变化。而转基因拟南芥中SOD和POD的活性均高于野生型。这些结果暗示,过量表达GhPSAK1改善了拟南芥的抗蚜条件,从而使转基因拟南芥比野生型对桃蚜表现出更高的抗性。此外,水杨酸防御响应途径相关基因表达分析显示GhPSAK1可通过水杨酸途径调节转基因拟南芥对蚜虫的抗性。
Cotton aphid (Aphis gossypii Glover) is one of the most important pests of the commercial crop cotton in the world. The adults and nymphs of cotton aphids collectively cause direct damage to leaves or young stems of cotton with their piercing-sucking mouths to acquire plant phloem liquids. At the same time, they also lead to indirect damage to cotton by transmitting plant viruses and triggering soot disease from honeydew secreted by aphids. The damage from cotton aphids has effects on cotton output and cotton fiber quality as result of the increased sugar content. The insecticides are used frequently because of cotton aphids characterized by small size, strong fertility, short lifespan and serious overlapping generation and so on. On account of the unreasonable use of insecticides, cotton aphids have produced resistance to many insecticides, which further make the control of cotton aphids more difficult. In addition, cotton aphid damage has a tendency to rise further with the extension and application of Bt cotton. It is regarded as an effective and environmentally friendly strategy to control aphids using plant resistance to them, and one of the most important methods of integrated management system of aphid damage, so it is focused on by worker on plant protection. With the development of research on plant resistance to insects, many of the aphid-resistant crop cultivation have brought huge ecological and economic benefits to agricultural production. Many research results also showed that aphids-resistant crops can reduce to the transmission of plant aphids-mediated virus. However, new problems also began to appear that the virulence of plant resistant genes to aphid has been produced in17kinds of aphids, which accounts for more than half of all arthropod biological type with virulence. To delay and prevent the occurrence of aphid biological type, it is of great significance to actively seek new aphid-resistant genes, reveal the molecular mechanism of interaction between plants and aphids, and realize long-lasting use of aphids-resistant gene in a production system of crop. From the perspective of cotton resistance to cotton aphids, as the main test materials with red-chicken-feet-leaf cotton (aphid-resistant varieties), we constructed the subtracted cDNA library of cotton leaves induced by cotton aphids with SSH (Suppression subtractive hybridization) method. The bioinformatics analysis showed that a total of253ESTs (Expression Sequence Tag) on cotton aphid induction were acquired from the cDNA subtracted library. As the source of their information, GhTCTP1and GhPSAK1, which were related to cotton aphid attacks, were cloned, and the functions and mechanisms of their resistance to aphids were studied. The main results were as follows:
     1. Construction and analysis on the subtracted cDNA library of cotton leaves induced by cotton aphids
     A subtracted cDNA library of cotton leaves induced by cotton aphids was constructed with SSH method.253independent clones from the subtracted cDNA library were randomly chosen and analyzed. The size of the inserts varied from250to2000bp. The clones were sequenced and the expressed sequence tags (ESTs) were analyzed through homology search. From opinion of stress, there were38cDNA clones on biotic stress,95cDNA clones on abiotic stress,93cDNA clones on biotic and abiotic stress, and27cDNA clones on others. This suggested that plant induced defense to cotton aphids was relatively complex and involved several signal transduction pathway, and there were cross-talk among different signal pathways. In addition, we identified some interesting genes, Such as Glycogen Synthase Kinase3(GSK3), Translationally Controlled Tumor Protein (TCTP), MYB proteins, Plant cytochrome P450(P450s), NAC, Rac protein, and some proteins on photosynthesis.
     2. GhTCTP1sequence, phylogenetic analysis and its expression level under the cotton aphid attack or after wounding induction
     A translationally controlled tumor protein gene, GhTCTP1(Accession number in GenBank: KC787689), was identified according to information from the subtracted cDNA library. GhTCTP1belonged to TCTP subfamily and edcoded a putative protein of168amino acids. GhTCTPl shared high similarity to plant TCTPs from rice, wheat and Arabidopsis and so on, with95same amino acids, and GhTCTPlwas close relative to TCTP of Vernicia fordii during their evolution. GhTCTP1expression level was suppressed in cotton roots, hypocotyls, cotyledons and leaves under cotton aphid attack, but its expression level was up-regulated in the wounded cotton leaves, which suggested that GhTCTP1expression level was relative to the induction from cotton aphids or wounding.
     3. GhTCTP1overexpressing in Arabidopsis thaliana can improve the resistance of transgenic plants to green peach aphids
     GhTCTP1overexpression transgenic Arabidopsis plants were acquired by Agrobacterium-mediated transformation. We chose three Lines (Line1, Line2and Line10) from them to study their resistance to green peach aphids (Myzus persicae). The choice test demonstrated that the green peach aphids had lower choice for transgenic Arabidopsis, but higher for wild type Arabidopsis. No-choice test showed that the aphid number from transgenic Arabidopsis was more than that from wild type. These results suggested that transgenic Arabidopsis was higher resistant to green peach aphids than wild type, and GhTCTP1overexpression may improve the Arabidopsis resistance to green peach aphids.
     4. Overexpressing GhTCTP1transgenic Arabidopsis resistance mechanisms research on green peach aphids
     Since GhTCTP1overexpression may improve Arabidopsis resistance to green peach aphids, the study of its mechanisms of aphid-resistance was necessary. To attain this aim, we measured of two kinds of important nutrient content (Soluble sugar and total free amino acid), activities of three enzymes (Phenylalanine ammonia enzyme, PAL; peroxidase, POD; superoxide dismutase, SOD), and observed the leaf callus deposition with aniline blue staining. The content of two nutrient substance was different in leaves between transgenic Arabidopsis and wild type Arabidopsis. The activities of PAL, SOD and POD in leaves from transgenic Arabidopsis were higher than wild type Arabidopsis. The callose amount in transgenic Arabidopsis leaf was more than wild type Arabidopsis leaf. These results suggested that GhTCTPl overexpression in Arabidopsis improved some aphid-resistant indexes and increased Arabidopsis resistance to green peach aphids. In addition, the expression levels of key genes in SA-related pathway were upregulated in transgenic Arabidopsis under aphid attack in comparison with wild type, suggesting GhTCTPl might regulated plant resistance to aphid by SA-related pathway.
     5. Analysis on GhTCTPl overexpressing transgenic cotton resistance to cotton aphids
     Choice tests were carried out between GhTCTPl overexpression transgenic cotton Line2, Line4, Line5, Line6and wild type cotton Coker312. Choice tests showed that the number of cotton aphids from leaves of Line4or Line6was lower than that from leaves Coker312at6h,12h,24h under cotton aphid attack, and there was significant or very significant difference between them. The number of cotton aphids from leaves of Line2or Line5was no significant difference than from leaves of Coker312at6h,12h,24h under cotton aphid attack. However, the number of the former were little lower than the latter. No-choice tests were performed on leaves from Coker312, red-chick-feet-leaf cotton (JJ, aphid-resistant cultiyar), and four transgenic lines (Line2, Line4, Line5, Line6). The results confirmed that the cotton aphid number on leaves from red-chick-feet-leaf cotton, Line2, Line4, Line5, Line6was lower than that from Coker312at24h,48h under cotton aphid infestation. All these results suggested that T1generation of GhTCTP1overexpression transgenic cotton were higher resistant to cotton aphids than Coker312.
     6. GhPSAK1sequence, phylogenetic analysis and its transcripts under the cotton aphid infestation or after wounding induction
     A photosynthesis-related cotton gene, GhPSAK1(Accession number in GenBank:KF246683), was identified. It belonged to PSI-PsaK family and encoded a putative protein of162amino acids. GhPSAKl was highly homologous with GhPSAKl of alfalfa, soybeans, wheat and Arabidopsis thaliana. Phylogenetic tree showed that GhPSAK1was closely relative to soybean and alfalfa during their evolutions. Cotton GhPSAKl expression levels rised at0h,12h,24h under cotton aphid attack or after wounding induction and reached highest level at24h. However, GhPSAKl transcripts declined gradually at48h and72h. In this process, GhPSAK1expression levels of cotton infested by cotton aphids raised more quickly than that induced by wounding, but the former decreased more slowly than the latter.
     7. Effects on resistance to green peach aphids in overexpressing GhPSAK1Arabidopsis.
     The analysis on resistance to green peach aphids (Myzus persicae) was performed between GhPSAK1overexpression Arabidopsis thaliana lines (Line1, Line2and Line10) and wild type (WT). Choice assays showed that aphid population on transgenic Arabidopsis leaf was smaller than that on WT at6h,12h,24h under attack from green peach aphids, which confirmed that green peach aphids had lower choice for transgenic Arabidopsis than WT. No-choice assay demonstrated that the number of green peach aphids on transgenic Arabidopsis was less than that on WT at24h,48h under attack from green peach aphids. All these results suggested that overexpression of GhPSAK1in Arabidopsis improved plant resistance to green peach aphids.
     8. Aphid-resistance mechanism of GhPSAK1overexpressing transgenic Arabidopsis
     The callose amount in transgenic Arabidopsis leaves was more than that of wild type. In addition, The contents of the soluble sugars and total amino acids were also altered in leaves of transgenic Arabidopsis plants in comparison with wild type. Activities of SOD (superoxide dismutase) and POD (peroxidase) in transgenic leaves were higher than those of wild type. These results suggested that GhPSAK1overexpression could improve aphid-resistant condition of Arabidopsis, and the transgenic Arabidopsis showed higher resistance to green peach aphids than wild type. In addition, the transcriptions of key genes related on SA pathway were upregulated in transgenic Arabidopsis under aphid infection, suggesting GhPSAK1might regulate plant resistance to aphid by SA-related pathway.
引文
Abe H, Ohnishi J, Narusaka M, Seo S, Narusaka Y, Tsuda S, Kobayashi M (2008) Function of jasmonate in response and tolerance of Arabidopsis to thrip feeding. Plant Cell Physiol 49: 68-80.
    Alborn HT, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal PE (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci USA 104:12976-12981.
    Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945-949.
    Alkhedir H, Karlovsky P, Vidal S (2013) Relationship between water soluble carbohydrate content, aphid endosymbionts and clonal performance of Sitobion avenaeon Cocksfoot cultivars. PLOS ONE 8(1):1-9.
    Alston FH, Briggs JB (1977) Resistance genes in apple and biotypes of Dysaphis devecta. Ann Appl Biol 87:75-81.
    Arend AJM, Ester A, Schijndel JT (1999) Developing an aphid-resistant butterhead lettuce dynamite, in:A. Lebeda, E. Kristkova (Eds.), Eucarpia Leafy Vegetables 99, Palacky University, Olomouc, Czech Republic, pp:149-157.
    Arimura G, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochimica et biophysica acta 1734:91-111.
    Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory induced volatiles elicit defence genes in lima beanleaves. Nature 406:512-5141.
    Auclair JL, Maltais JB, Carter JL (1957) Factors in resistance of peas to the pea aphid, Acyrthosiphum pisum Ⅱ. Amino acids. Can. Entomol 89:457-464.
    Baumann L. Baumann P (1995) Soluble salivary proteins secreted by Schizaphis graminum. Entomol Exp Appl 77:56-60.
    Berkowitz O, Jost R, Pollmann S, Masle J (2008) Characterization of TCTP, the transcriptionally control tumor protein, from Arabidopsis thaliana. Plant Cell 20:3430-3447.
    Bernards MA, Fleming WD, Llewellyn DB, Priefer R, Yang X, Sabatino A, Plourde GL (1999) Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol 121:135-146.
    Bommer U, Thiele B (2004) The translationally controlled tumor protein (TCTP). Int J Biochem Cell Biol 36:379-85.
    Boyko EV, Smith CM, Thara VK, Bruno JM, Deng Y, Starkey SR, Klaahsen DL (2006) The molecular basis of plant gene expression during aphid invasion:wheat Pto-and Pti-like sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera:Aphididae). Journal of Economic Entomology 99:1430-1445.
    Brioudes F, Thierry AM, Chambrier P, Mollereau B, Bendahmane M (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci USA 107 (37):16384-16389.
    Brown JK, Czosnek H (2002) Whitefly transmission of plant viruses. In Advances in Botanical Research, Vol 36. Academic Press, New York, pp:65-100.
    Carolan JC. Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL (2009) The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9:2457-2467.
    Casteel CL, Yang C, Nanduri AC, Jong HN, Whitham SA, Jander G (2014) The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). The Plant Journal 77:653-663.
    Ceci LR, Volpicella M, Rahbe Y, Gallerani R, Beekwilder J, Jongsma MA (2003) Selection by phage display of a variant mustard trypsin inhibitor toxic against aphids. Plant Journal 33:557-566.
    Cevik V, King G (2002) High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theoretical and Applied Genetics 105(23):346-354.
    Chaman ME, Copaja SV, Argandona VH (2003) Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. Agric Food Chem 51(8):2227-2231.
    Chanwun T, Muhamad N, Chirapongsatonkul N, Churngchow N (2013) Hevea brasiliensiscell suspension peroxidase:purification, characterization and application for dye decolorization. AMB Express 3:1-9.
    Charrier B, Champion A, Henry Y, Kreiset M (2002) Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol 130:577-590.
    Chen H, Gonzales-Vigil E, Wilkerson CG (2007) Stability of plant defense proteins in the gut of insect herbivores. Plant Physiol 143(4):1954-1967.
    Chen H, McCaig BC, Melotto M (2004) Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. J Biol Chem 279(44):45998-46007.
    Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102(52):18771-18772.
    Chen JQ, Martin B, Rahbe Y, Fereres A (1997b). Early intracellular punctures by two aphid species on near-isogenic melon lines with and without the virus aphid transmission(Vat) resistance gene. Eur J Plant Pathol 103:521-536.
    Chen JQ, Rahbe Y, Delobel B, Sauvion N, Guillaud J, Febvay (1997a). Melon resistance to the aphid Aphis gossypii:behavioural analysis and chemical correlations with nitrogenous compounds. Entomol Exp Appl 85:33-44.
    Chen YC, Cao CX, Huang ZJ, Wang T, Ji CM, Lei GH (2011) Study on the nutrients materials and the resistance of cucumber aphid. Chinese Agricultural Science Bulletin (16):283-286.
    Chen YQ, Wang ZZ (2008) An analysis of molecular stuctural character and function prediction on plant translationally controlled tumor protein. Biotechnology Bulletin 2:105-112.
    Cherqui A, Tjallingii WF (2000) Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. J Insect Physiol 46:1177-1186.
    Chiozza MV, O'Neal ME, MacIntosh GC (2011) Constitutive and induced differential accumulation of amino acid in leaves of susceptible and resistant soybean plants in response to the soybean aphid (Hemiptera:Aphididae). Environ Entomol 39:856-864.
    Clissold FJ, Sanson GD, Read J (2004) Indigestibility of plant cell wall by the Australian plague locust, Chortoicetes terminifera. Entomol Exp Appl 112 (3):159-168.
    Corne MJ, Pieterse JT, Loon LCV (2001) Cross-talk between plant defence signalling pathways: boost or burden? AgBiotechNet 3:1-6.
    De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410(6828):577-580.
    Degenhardt (2009) Indirect defense responses to herbivory in grasses. Plant physiology 149(1): 96-102.
    Dervinis C, Frost CJ, Lawrence SD, Novak NG, Davis JM (2010) Cytokinin primes plant responses to wounding and reduces insect performance. Journal of Plant Growth Regulation 29:289-296.
    Devoto A, Turner JG (2005) Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant 123:161-72.
    Diatchenko L, Lau YFC, Campbell AP, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93: 6025-30.
    Dinant S, Bonnemain JL, Girousse C, Kehr J (2010) Phloem sap intricacy and interplay with aphid feeding.Comptes Rendus Biologies 333(6):504-515.
    Divol F, Vilaine F, Thibivilliers S, Amselem J, Palauqui JC, Kusiak C, Dinant S (2005) Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens. Plant Molecular Biology 57:517-540.
    Dogimont C, Bendahmane A, Chovelon V, Boissota N (2010) Host plant resistance to aphids in cultivated crops:Genetic and molecular bases, and interactions with aphid populations. C R Biologies 333:566-573.
    Douglas AE (2003) Nutritional physiology of aphid. Advances in insect physiology 31:73-140.
    Douglas AE (2006) Phloem-sap feeding by animals:problems and solutions. Journal of Experimental Botany 57:747-754.
    Dubos C, Stracke R, Erich G, Bernd W, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends in Plant Science 15(10):573-581.
    Eenink AH, Groenwold R, Dieleman FL (1982a) Resistance of lettuce(Lactuca) to the leaf aphid Nasonoviaribis nigri.1. Transfer of resistance from L. virosa to L. sativa by interspecific crosses and selection of resistant breeding lines. Euphytica,1982,31(2):291-299.
    Eenink AH, Groenwold R, Dieleman FL (1982b) Resistance of lettuce (Lactuca) to the leaf aphid Nasonoviaribis-nigri 2:Inheritance of the resistance. Euphytica 31:301-304.
    Ellinger D, Naumann M, Falter C, Zwikowics CL, Jamrow T, Manisseri C, Somerville SC, Voigt CA (2013) elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiology 161,1433-1444.
    Ermolayev V, Weschke W, Manteuffel R (2003) Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot 54:2745-2756.
    Felton GW (2005) Indigestion is a plant's best defense. Proc Natl Acad Sci USA 102(52): 18771-18772.
    Fujimori T, Hihara Y, Sonoike K (2005) PsaK2 subunit in photosystem I is involved in state transition under high light condition in the cyanobacterium synechocystis sp. PCC 6803. The Journal of biological chemistry 280:22191-22197.
    Furstenberg-Hagg J, Zagrobelny M, Bak S (2013) Plant Defense against Insect Herbivores. International journal of molecular sciences.14(5):10242-97.
    Gao LL, Anderson JP, Klingler JP, Nair RM, Edwards OR, Singh KB (2007) Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Mol. Plant-Microbe Interact 20:82.
    Gatehouse JA (2002) Plant resistance towards insect herbivores:A dynamic interaction. New Phytol 156:145-69.
    George DGM (2013) Engineering insect-resistant crops:A review. African Journal of Biotechnology 12(23):3600-3608.
    Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A, Dinantd S, Giroussee C, Faucherf M, Bonnemainf JL (2010) Compatible plant-aphid interactions:How aphids manipulate plant responses. C R Biologies 333:516-523.
    Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M (2012) Plant-microbe-insect interactions: Cytokinins as key regulators in plant-microbe-insect interactions:connecting plant growth and defence. Functional Ecology:1-11
    Githiri SM, Ampong NK, Osir EO, Kimani PM (1996) Genetics of resistance to Aphis craccivora in cowpea. Euphytica 89:371-376.
    Goggin FL (2007) Plant-aphid interactions:molecular and ecological perspectives. Curr Opin Plant Biol 10:399-408.
    Goggin FL, Jia LL, Shah G, Hebert S, Williamson VM, Ullman DE (2006) Heterologous expression of the Mi-1.2 Gene from tomato confers resistance against nematodes but not aphids in eggplant. MPMI 19(4):383-388.
    Goussain MM, Prado E, Moraes JC (2005) Effect of silicon applied to wheat plants on the biology and probing behaviour of the greenbug Schizaphis graminum. Neotrop Entomol 34(5):807-813.
    Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves:a possible defense mechanism against insects. Science 175(4023):776-777.
    Gregg AH and Georg J (2008) Plant Immunity to Insect Herbivores. Annual Review of Plant Biology 59:41-66.
    Gross GG (2008) From lignins to tannins:Forty years of enzyme studies on the biosynthesis of phenolic compounds. Phytochemistry 69:3018-3031.
    Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. Ⅲ. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711-717.
    Han Y, Wang Y, Bi JL, Yang XQ, Huang Y, Zhao X, Hu Y, Cai QN (2009) Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. J Chem Ecol 35:176-182.
    Hao PY, Liu CX, Wang YY, Chen RZ, Tang M, Du B, Zhu LL, He GC (2008) Herbivore-induced callose deposition on the sieve plates of rice:an important mechanism for host resistance. Plant Physiology 146:1810-1820.
    Harmel N, Letocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, De Pauw E, Haubruge E, Francis F (2008) Identification of aphid salivary proteins:a proteomic investigation of Myzus persicae. Insect Mol Biol 17:165-174.
    Hassanain HH, Sharma YK, Moldovan L, Khramtsov V, Berliner LJ, Duvick JP, Goldschmidt-Clermonta PJ (2000) Plant Rac proteins induce superoxide production in mammalian cells. Biochemical and Biophysical Research Communications 272:783-788.
    Hertiani T (ed.) (2007) Isolation and structure elucidation of bioactive secondary metabolites from Indonesian marine sponges. Dusseldorf:Cuvillier Verlag,344.
    Hesler LS, Chiozza, MV, O'Neal, ME, MacIntosh GC, Tilmon KJ, Chandrasena D, Tinsley NA,Cianzio SR, Costamagna AC, Cullen EM, DiFonzo, CD, Potter BD, Ragsdale DW, Steffey K, Koehler KJ (2013) Performance and prospects of Rag genes for management of soybean aphid. Entomologia experimentalis et applicata 147(3):201-216.
    Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell C A, Timans JC, Peumans WJ, van Damme E, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Research 4(1):18-25.
    Hilker M, Meiners T (2010) How do plants "notice" attack by herbivorous arthropods? Biological reviews of the Cambridge Philosophical Society 85:267-280.
    Hill CB, Chirumamilla A, Hartman GL (2012) Resistance and virulence in the soybean-Aphis glycines interaction. Euphytica 186:635-646.
    Hill CB, Li Y, Hartman GL (2006) A single dominant gene for resistance to the soybean aphid in the soybean cultivar Dowling. Crop Sci 46:1601-1605.
    Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plant-insect interactions. Curr Opin Plant Biol 14:422-428.
    Howe GA. and Jander G. (2008) Plant immunity to insect herbivores. Annual review of plant biology 59:41-66.
    Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153(4):1526-1538.
    Huang R, Xia R, Hu L, Lu Y, Wang M (2007) Antioxidant activity and oxygen-scavenging system in orange pulp during fruit ripening and maturation.Sci Hortic 113:166-172.
    Jacobs AK, Lipka V, Burton RA, Panstruga R, Nicolai S, Schulze-Lefert P, Fincher GB (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15,2503-2513.
    Jensen PE (2000) The PSI-K subunit of photosystem Ⅰ is involved in the interaction between light-harvesting complex Ⅰ and the photosystem Ⅰ reaction center core. Journal of Biological Chemistry 275:24701-24708.
    Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S, Leister D, Robinson C, Scheller HV (2007) Structure, function and regulation of plant photosystem Ⅰ. Biochimica et biophysica acta 1767: 335-352.
    Jonak C, Beisteiner D, Beyerly J, Hirt H (2000) Wound-induced expression and activation of WIG, a novel glycogen synthase kinase 3. Plant Cell 12:1467-147.
    Jones AM, Thomas V, Bennett MH, Mansfield J, and Grant M (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603-1620.
    Jones DR (2003) Plant viruses transmitted by whiteflies. Eur J Plant Pathol 109:195-219.
    Kaloshian I (2004) Gene-for-gene disease resistance:Bridging insect pest and pathogen defense. J Chem Ecol 30:2421-2439.
    Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P, Zabel P, Williamson VM (1998) Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Molecular and General Genetics 257(3):376-385.
    Keep E (1989) Breeding red raspberry for resistance to diseases and pests. Plant Breed 6:6245-321.
    Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant physiology 143:849-865.
    Kim Y, Kim SY, Paek KH, Choi D, Park JM (2006) Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants. Biochem Biophys Res Commun 345:638-664.
    Kim YM, Han YJ, Hwang O, Lee SS, Shin AY, Kim SY, Kim JI (2012) Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Molecules and cells 33 (6):617-626.
    Kjaerulff S, Andersen B, Nielsen VS, Moller BL, Okkels JS (1993) The PSI-K subunit of photosystem Ⅰ from barley (Hordeum vulgare L.), evidence for a gene duplication of an ancestral PSI-G/K gene. Journal of Biological Chemistry 268(25):18912-18916.
    Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR. (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453-466.
    Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2(10):379-384.
    Kostenyuk IA, Zon J, Burns JK (2002) Phenylalanine ammonia lyase gene expression during abscission in citrus. Physiol Plant 116(1):106-112.
    Kumar S, Dutta A, Sinha AK, Sen J (2007) Cloning, characterization and localization of a novel basic peroxidase gene from Catharanthus roseus. FEBS J 274:1290-1303.
    Lagudah ES, Moullet O, Appels R (1997) Map-based cloning of a gene sequence encoding a nucleotide binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40:659-665.
    Lan Z, Krosse S, Achard P, van Dam NM, Bede JC (2014) DELLA proteins modulate Arabidopsis defences induced in response to caterpillar herbivory. Journal of experimental botany, 65(2):571-583.
    Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, Kim D, Lee S, Salt DE, Mengiste T, Gong Q, Ma S, Bohnert HJ, Kwak SS, Bressan RA, Hasegawa PM, Yun DJ (2006) Salicylic acid-mediated innate immunity in Arabidopsis regulated by SIZ1 SUMO E3 ligase. Plant J 49:79-90
    Li C, Qiu L, Ning X, Chen A, Qin S, Wu HF, Zhao JM, (2010) The first molluscan TCTP in Venerupis philippinarum:molecular cloning and expression analysis. Fish & shellfish immunology 29(3): 530-533.
    Li CJ, Cao YB, Zhang LY (2013) Cloning and Bioinformatic Analysis of PSAK from Picea wilsonii. Biotechlogy 22 (3):4-9.
    Li HS, Sun Q, Zhao SJ, Zhang WL (2000) The experiment principle and technique on plant physiology and biochemistry. Beijing:Higher Education Press.
    Li JB, Fang LP, Lu ZZ, Zhang Z (2008) Relationships between the cotton resistance to the cotton aphid(Aphis gossypii) and the content of soluble sugars. Plant protection 34(2):26-30.
    Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogenactivated protein kinase signaling cascades. Mol Plant Microb Interact 19:655-664.
    van Emden H (2007) Host-plant resistance, in Aphids as Crop Pests.ed.by van Emden H and Harrington R. CAB International, Wallingford, Oxfordshire, UK, pp.447-468.
    LiQ, Xie QG, Smith-Becker J et al. (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated pro-tein kinase signaling cascades, Mol. Plant-Microbe Interact 9: 655-664.
    Li X, Liu YX, Li P, Wang ZY (2010) Cloning of a TCTP gene in wheat and its expression induced by Erysiphe graminis. Bulletin of Botanical Research 30 (4):441-447.
    Lombaert E, Carletto J, Piotte C, Fauvergue X, Lecoq H, Vanler-berghe-Masutti F, Lapchin L (2009) Response of the melon aphid, Aphis gossypii, to host-plant resistance:evidence for high adaptive potential despite low genetic variability, Entomol Exp Appl 133:46-56.
    Lu Y, Wang PL, Liu B, Zhang J, Zhou ZY (2009) Resistance and relevant mechanism to Aphis gossypii Glover of main cotton varieties in Xinjiang. Cotton science 21(1):57-63.
    Lu YF, Shi LM Yan SC (2012) Effects of different light intensities on activities of the primary defense proteins in needles of Larix gmelinii. Acta Ecologica Sinica 32(11):3621-3627.
    Lu YF, Shi LM Yan SC (2012) Effects of different light intensities on activities of the primary defense proteins in needles of Larix gmelinii. Acta Ecologica Sinica 32(11):3621-3627.
    Ma R, Reese JC, Black WC, Bramel-Cox P (1990) Detection of pectinesterase and polygalacturonase from salivary secretions of living greenbugs, Schizaphis graminum (Homoptera:Aphididae). J. Insect Physiol 36:507-512.
    MacDonald MJ, D'Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85(6):759.
    Madhusudhan VV, Miles PW (1993) Detection of enzymes secreted in the saliva of the spotted alfalfa aphid Therioaphis trifolii (Monell) f.maculata (Hemiptera:Aphididae), in:Corey, SA. Dall, DJ. Milne W. (Eds.), Pest control and sustainable agriculture, CSIRO, Australia, pp:333-334.
    Mant A, Woolhead CA, Moore M, Henry R, Robinson C (2001) Insertion of PsaK into the thylakoid membrane in a "Horseshoe" conformation occurs in the absence of signal recognition particle, nucleoside triphosphates, or functional albino. The Journal of biological chemistry 276: 36200-36206.
    Mattiacci L, Dicke M, Posthumus MA (1995) β-Glucosidase:An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci USA 92:2036-2040.
    Mayer AM (2006) Polyphenol oxidases in plants and fungi:Going places? A review. Phytochemistry 67:2318-2331.
    McConn MCR, Bell E, Mullet J, Rowse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci 94:5473-7.
    Mensah C, DiFonzo C, Nelson RL, Wang D (2005) Resistance to soybean aphid in early maturing soybean germplasm, Crop Sci 45:2228-2233.
    Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol.138:1149-62.
    Miles PW (1999) Aphid aliva. Biol Rev Camb Philos Soc 74:41-85.
    Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot-nematode resistance gene Mi from tomato is a member of the leuc ine zipper, nucleotide binding, leu-cine-rich repeat family of plant genes. Plant Cell 10:1307-1319.
    Mithofer A, Wanner QBoland W (2005) Plant resistance towards insect herbivores:a dynamic interaction. Plant Physiol 137:1160-1168.
    Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291-315.
    Montllor CB (1991) The influence of plant chemistry on aphid feeding behavior, pp.125-174. In E. A. Bernays (ed.), Insect-plant interactions. CRC, Boca Raton.
    Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology 125:1074-1085.
    Nakamoto H, Hasegawa M (1999) Targeted inactivation of the gene psaK encoding a subunit of photosystem I from the Cyanobacterium synechocystis sp. PCC 6803. Plant Cell Physiol.40(1): 9-16.
    Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant-Microbe Interact.16:645-649.
    Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lopez-Brana I, et al. (2001) Molecular-genetic characterization of a new nematode resistance gene in wheat. Theoretical and Applied Genetics 102:623-629.
    Olsen AN, Ernst HA, Leggio L, Skriver K (2005) NAC transcription factors:structurally distinct, functionally diverse. Trends Plant Sci 10:1360-1385.
    Park SJ, Huang Y, Ayoubi P (2005) Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 223: 932-947.
    Paschold A, Halitschke R, Baldwin IT (2007) Co(i)-ordinating defenses:NaCOIl mediates herbivore-induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J 51:79-91.
    Pauquet J, Burget E, Hagen L, Chovelon V, Le Menn A, Valot N, Desloire S, Caboche M, Rousselle P, Pitrat M, Bendahmane A, Dogimont C (2004a) Map-based cloning of the Vat gene from melon conferring resistance to both aphid colonization and aphid transmission of several viruses. In Proceedings of Cu curbitaceae 2004, the 8th EUCARPIA meeting on 227 Cucurbit genetics and breeding, (Lebeda A, Paris H, eds), Palaky University, Olomouc (CZ) pp:325-329.
    Pauquet J, Burget E, Hagen L, Chovelon V, Le Menn, Valot N, Desloire S, Caboche M, Rousselle P, Pitrat M, Bendahmane A, Dogimont C (2004b) Map-based cloning of the gene Vat from melon, which confers resistance to both aphid colonization ad aphid transmission of several viruses. In 3. Plant Genomics European Meeting, Lyon (FR) pp:247.
    Pech JC, Bernadac A, Bouzayen M, Latche A, Dogimont C, Pitrat M (2007) Melon In Transgenic crops V (Biotechnology in Agriculture and Forestry, vol.60) (Pua EC, Davey MR, eds) Springer, Berlin-Heidelberg (DE) pp:210-240.
    Pechan T, Ye J, Chang YM, Mitraa A, Lina L, Davis FM, Williams W, Luthea DS (2000) A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell 12(7):1031-1040.
    Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H (2009) A NAC transcription factor gene of Chickpea(Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol 166(17):1934-45.
    Peumans WJ, Van Damme EJM (1996) Prevalence, biological activity and genetic manipulation of lectins in foods. Trends Food Sci. Technol 7:132-138.
    Pitrat M, Lecoq H (1980) Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopathol 70:958-961.
    Poelman EH, Van Dam NM, Van Loon JJ, Vet LE, Dicke M (2009) Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores. Ecology,90:1863-1877.
    Price PW, Denno RF, Eubanks MD, Finke DL, Kaplan I (2011) Insect ecology:behavior, Populations and communities. Cambridge University Press, Cambridge, UK.
    Purrington CB (2000) Costs of resistance. Curr Opin Plant Biol 3:305-308.
    Qiao CX, Zhang GX (2004) Preliminary study of aphid diversity in China:taxonomic and geographic variation.In:simon JC, Dedryver CA, Hulle M, Rispe C eds.Aphids in a New Millennium. Paris: INRA.139-146.
    Qin QJ, Shi XY, Liang P, Gao XW (2005) Induction of Phenylalanine ammonia-lyase and lipoxtgenase in cotton seedlings by mechanical wounding and aphid infestation. Progress in Natural Science 15(5):419-423.
    Qubbaj T, Reineke A, Zebitz CPW (2005) Molecular interactions between rosyapple aphids, Dysaphis plantaginea, and resistant and susceptible cultivar sofitsprimary host Malus domestica. Entomol Exp Appl 115:145-52.
    Rawat N, Himabindu K, Neeraja CN, Nair S, Bentur JS (2013) Suppressive subtraction hybridization reveals that rice gall midge attack elicits plant-pathogen-like responses in rice. Plant Physiology and Biochemistry 63:122-130.
    Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2009) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell,16: 3132-3147.
    Roche P, Alston FH, Maliepaard C, Evans KM, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C, King GJ (1997) Theor Appl Genet 94:528-533.
    Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA.95:9750-9754.
    Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223: 1329-1343.
    Saheed SA, Cierlik I, Larsson KA, Delp G, Bradley G, Jonsson LM, Botha CE (2009) Stronger induction of callose deposition in barley by Russian wheat aphid than bird cherry-oat aphid is not associated with differences in callose synthase or beta-1,3-glucanase transcript abundance. Physiol Plant 135(2):150-61.
    Saidi Y, Hearn TJ, Coates JC (2012) Function and evolution of'green'GSK3/Shaggy-like kinases. Trends in Plant Science 17(1):39-46.
    Salunke BK, Kotkar HM, Mendki PS, Upasani SM, Maheshwari VL (2005) Efficacy of flavonoids in controlling Callosobruchus chinensis, a postharvest pest of grain legumes. Crop Protect 24(10): 888-893.
    Salvianti F, Bettini PP, Giordani E, Sacchetti P, Bellini E, Buiatti M (2008) Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacops yllapyri (Homoptera:Psyllidae). Journal of Plant Physiology 165:1808-1816.
    Sauge MH, Kervella J, Pascal T (1998) Settling behaviour and reproductive potential of the green peach aphid Myzus persicae on peach varieties and a related wild Prunus. Entomol Exp Appl 89(3):233-242.
    Schuster B, Retey J (1995) The mechanism of action of phenylalanine ammonialyase:The role of prosthetic dehydroalanine. Proc Natl Acad Sci USA 92:8433-8437.
    Seah S, Sivasithamparam K, Karalousis A, Lagudah ES (1998) Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theoretical and Applied Genetics 97:937-945.
    Shan X, Wang Z, Xie D (2007) Jasmonate signal pathway in Arabidopsis. Journal of Integrative Plant Biology 49:81-86.
    Shrestha RB, Parajulee MN (2012) Potential cotton aphid, Aphis gossypii, population suppression by arthropod predators in upland cotton. Insect Science 00:1-12.
    Smigocki A, Neal JJW, McCanna I, Douglass L (1993) Cytokinin-mediated insect resistance in Nicotiana plants transformed with the ipt gene.23(2):325-335.
    Smith CM, Boyko EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding:current status. Entomologia Experimentalis et Applicata.122:1-16.
    Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annual review of entomology 57:309-28.
    Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate-and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest management science 65: 497-503.
    Stone BA, Clarke AE (1992) Chemistry and physiology of higherplant (1/3)-b-glucans (callose). In: Stone BA, Clarke AE (eds) Chemistry and Biology of (1/3)-b-Glucans. La Trobe University Press, Bundoora, pp:365-429.
    Stone BA, Evans NA, Bonig I, and Clarke AE (1985) The application of Sirofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma 122:191-195.
    Takabe T, Iwasaki Y, Hibino T, Ando T (1991) Subnit composition of photosystem I complex that catalyzes light-dependent transfer of electrons from plastocyanin toferredoxin. The Journal of Biochemistry 110(4):622-627.
    Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nature Structural Biology 8: 701-704.
    Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Journal of Experimental Botany 57:755-766.
    Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound res ponses. J. Exp. Bot 57(4):739-745.
    Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251-1253.
    Urbanska A, Tjallingii WF, Dixon AFG, Leszczynski B (1998) Phenoloxidising enzymes in the grain aphid's saliva. Entomol Exp Appl 86:197-203.
    Van Damme EJM, Lannoo N, Peumans WJ (2008) Plant lectins Adv. Bot. Res.48:107-209.
    Vandenborre G, Smagghe G, Van Damme EJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538-1550.
    Varotto C, Pesaresi P, Jahns P, Lessnick A, Tizzano M, Schiavon F, Salamini F, Leister D (2002) Single and double knockouts of the genes for photosystem I subunits G, K, and H of Arabidopsis. Effects on photosystem I composition, photosynthetic electron flow, and state transitions. Plant physiology 129:616-624.
    Veitch NC (2004) Horseradish peroxidase:a modern view of a classic enzyme. Phytochemistry 65:249-259.
    Vilaine DF, Thibivilliers S, Kusiak C (2007) Involvement of the xyloglucan endotransglycosylase Phydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell Environ 30(2):187-201.
    Vincent D, Ergul A, Bohlman MC, Tattersall EA, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR (2007) Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauyignon and their responses to water deficit and salinity. J Exp Bot 58:1873-1892.
    Voelckel C, Weisser WW, Baldwin IT (2004) An analysis of plant-aphid interactions by different microarray hybridization strategies. Mol. Ecol 13:3187-95.
    Von Dohlen CD, Rowe CA, Hein OE (2006) A test of morphological hypotheses for tribal and subtribal relationships of Aphidinae (Insecta:Hemiptera:Aphididae) using DNA sequence. Mol. Phylogen.Ent 38:316-329.
    Walling LL (2000) The Myriad Plant Responses to Herbivores. J Plant Growth Regul 19:195-216.
    Wang JB (2009) Monogalactosyldiacylglycerol deficiency affects jasmonic acid biosynthesis and defense responses to insect herbivores in Nicotiana tobacum. Plant Science 176:279-285.
    Wang XL, He RF, He GC (2005) Construction of suppression subtractive hybridizati on libraries and identification of brown planthopper-induced genes. Journal of Plant Physiology 162:1254-1262.
    Wilkinson TL, Douglas AE (2003) Phloem amino acids and the host plant range of the polyphagous aphid, Aphis fabae. Entomol. Exp Appl 106:103-113.
    Will T. Kornemann SR. Furch ACU. Tjallingii WF. van Bel AJE (2009) Aphid watery saliva counteracts sieve-tube occlusion:a universal phenomenon? J Exp Biol 212:3305-3312.
    Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology 5:1-8.
    Wrzaczek M, Rozhon W, Jonak C (2007) A proteasome-regulated glycogen synthase kinase-3 modulates disease response in plants. J Biol Chem 282:5249-525.
    Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1-24.
    Wu ZT, Zhao HL, Wu CF (1990) Effect of nutritional changes in cotton seedling on the survival of Aphis gossypii (Glover). Journal of Plant Protection 17:95-96.
    Xia N, Zhang G, Sun YF, Zhu L, Xu LS, Chenc XM, Liu B, Yua YT, Wang XJ, Huang LL, Kang ZS (2010) TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology 74:394-402.
    Zhang L, Chang JH, Luo YW (2005) Activity changes of POD, PPO, PAL of different Sorghum genotypes invaded by Aphis sacchari Zehntner. Chinese agricultural science bulletin 21(7): 40-198.
    Zhang LC, Zhao GY, Xia C, Jia J, Liu X, Kong X (2012) Overexpression of a wheat MYB transcription factor gene TaMYB56-B enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. Gene 505:100-107.
    Zhang SP, Zhang CL, Wang QX, Dong HS (2009) The regulative role of Ein factor in Arabidopsis Aphid-resistant mechanism under HrpNEa induction. Jiangsu Agricultural Sciences 5:30-33.
    Zhao LY, Chen JL, Cheng DF, Sun JR, Liu Y, Tian Z (2009) Biochemical and molecular characterizations of Sitobion avenae-induced wheat defense responses. Crop Protection 28(5): 435-442.
    Zhou FC, Lu ZQ, Chen LF, Zhu SD, Chen GQ, Xu YH, Li Xi, Xiao WX (1999) The correlativity between soluble sugars of wheat and resistance to the bird cherry-aphid Rhopalosiphum padi. Jiangsu Agricultural Research 20(2):60-63.
    Zhu L, Liu XM, Liu X, Jeannotte R, Reese JC, Harris M, Stuart JJ, Chen MS (2008) Hessian fly (Mayetiola destructor) attack causes dramatic shift in carbon and nitrogen metabolism in wheat. Mol Plant-Microbe Interact 21(1):70-78.
    Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiology 134:420-431.
    Santamaria ME, Martinez M, Cambra I, Grbic V, Diaz I (2013) Understanding plant defence responses against herbivore attacks:an essential first step towards the development of sustainable resistance against pests. Transgenic research 22(4):697-708.
    蔡青年,张青文,王宇,周明牂(2003)小麦体内生化物质在抗蚜中的作用.昆虫知识40(5):391-394.
    陈明顺,仵均祥,张国辉(2009)植物诱导性直接防御.昆虫知识46(2):175-186.
    陈玉茶,曹辰兴,黄治军,王涛,季春梅,雷关红(2011)营养物质与黄瓜叶片抗蚜关系的研究.中国农学通报27(16):283-286.
    康晓龙,李新海,冯登侦(2012)几种差异表达基因筛选方法比较.中国兽医杂志48(6):65-68.
    芦屹,王佩玲,刘冰,张金,周子扬(2009)新疆棉花主栽品种的抗蚜性及其机制研究.棉花学报21(1):57-63.
    鲁艺芳,石蕾,严善春(2012)不同光照强度对兴安落叶松几种主要防御蛋白活力的影响.生态学报32(11):3621-3627.
    吕敏,孙婳婳,高希武(2012)昆虫取食诱导棉花和玉米多酚氧化酶和过氧化物酶的活性研究.中国农学通报28(06):211-216.
    苗猛猛,王旭静,唐巧玲,王志兴(2012)抗蚜基因工程研究进展.生物技术进展2(2):104-109.
    钦俊德(1987)昆虫与植物的关系—论昆虫与植物的相互作用及其演化.北京:北京出版社,1-227.
    秦秋菊,高希武(2005)昆虫取食诱导的植物防御反应.昆虫学报48(1):125-134.
    孙常青,施俊凤,郭志利,刘烨锋(2007)抑制差减杂交法(SSH)及其在植物中的应用.山西农业科学35(4):38-41.
    王琛柱,钦俊德(1997)植物蛋白酶抑制素抗虫作用的研究进展.昆虫学报40(2):212-218.
    王荫长主编(2004)昆虫生理学.北京:中国农业出版社.74-76.
    夏敬源(1996)棉花抗虫性研究与利用.棉花学报,8(2)57-64
    谢辉,王燕,刘银泉,陈利萍(2012)植物组成型防御对植食性昆虫的影响.植物保护38(1):572-580.
    杨效文,张孝羲(1988)烟蚜抗药性的生化及分子生物学机制.世界农业(11):37-38.
    张海静,严盈,彭露,郭建洋,万方浩(2012)韧皮部取食昆虫诱导的植物防御反应.昆虫学报55(6):736-748.
    郑彩玲,刘向东,翟保平(2007)棉花型和黄瓜型棉蚜(Aphis gossypii Glover)的寄主适应性及转移通道.生态学报27(5):1879-1886.
    周蕾,魏琦超,高峰(2006)细胞分裂素在果实及种子发育中的作用.植物生理学通讯42(3):549-533.
    周明群(1992)作物抗虫性原理及应用.北京:北京农业大学出版社.
    周郑,陈树仁,程新胜(2007)昆虫对植物的选择性以及植物化学成分对昆虫的影响.天然产物研究与开发19:198-201,89.
    邹先伟,蒋志胜(2004)棉蚜抗药性及其抗性治理对策的研究.农药.43(7):294-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700