云斑天牛触角cDNA文库的构建及相关嗅觉蛋白的表达及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中,昆虫对化学信号物质的感知主要通过两种化学感受机制:嗅觉和味觉。借助特定的化学感觉机制,昆虫的嗅觉系统能够感知其周围环境中的大量纷繁复杂的化学信息,完成寄主定位、寻找食物配偶、躲避天敌的捕捉、避免有毒物质以及寻找繁殖场所等多种生理行为。阐明昆虫的化学感受机理,可以加深对昆虫与植物、昆虫与昆虫之间相互关系的了解,帮助我们设计新的方法来进行害虫治理。云斑天牛Batocera horsfieldi (Hope)属于鞘翅目天牛科,是一种重要的蛀干害虫,主要以幼虫蛀食树干和成虫补充营方式养危害树木。由于云斑天牛蛀害,导致杨树树势衰弱或全株枯死;同时还造成了杨树材质的损害,造成极大的经济损失。近年来,对云斑天牛的行为学研究比较多,但对云斑天牛嗅觉识别机制的分子机制研究,国内外尚未见报道。为此我们通过分子生物学手段构建cDNA文库并结合批量ESTs测序,对云斑天牛触角功能基因进行了分析。通过对主要的触角气味结合蛋白OBPs和化学感受蛋白CSPs进行基因克隆,分析其在不同组织中的转录表达谱特征,以及对OBP2和CSP2蛋白的表达纯化,初步探讨了其生理功能。主要研究结果如下:
     1云斑天牛成虫触角cDNA文库的构建
     通过LD-PCR技术合成全长ds-cDNA,电泳后,对0.3-0.6kb ds-cDNA和0.6-1kbds-cDNA分别割胶回收,连接到pDNR-LIB载体上。对扩增文库分别采用PCR扩增和蓝白斑筛选的方法进行鉴定,本研究构建的云斑天牛0.3-0.6kb cDNA文库滴度为6.4×105cfu/mL,库容量为8.9×105克隆,得重组率94.5%;0.6-1kb cDNA文库滴度为4.1×106cfu/mL,库容量为5.8×106克隆,得重组率93.2%,且序列基本上均为全长,这充分说明两个定向片段大小的文库构建得较好。通过测序,成功得到了有效ESTs序列692条,经拼接后分别得到‘'Contigs"和‘'Singlets"(?)序列分别为79个和323个,其中功能基因246个,同源但无注释功能等的基因34个。从拼接后的BLASTx结果看,包括68条云斑天牛气味结合蛋白及化学感受相关的基因,去除重复的序列,得到了4个Odorant Binding proteins (OBPs)机因,3个Chemosensory Proteins (CSPs)基因,2个Pheromone binding proteins (PBP)基因以及9个Minus-OBP基因,为广泛开展云斑天牛分子生物学研究提供了重要的参考和依据。
     2云斑天牛气味结合蛋白和化学感受蛋白的克隆及序列分析
     利用RT-PCR技术克隆得到云斑天牛3个普通气味结合蛋白(GOBP)基因BhorGOBP1、BhorGOBP2及BhorGOBP3,分别编码142、137和125个氨基酸,预测N-末端分别包含20,19和20个氨基酸组成的信号肽序列。这三个基因编码的氨基酸序列和鞘翅目昆虫GOBP的氨基酸序列比对同源性较高(50%左右),但是BhorGOBP1、BhorGOBP2和BhorOBP3的同源性只有12.68%,说明它们属于不同的GOBP类群;同时克隆得到3个化学感受蛋白(CSP)基因BhorCSP1、BhorCSP2及BhorCSP3的ORF全长,分别编码127、130和125个氨基酸,预测N-末端分别包含20、19和20个氨基酸组成的信号肽序列,所得到的3个CSP基因序列已提交到GenBank,其登录号分别为HQ587041, HQ587040和HQ587042。从序列连配的结果我们发现,在CSPs中存在有3个高度保守的区域结构,分别是位于N-端的Motif A区YTTKYDN[V/I][N/D][L/V] DEIL,中心的Motif B区DGKELKXX [I/L]PDAL,和位于C-端的Motif C区KYDP,进一步分析表明,位于第53、110、123位置的芬芳族残基,以及位于第91/92位的(glutamine/lysine)和129/130位的(lysine/tyrosine)均高度保守。
     3云斑天牛气味结合蛋白和化学感受蛋白的时空表达谱研究
     依据已克隆得到的云斑天牛Batocera horsfieldi气味结合蛋白OBPs和化学感受蛋白CSPs基因全长序列设计特异引物,利用RT-PCR和Real Time-PCR技术对云斑天牛主要OBPs基因和CSPs基因在云斑天牛成虫的不同组织及羽化后各个发育阶段的转录表达谱进行了研究。基于云斑天牛成虫期RT-PCR的表达谱分析发现,3个OBP基因和3个CSP基因在头部(去除触角)均不表达,而在触角、下颚须、下唇须、翅、足、腹部均有表达。Q-PCR结果显示3个OBP基因在触角中在不同发育阶段的表达量要远高于3个CSP基因;OBPs和CSPs在雄虫不同组织其表达量要高于雌虫(无论交配与否);在羽化后1-5天以及羽化后30天左右OBPs和CSPs的表达量较高,远高于中间时期的表达量。结果表明BhorCSPs除了嗅觉功能外,可能还在云斑天牛感受外界化合物的过程中发挥着其它重要作用,其在雌雄虫中不同的表达量及不同时期表达量的不同也表明OBPs和CSPs在雄虫寻找配偶及雌虫寻找补充营养寄主及产卵场所的过程中发挥着重要的功能。
     4云斑天牛气味结合蛋白OBP2和化学感受蛋白CSP2的原核表达纯化
     成功构建了云斑天牛BhorOBP2和BhorCSPSP2(?)勺原核表达质粒,由于目的蛋白含有二硫键,我们最终选择以pET32a原核表达载体来表达目的蛋白,pET32a融合表达系统含有一个硫氧还蛋白标签(Trx),该标签不仅可以增加蛋白可溶性,而且能够催化二硫键的正确形成,因此非常适合含有二硫键的OBPs(3对)和CSPs(2对)蛋白的表达;同时,我们对pET32a进行了人工改造,将pET32a载体自带的Thrombin酶切位点的识别序列突变掉,然后在目的蛋白基因的起始密码子前面加上一个Thrombin识别序列,同时为了将该序列和目的蛋白保持一定的空间距离,在二者之间还添加了一段Linker序列(GGGGSGGG),最终使切除的标签从分子量和pI均和目的蛋白有一定的差别,利于后续的纯化。通过对温度以及IPTG浓度的优化,我们最终确定了pET32a-BhorOBP2/CSP2的最优的可溶性表达条件:16℃,IPTG浓度0.5mmol/L,诱导过夜。经镍离子亲和层析和Resource S/Q(阳/阴)离子交换柱及Superdex75凝胶柱纯化得到纯的蛋白,为制作多克隆抗体,进行嗅觉蛋白在云斑天牛触角嗅觉感器中的免疫定位和荧光竞争结合实验检测其对不同来源种类的气味化学物质的结合能力奠定了物质基础。
Insects have specialized chemosensory systems detect stimuli from the external environment, including a wide range of chemical compounds. The specialized sensilla in the chemosensory organs (antenna, maxillary palps, labial palps, legs and wings) allows the organism to recognise volatile cues that confer the capacity to detect food sources, predators, mates and oviposition sites. Two major families of soluble proteins, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), are expressed in chemosensilla of insects and thought to carry lipophilic odorants to the olfactory receptor cells through hydrophilic surroundings and are involved in the initial biochemical step of odour reception. Clarifying the Chemical sense mechanisms of insect not only could be helpful to promote the understanding behavior essence of insects and plants, but also provide theories for controling pest. The long-horned beetle, Batocera horsfieldi (Hope)(Coleoptera:Cerambycidae), is a significant pest of Popolus. The larvae of Batocera horsfieldi cause serious economical loss in result of their eat trunk and covert habitat. In order to further understanding the olfactory mechanism of Batocera horsfieldi and control them by scientific methods, a cDNA library from antenna of B. horsfieldi was constructed and functional from hundreds of expressed sequence tags (ESTs) by patched sequencing were discovered from cDNA library. On the basis of ESTs, OBPs and CSPs of B. horsfieldi were cloned, and the transcriptional profiles in different tissues through different developmental stages were identified, also further recombinant proteins were expressed after construction of expression vectors, meanwhile, the potential function of OBP2was investigated. The main results are as follows:
     1The construction of cDNA library with the antenna of B. horsfieldi adults
     Through the technique of LD-PCR, ds-cDNA was synthesized, the PCR products were analysed on1%agarose gels, the bands of0.3-0.6kb and0.6-1kb were retrieved respectively and linked into the pDNR-LIB Vector. Through identification of PCR and blue-white selection, the cDNA library was identified high recombinational efficiency, reached above94.5%(hfcbwa) and93.2%(hfcbwb), respectively. And the titer of the two library (hfcbwa and hfcbwb) reached6.4×105pfu/ml and4.1×106pfu/ml.692clones from the cDNA library were selected randomly and sequenced,604high quality sequences more than100bp were produced after removing the vector sequences and contaminated sequences, And the average length of the ESTs (without vector) were386.33bp and468.62bp. Using the Phrap software,79"Contigs" and323"Singlets" were produced from the assembled ESTs, after analyzed by clustering and assemblying, get246functional gene. Compared with NCBI non-redundant protein database using BLASTx,68ESTs of Unigenes matched with olfactory related protein genes, wiped off the repeated ESTs, got4odorant binding proteins,3Chemosensory proteins,2Pheromone binding proteins and9Minus-C odorant binding proteins, which provided foundation for next research.
     2Molecular cloning and characterization of OBPs and CSPs from B. horsfieldi adults
     From the B. horsfieldi antennal cDNA library, we obtained three full-length odorant-binding proteins gene by RT-PCR, from the nuclear acid sequences, all of the three BhorOBPs have6conservative cysteines, and a signal peptide which about20amino acids at N-terminus. The multiple sequences alignment of the BhorOBPs with other Coleoptera OBPs showed high sequence identity (50%) with other full-length sequences from GenBank, but the homology of these three BhorOBPs were very low, only12.68%, suggested they belong to different groups, also the results in compliance with the results of phylogenetic tree. Also three full-length cDNAs of CSPs were identified and predicted to encode small proteins (120-130amino acids). The sequences of these genes have been deposited in GenBank under the accession numbers HQ587040, HQ587041and HQ587042. Three key features of the amino acid sequences of the candidate CSP genes were consistent with the CSP family members of other insects:a predicted molecular weight of about13kDa, a hydrophobic N-terminus of about16amino acids encoding a signal peptide and the presence of a highly conserved four-cysteine motif (C-X6-C-X18-C-X2-C). The alignment results also shows the CSPs had three conserved several sequence motifs, including a commonmotif A at their N terminal YTTKYDN[V/I][N/D][L/V]DEIL, central motif B DGKELKXX[L/I]PDAL and C-terminal KYDP, in addition, aromatic residues at position53,110and123that may be functionally important are also highly conserved, along with residues located at91/92(glutamine/lysine) and129/130(lysine/tyrosine).
     3Temporal and spatial expression profiles of the BhorOBPs and BhorCSPs genes
     Using gene-specific BhorOBPs and BhorCSPs primers and control18s rRNA primers with cDNA prepared from different tissues, we examined the expression patterns at successive developmental stages and in various adult body parts and tissues by RT-PCR and Real time-PCR. Unlike other species, all three B. horsfieldi OBPs and CSPs transcripts were detected in antenna, labial palps, maxillary palps, forelegs, midlegs, mid abdomen and hind abdomen, but no specific products were observed in head (without antenna). On the basis of the normalized relative quantification2-ΔΔCT method for real-time Q-PCR, the transcription profiling of the tissues and developmental phases of the three BhorOBPs and BhorCSPs were obtained. The data presented the transcription levels of the three BhorOBPs were higher than those at the same periods of BhorCSPs in antenna. In general, BhorOBPs and BhorCSPs had the highest expression in antenna, and higher espression in labial palps and maxillary palps, but less in wings, legs and abdomen. The transcript levels of the BhorOBPs and BhorCSPs in all tissues of unmated or mated males were significantly higher than in unmated or mated females in most development stages except in the labial palps and maxillary palps. This is most noticeable for BhorCSPs that were generally expressed highly in the wings and legs. In the different developmental periods, BhorOBPs and BhorCSPs had two highest expression leveral periods, from larva to5day adult and around25/30day adult. These data indicated BhorCSPs maybe had other rols except olfactory sensation, also the difference transcription leveral at different developmental period and in different tissues suggest the BhorOBPs and BhorCSPs have their specifically task in detecting food sources, mates and oviposition sites.
     4The expression and purification of BhorOBP2and BhorCSP2proteins
     The ORF sequence of BhorOBP2and BhorCSP2were subcloned into prokaryotic vector pET32a, transferred into BL21(DE3) and expressed. The recombinant plasmids pET32a have a His-tag and a Trx-tag, the Trx-tag can increase the solubility of the protein, and facilitate forming correct disulfide bond. We deleted the Thrombin sequence of pET32a vector, then added a Thrombin sequence and a linker at the N terminal of BhorOBP2and BhorCSP2. The conditions for soluble expression was optimized by investigating different temperature (16℃), IPTG concentration (0.5mmol/L) and induction time (overnight). Then the buffer condition and chromatography methods were discussed of the proteins. Finally, through nickel affinity column, Resource Q/S ion exchange column and Superdex75gel filtration chromatography, the protein samples with high concentrations and stability were obtained.
引文
1.丁铋,黄金水,黄海清.星天牛成虫行为及其机制的初步研究.林业科学研究,1995,8:53-57.
    2.樊建庭,韦卫,孙江华.松墨天牛是否存在雌性接触信息素?.昆虫知识,2007,44(1):125-129.
    3.高瑞桐,王宏乾,徐邦新,郑世锴,工希群,龚益鸿.云斑天牛补充营养习性及与寄主树关系的研究.林业科学研究,1995,8(6):619-623.
    4.郭丽.桑树对桑天牛引诱机制的研究.[硕士学位论文].保定:河北农业大学,2006.
    5.郝德君,马凤林,王焱,戴华国,张永慧.松墨天牛对马尾松挥发物的触角电位和行为反应.昆虫知识,2007,44(4):541-544.
    6.郝德君,马凤林,王焱,张永慧,戴华国.松墨天牛对不同生理状态黑松挥发物的触角电生理和行为反应.应用生态学报,2006,17(6):1070-1074.
    7.何东苟,余新炳,吴忠道.全长cDNA文库的构建和新基因全长cDNA克隆的策略.热带医学杂志,2003,3(4):473-476.
    8.贺萍,黄竞芳.光肩星天牛成虫的行为.昆虫学报,1993,36(1):51-55.
    9.嵇保中,钱范俊.云斑天牛生殖系统的研究.南京林业大学学报,1995,19(4):14-20.
    10.嵇保中,魏勇,黄振裕.天牛成虫行为研究的现状与展望.南京林业大学学报,2002,26(2):79-83.
    11.李德家,刘益宁.光肩星天牛成虫性发育同日龄、补充营养以及交配之间的关系.西北林学院学报,1997,12(4):19-23.
    12.李文杰,邬承先.杨树天牛综合管理.北京:中国林业出版社,1993
    13.刘建喜,林爱星,李雪辉,陈新荣,陈永福.用PCR法从cDNA文库中快速克隆基因.农业生物技术学报,2001,9(3):279-281.
    14.鲁玉杰,张孝羲.信息化合物对昆虫行为的影响.昆虫知识,2001,38(4):262-266.
    15.骆有庆.防护林杨树天牛灾害的生态调控理论与技术研究.[博士学位论文].北京:北京林业大学,2005.
    16.梅爱华,陈京元,吴高云,杜夕森,罗福世.江汉平原杨树害虫种类调查、发生原因及主要害虫防治对策.森林病虫通讯,1998,(2):35-39.
    17.庞保平,程家安.植物体表与昆虫的关系.生态学杂志,1998,17(4):52-58.
    18.钦俊德,王琛柱.论昆虫与植物的相互作用和进化的关系.昆虫学报,2001,44(3):360-365.
    19.仇兰芳.天牛卵长尾啮小蜂生物学及寄主选择性研究.[硕士学位论文].泰安:山东农业大学,2003.
    20.任珍珍,柳晓磊,胡美英.昆虫嗅觉相关蛋自的结构和功能.中国生物化学与分子生物学报,2010,26(6):531-537.
    21.施蕴渝,吴季辉.核磁共振波谱研究蛋白质三维结构及功能.中国科学技术大学学报,2008,38(8):941-949.
    22.王大洲,康月兰,张丽莉.云斑天牛一新危害寄主火炬树.河北林业科技,2000, 5:25.
    23.萧刚柔主编.中国森林昆虫.第2版(增订本).北京:中国林业出版社,1992.
    24.严敖金,嵇保中,钱范俊,陈京元,叶中亚.云斑天牛Batocera horsfielrdi (Hope)的研究.南京林业大学学报,1997,21(1):1-5.
    25.严善春,程红,杨慧,袁红娥,张健,迟德富.青杨脊虎天牛对植物源挥发物的EAG和行为反应.昆虫学报,2006,49(5):759-767.
    26.张玉凤,陆群,田润民.光肩星天牛成虫对不同阔叶树选择性试验研究.内蒙古林学院学报(自然科学版),1997,19(3):17-23.
    27.诸葛飘飘.杨树云斑天牛成虫寄主定位中的信息化学物质.[硕士学位论文].武汉:华中农业大学,2009.
    28. Allison JD, Borden JH, Seybold SJ. A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology,2004,14:123-150.
    29. Altner H, Loftus R. Ultrastructure of invertebrate chemo-, thermo-and hygroreceptors and its functional significance. Int Rev Cytol,1980,67:69-139.
    30. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology,1990,215(3):403-410.
    31. Andronopoulou E, Labropoulou V, Douris V, Woods DF, Biessmann H, Iatrou K. Specific interactions among odorant-binding proteins of the African malaria vector Anopheles gambiae. Insect Mol Biol,2006,15(6):797-811.
    32. Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem, 1999,262(3):745-754.
    33. Barata EN, Mustaparta H, Pickett JA, Wadhams LJ, Araujo J. Encoding of host and non-host plant odours by receptor neurones in the eucalyptus woodborer, Phoracantha semipunctata (Coleoptera:Cerambycidae). Comp Physiol,2002,188: 121-133.
    34. Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of drosophila odorant receptors in vivo. PLoS Biol,2006,4: e20.
    35. Benton R. Sensitivity and specificity in Drosophila pheromone perception. Trends in Neuro sci,2007,30(10),512-519.
    36. Bohbot J, Vogt RG. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem Mol Biol,2005,35(9):961-979.
    37. Briand L, Nespoulous C, Huet JC, Takahashi M, Pernollet JC. Ligand binding and physico-chemical properties of ASP2, a recombinant odorant-binding protein from honeybee (Apis mellifera L.). Eur J Biochem,2001,268,752-760.
    38. Briand L, Swasdipan N, Nespoulous C, Bezirard V, Blon F, Huet JC, Ebert P, Penollet JC. Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone cagier. Eur J Biochem,2002,269(18): 4586-4596.
    39. Calvello M, Guerra N, Brandazza A, D'Ambrosio C, Scaloni A, Dani FR, Turillazzi S, Pelosi P. Soluble proteins of chemical communication in the social wasp Polisles dominulus. Cell Mol Life,2003,60:1933-1943.
    40. Campanacci V, Lattigue A, Hallberg BM, Jones TA, Giudici-Orticoni MT, Tegoni M, Cambillau C. Moth chemosensory protein exhibits drastic conformations changes and cooperativity on ligand binding. Proc Natl Acad Sci,2003,100(9):5069-5074.
    41. Campanacci V, Mosbah A, Bornet O, Wechselberger R, Jacquin-Joly E, Cambillau C, Darbon H, 'ftgoni M. Chemosensory protein from the moth Mamestra brassicae.Expression and secondary structure from 1H and ISN NMR. Eur J Biochem,2001a,268(17):4731-4739.
    42. Campanacci V, Spinelli S, Lartigue A, Lewandowski C, Brown K, Tegoni M, Cambillau C. Recombinant chemosensory protein (CSP2) from the moth Mamestra brassicae:crystallization and preliminary crystallographic study. Acta Crystallogr D Biol Crystallogr,2001b,57 (Pt 1):137-139.
    43. Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, Young MW. Circadian regulation of gene expression systems in the Drosophila head. Neuron, 2001,32(4):657-671.
    44. Colazza S, Mcelfresh JS, Millar JG. Identification of Volatile Synomones, Induced by Nezara viridula Feeding and Oviposition on Bean spp., that Attract the Egg Parasitoid Trissolcus basalis. Chemical Ecology,2004,30(5):945-964.
    45. de Bruyne M, Baker TC. Odor detection in insects:volatile codes. J Chem Ecol, 2008,34(7):882-897.
    46. de Bruyne M, Clyne PJ, Carlson JR. Odor coding in a model olfactory organ:the Drosophila maxillary palp. Neurosci,1999,19(11):4520-4532.
    47. Du G, Prestwich GD. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry,1995,34:8726-8732.
    48. Ejima A, Smith BP, Lucas C, van der Goes van Naters W, Miller CJ, Carlson JR, Levine JD, Griffith LC. Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr Biol,2007,17(7):599-605.
    49. Elmore T, Smith DP. Putative Drosophila odor receptor OR43b localizes to dendrites of olfactory neurons. Insect Biochem Mol Biol,2001,31(8):791-798.
    50. Endo K, Aoki T, Yoda Y, Kimura K, Hama C. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat Neuro sci,2007, 10(2):153-160.
    51. Ewing B, Hillier L, Wendl MC. Base-tailing of automated sequences traces using accuracy assessment. Genome Res,1998,8:175-185.
    52. Fan J, Francis F, Liu Y, Chen JL, Cheng DF. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet Mol Res,2011,10(4): 3056-3069.
    53. Fettkother R, Reddy GVP, Noldt U, Dettner K. Effect of Host and Larval Frass Volatiles on Behavioural Response of the old House Borer, Hylotrupes bajulus (L.) (Coleoptera:Cerambycidae), in a Wind Tunnel Bio-Assay. Chemoecology,2000,10: 1-10.
    54. Foret S, Wanner KW, Maleszka R. Chemosensory proteins in the honey bee:insights from the annotated genome, comparative analyses and expressional profiling. Insect Biochem Mol Biol,2007,37(1):19-28.
    55. Fox AN, Pitts RJ, Robertson HM, Carlson JR, Zwiebel LJ. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc Natl Acad Sci USA,2001, 98(25):14693-14697.
    56. Franco MD, Bohbot J, Fernandez K, Hanna J, Poppy J, Vogt R. Sensory cell proliferation within the olfactory epithelium of developing adult Manduca sexta (Lepidoptera). PLoS One,2007,2(2):e215.
    57. Genund C, Ramu C, Altenberg-Greulich B. Gene2EST:a BLAST2 server for searching expressed sequence tag (EST) databases with eukaryotic gene-sized queries. Nucl Acid Res,2001,29:1272-1277.
    58. Getchell TV, Margolis FL and Getchell ML. Perireceptor and receptor events in vertebrate olfaction. Progress in Neurobiology,1984,23:317-345.
    59. Gether U, Kobilka BK. G protein-coupled receptors Ⅱ. Mechanism of agonist activation. J Biol Chem,1998,273(29):17979-17982.
    60. Ginsel MD, Hanks LM. Role of host plant volatiles in mate location for three species of longhorned beetles. Chemical Ecology,2005,31:213-217.
    61. Gong DP, Zhang HJ, Zhao P. Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochem Mol Biol,2007,37(3):266-277.
    62. Gong DP, Zhang HJ, Zhao P, Xia QY, Xiang ZH. The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics,2009,10:332.
    63. Goulding SE, zur Lage P, Jarman AP. amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron,2000,25(1):69-78.
    64. Graham LA, Brewer D, Lajoie G, Davies PL. Characterization of a subfamily of beetle odorant-binding proteins found in hemolymph. Mol Cell Proteomics,2003, 2(8):541-549
    65. Graham LA, Tang W, Baust JG, Liou YC, Reid TS, Davies PL. Characterization and cloning of a Tenebrio molitor hemolymph protein with sequence similarity to insect odorant-binding proteins. Insect Biochem Mol Biol,2001,31(6-7):691-702.
    66. Gupta BP, Rodrigues V. Atonal is a proneural gene for a subset of olfactory sense organs in Drosophila. Genes Cells,1997,2(3):225-233.
    67. Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. Cell,2006,125(1): 143-160.
    68. Hanks LM, Millar JG, Paine TD. Body size influences mating success of the eucalyptus longhorned borer (Coleoptera:Cerambycidae). Insect Behavior,1996,9: 369-382.
    69. Hanks LM. Influence of the larval host plant on reproductive strategies of Cerambycid beetles. Annu Rev Entomol,1999,44:483-505.
    70. Harada E, Haba D, Aigaki T, Matsuo T. Behavioral analyses of mutants for two odorant-binding protein genes, Obp57d and Obp57e, in Drosophila melanogasler. Genes Genet Syst,2008,83(3):257-264.
    71. Hatey F, Tosser-Klopp G, Clouscard-martinato C, Mulsant P, Gasser F. Expressed sequence tags for genes:a review. Genet Sel Evol,1998,30(5):521-541.
    72. Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res, 2002,12:1357-1369.
    73. Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y),1992,10(4):413-417.
    74. Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ. G protein-coupled receptors in Anopheles gambiae. Science,2002,298(5591):176-178.
    75. Hiroe Y, Tetsuya Y, Midori F, Toshiharu A, Sadao W, Yoshio H, Kenjiro K, Hiroshi O, Minoru N, Kazunari K, Takeshi F. Host plant chemicals serve intraspecific communication in the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson) (Coleoptera:Cerambycidae). Appl Entomol Zool,2007,42(2):255-268.
    76. Horst R, Damberger F, Luginbuhl P, Guntert P, Peng G, Nikonova L, Leal WS, Wuthrich K. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc Natl Acad Sci,2001,98(25):14374-14379.
    77. Ikeda T, Ohya E, Makihara H, Nakashima T, Saito T, Tate T, Kojima K. Olfactory responses of Anaglyptus subfasciatus PIC and Demonax transilis BATES (Coleoptera:Cerambycidae) to flower scents. Jap Forestry Soc,1993,75(2):108-112.
    78. Ishida Y, Chiang V, Leal WS. Protein that makes sense in the Argentine ant. Naturwissenschaften,2002a,89(11):505-507.
    79. Ishida Y, Cornel AJ, Leal WS. Identification and cloning of a female antenna-specific odorant-binding protein in the mosquito Culex quinquefasciatus. J Chem Ecol,2002b,28(4):867-871.
    80. Jacquin-Joly E, Vogt RG, Francois MC, Nangan-Le MP. Functional and expression pattern analysis of chemosensory proteins expressed in antenna and phermonal gland of Mamestera brassicae. Chemical Sense,2001,26:833-844.
    81. Jin YJ, Li JQ, Li JG, Luo YQ, Stephen AT. Olfactory response of Anoplophora glabripennis to Volatile Compounds from Ash leaf Maple(Acer negundo) Under Drought Stress.2004, Scientla Silvae Sinicae,2004,40(1):99-105.
    82. Jones WD, Nguyen TA, Kloss B, Lee KJ, Vosshall LB. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr Biol,2005, 15(4):119-121.
    83. Kaissling KE. Chemo-electrical transduction in insect olfactory receptors. Annu Rev Neurosci,1986,9:121-145.
    84. Kaissling KE. Olfactory perireceptor and receptor events in moths:a kinetic model. Chem Senses,2001,26(2):125-150.
    85. Kamilcouchi A, Moriolsa M, Kubo T. Identification of honeybee antennal proteins/genes expressed in a sex- and/or caste selective manner. Zoolog,2004,21: 53-62.
    86. Kato S, Sekine S, Oh SW, Kim NS, Umezawa Y, Abe N, Yokoyama- Kobayashi M, Aoki T. Construction of a human full-length cDNA bank. Gene.1994,150(2): 243-250.
    87. Kim MS, Smith DP. The invertebrate odorant-binding protein LUSH is required for normal olfactory behavior in Drosophila. Chem Senses,2001,26(2):195-199.
    88. Kim MS. Repp A, Smith DP. LUSH Odorant-binding protein mediates chemosensory responsed to alcohols in Drosophila melanogaster. Genetics,1998, 150(2):711-721.
    89. Kitabayashi AN, Arai T, Kubo T, Natori S. Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach). Insect Biochem Mol Biol,1998,28(10):785-790.
    90. Klusak V, Havlas Z, Rulisek L, Vondrasek J, Svatos A. Sexual attraction in the silkworm moth:Nature of binding of bombykol in pheromone binding protein-an ab initio study. Chem Biol,2003,10:331-340.
    91. Kobayashi F, Yamane A, Ikeda T. The Japanese pine sawyer beetle as the vector of pine wilt disease. Annual Review of Entomology,1984,29:115-135.
    92. Krieger J, Breer H. Olfactory reception in invertebrates. Science,1999,286: 720-723.
    93. Krieger MJ, Ross KG. Identification of a major gene regulating complex social behavior. Science,2002,295:328-332.
    94. Kruse SW, Zhao R, Smith DP, Jones DN. Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Biol,2003,10(9):694-700.
    95. Kumar S, Tamura K, Nei M. MEGA:Molecular Evolutionary Genetics Analysis software for microcomputers. Mol Biol Evol,1987,4(4):406-425.
    96. Kurtovic A, Widmer A, Dickson BJ. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature,2007,446(7135): 542-546.
    97. Kwon HW, Lu T, Rutzler M, Zwiebel LJ. Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci USA,2006, 103(36):13526-13531.
    98. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. Comput Appl Biosci,1994,10(2):189-191.
    99. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron,2004,43(5):703-714.
    100.Lartigue A, Campanacci V, Itoussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C. X-ray structure and ligand binding study of a moth chemosensory proteip. J Biol Chem,2002,277(35),32094-32098.
    101.Lartigue A, Gruez A, Briand L, Blon F, Bezirard V, Walsh M, Pernollet JC, Tegoni M, Cambillau C. Sulfur single-wavelength anomalous diffraction crystal structure of a pheromone-binding protein from the honeybee Apis mellifera L. J Biol Chem,2004, 279(6):4459-4464.
    102.Lartigue A, Gruez A, Spinell S, Riviere S, Brossut R, Tegoni M, Cambillau C. The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J Biol Chem,2003,278:30213-30218.
    103.Laughlin JD, Ha TS, Jones DN, Smith DP. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell,2008,133(7):1255-1265.
    104.Lautenschlager C, Leal WS, Clardy J. Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochem Biophys Res Commun,2005, 335(4):1044-1050.
    105.Leal WS, Chen AM, Ishida Y, Chiang VP. Erickson ML. Morgan TI, Tsuruda JM. Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci,2005,102:5386-5391.
    106.Leal WS, Nikonova L, Peng G. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett,1999,464:85-90.
    107.Lee D, Damberger FF, Peng G, Horst R, Guntert P, Nikonova L, Leal WS, Wuthrich K. NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Letters.2002,531:314-318.
    108.Libert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, Pletcher SD. Regulation of Drosophila life span by olfaction and food-derived odors. Science,2007,315: 1133-1137.
    109.Linsley EG. Ecology of Cerambycidae. Annu Rev Entomol,1959,4:99-138.
    110.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,2001,25(4): 402-408.
    111.Lu YJ, Zhang XX. Effect of infochemicals on insect behavior. Entomological Knowledge,2001,38(4):262-266.
    112.Ma M, Shepherd GM. Functional mosaic organization of mouse olfactory receptor neurons. Proc Natl Acad Sci U S A,2000,97(23):12869-12874.
    113.Maibeche-Coisne M, Jacquin-Joly E, Francois MC, Nagnan-Le Meillour P. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antenna of the noctuid moth Mamestra brassicae. Insect Mol Biol,2002,11(3): 273-281.
    114.Maleszka J, Foret S, Saint R, Maleszka R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol,2007,217(3): 189-196.
    115.Maleszka R, Stange G. Molecular cloning, by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene,1997,202(1-2):39-43.
    116.Marchese S, Angeli S, Andolfo A, Scaloni A, Brandazza A, Mazza M, Picimbon J, Leal WS, Pelosi P. Soluble proteins from chemosensory organs of Eurycantha calcarata (Insects, Phasmatodea). Insect Biochem Mol Biol,2000,30(11): 1091-1098.
    117.Maruyama K, Sugano S. Oligo-capping-a simple method to replace the cap structure of eukaryotic messenger-rnas with oligoribonucleotides. Gene,1994,138(1-2): 171-174.
    118.Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol,2007,5(5):e118.
    119.McDonald MJ, Rosbash M. Microarray analysis and organization of circadian gene expression in Drsophila. Cell,2001,107:567-578.
    120.McKenna MP, Hekmat-Scafe DS, Gaines P, Carlson JR. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J Biol Chem,1994,269(23):16340-16347.
    121.Merlin C, Francois MC, Bozzolan F, Pelletier J, Jacquin-Joly E, Maibeche-Coisne M. A new aldehyde oxidase selectively expressed in chemosensory organs of insects. Biochem Biophys Res Commun,2005,332(1):4-10.
    122.Mohanty S, Zubkov S, Gronenborn AM. The solution NMR structure of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone-binding proteins. J Mol Biol,2004,337(2):443-451.
    123.Mosbah A, Campanacci V, Lartigue A. Solution structure of a chemosensory protein from the moth Mamestra brassicae. J Biochem,2003,369(1):39-44.
    124.Nagnan-Le Meillour P, Cain AH, Jacquin-Joly E, Francois MC, Ramachandran S, Maida R, Steinbrecht RA. Chemosensory proteins from the proboscis of Mamestra brassicae. Chem Senses,2000,25(5):541-553.
    125.Nakagawa T, Sakurai T, Nishioka T, Touhara K. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science,2005,307(5715): 1638-1642.
    126.Ozaki M, Morisaki K, Idei W, Ozaki K, Tokunaga F. A putative lipophilic stimulant carrier protein commonly found in the taste and olfactory systems. A unique member of the pheromone-binding protein super family. Eur J Biochem,1995,230(1): 298-308.
    127.Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of Rhodopsin:A G protein-coupled receptor. Science,2000,289(4):739-745.
    128.Paolini S, Scaloni A, Amoresano A, Marchese S, Napolitano E, Pelosi P. Amino acid sequence, post-translational modifications, binding and labelling of porcine odorant-binding protein. Chem Senses,1998,23(6):689-698.
    129.Park SK, Shanbhag SR, Dubin AE, de Bruyne M, Wang Q, Yu P, Shimoni N, D'Mello S, Carlson JR, Harris GL, Steinbrecht RA, Pikielny CW. Inactivation of olfactory sensilla of a single morphological type differentially affects the response of Drosophila to odors. J Neurobiol,2002,51(3):248-260.
    130.Pelosi P, Maida R. Odorant binding proteins in vertebrates and insects:Similarities and possible common function. Chem Senses,1990,15:205-215.
    131.Pelosi P, Maida R. Odorant-binding proteins in insects. Comp Biochem Physiol B Biochem Mol Biol,1995,111(3):503-514.
    132.Pelosi P. Odorant-binding proteins:structural aspects. Ann N Y Acad Sci,1998,855: 281-293.
    133.Peng G, Leal WS. Identification and cloning of a pheromone-binding protein from the oriental beetle, Exornala orientalis. J Chem Ecol,2001,27:2183-2192.
    134.Pennisi E. Fruit fly odor receptors found. Science,1999,283(5406):1239.
    135.Pesenti ME, Spinelli S, Bezirard V, Briand L, Pernollet JC, Tegoni M, Cambillau C Structural basis of the honey bee PBP pheromone and pH-induced conformational change. J Mol Biol,2008,380(1):158-169.
    136.Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0:discriminating signal peptides from transmembrane regions. Nat Methods,2011,8(10):785-786.
    137.Phillips TW, Wilkening AJ, Atkinson TH, Nation JL, Wilkinson RC, Foltz JL. Synergism of turpentine and ethanol as attractants for certain pine-infesting beetles (Coleoptera). Environmental Entomology,1988,17(3):456-462.
    138.Picimbon JF, Dietrich K, Krieger J, Breer H. Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochem Mol Biol,2001,31(12):1173-1181.
    139.Picimbon JF, Dietrich K, Angeli S, Scaloni A, Krieger J, Breer H, Pelosi P. Purification and molecular cloning of chemosensory proteins from Bombyx mori. Arch Insect Biochem Physiol,2000,44 (3):120-129.
    140.Picone D, Crescenzi O, Angeli S, Marchese S, Brandazza A, Ferrets L, Pelosi P, Scaloni A. Bacterial expression and conformational analysis of a chemosensory protein from Schitocerca gregaria. Eur J Biochem,2001,268(17):4794-4801.
    141.Pophof B. Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem. Senses 2004,29:117-125.
    142.Prestwich GD, Du G, Laforest S. How is pheromone specificity encoded in proteins? Chem Senses,1995,20:461-469.
    143.Qin L, Prins P, Jones JT, Popeijus H, Smant G, Bakker J, Helder J. GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP. Nucl Acid Res,2001,29:1616-1622.
    144.Ren BZ. Biochemistry and Clinical medicine. In Changsha:Hunan Sience and technical Press,1993.
    145.Robertson HM, Martos R, Sears CR, Todres EZ, Walden KK, Nardi JB. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antenna. Insect Mol Biol,1999,8(4):501-518.
    146.Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA,2003,100:14537-14542.
    147.Rogers ME, Jani MK, Vogt RG. An olfactory-specific gluthanione S-transferase in the sphinx moth Manduca sexta. J Exp Biol,1999,202(Pt 12):1625-1637.
    148.Rogers ME, Sun M, Lerner MR, Vogt RG. Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J Biol Chem,1997,272(23):14792-14799.
    149.Rybczynski R, Reagan J, Lerner MR. A pheromone-degrading aldehyde oxidase in the antenna of the moth Manduca sexta. J Neurosci,1989,9(4):1341-1353.
    150.Rybczynski R, Vogt RG, Lerner MR. Antennal-specific pheromone-degrading aldehyde oxidases from the moths Antheraea polyphemus and Bombyx mori. J Biol Chem,1990,265(32):19712-19715.
    151.Sabatier L, Jouanguy E, Dostert C, Zachary D, Dimarcq JL, Bulet P, Imler JL. Pherokine-2 and -3. Two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections. Eur J Biochem,2003,270(16): 3398-3407.
    152.Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol,1987,4(4):406-425.
    153.Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci USA,2004, 101(47):16653-16658.
    154.Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature,2008, 452(7190):1002-1006.
    155.Scaloni A, Monti M, Angeli S, Pelosi P. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun,1999,266:386-391.
    156.Severine J, Josef C, Luka Z. Structure of Bombyx mori chemosensory protein 1 in solution. Arch Insect Biochem,2007,66(3):135-145.
    157.Smid HM, Van Loon JJA, Posthumus MA, Vet LEM. GC-EAG analysis of Volatiles from Brussels Sprouts Plants Damaged by two species of Pieris caterpillars: Olfactory Receptive Rang of a Specialist and a Generalist Parasitoid Wasp Species. Chemoecology,2002,12:169-179.
    158.Smith DP. Odor and pheromone detection in Drosophila melanogaster. Pflugers Arch,2007,454(5):749-758.
    159.Souissi R, Nenon JP, Le Ru B. Olfactory Responses of Parasitoid Apoanagyrus lopezi to Oder of Plants, Mealybugs, and Plant-mealybug Complexes. Chemical Ecology,1998,24(1):37-48.
    160.Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M. Whole genome analysis of dorsal-ventra patterning in the Drosophila embryo. Cell,2002,111(5): 687-701.
    161.Steinbrecht RA, Laue M, Ziegelberger G. Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell Tissue Res,1995,282(2):203-217.
    162.Steinbrecht RA. and Stankiewicz BA. Molecular composition of the wall of insect olfactory sensilla-the chitin question. Journal of Insect Physiology,1999,458: 785-790.
    163.Steinbrecht RA. Are odorant-binding proteins involved in odorant discrimination? Chem Senses,1996,21(6):719-727.
    164.Steinbrecht RA. Odorant-Binding Proteins:Expression and Function. Ann N Y Acad Sci,1998,855:323-332.
    165.Stengl M. Pheromone transduction in moths. Front Cell Neurosci,2010,4:133.
    166.Suckling DM, Gibb AR, Daly JM, Chen X, Brockerhoff EG. Behavioral and Electrophysiological Responses of Arhopalus tristis to Burnt Pine and other Stimuli. Chemical Ecology,2001,27(6):1091-1104.
    167.Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S. Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. Gene,1997,200(1-2):149-156.
    168.Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,1994, 22(22):4673-4680.
    169.Tsuchihara K, Fujikawa K, Ishiguro M, Yamada T, Tada C, Ozaki K, Ozaki M. An odorant-binding protein facilitates odorant transfer from air to hydrophilic surroundings in the blowfly. Chem Senses,2005,30(7):559-564.
    170.Vogt RG, Riddiford LM, Prestwich GD. Kinetic properties of a sex pheromone-degrading enzyme:the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci USA,1985,82(24):8827-8831.
    171.Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antenna. Nature,1981,293(5828):161-163.
    172.Vogt RG, Rogers ME, Franco MD, Sun M. A comparative study of odorant binding protein genes:Differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J Exp Biol,2002a,205:719-744.
    173.Vogt RG. Molecular genetics of moth olfaction:a model for cellular identity and temporal assembly of the nervous system. In:Goldsmith MR, Vilkins AS eds. Molecular Model Systems in the Lepidoptera. Cambridge:Cambridge University Press,1995,341-367.
    174.Vogt RG Odorant binding protein homologues of the malaria mosquito Anopheles gambiae; possible orthologues of the OS-E and OS-F OBPs of Drosophila melanogaster. J Chem Ecol,2002b,28 (11):2371-2376.
    175.Vogt RG. (Eds.), Insect Pheromone Biochemistry and Molecular Biology. London: Elsevier Academic Press,2003,391-446 Field et al.,1998.
    176.Vogt RG. Biochemical diversity of odor detection:OBPs, ODEs and SNMPs. In: Blomquist GJ, Vogt RG, (Eds). Insect Pheromone Biochemistry and Molecular Biology. London:Elsevier Academic Press,2003,391-446.
    177.Vogt RG, Callahan FE, Rogers ME, Dickens JC. Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem Senses, 1999,24(5):481-495.
    178.Wanner KW, Anderson AR, Trowell SC, Theilmann DA, Robertson HM, Newcomb RD. Female-biased expression of odourant receptor genes in the adult antenna of the silkworm, Bombyx mori. Insect Mol Biol,2007,16(1):107-119.
    179.Wanner KW, Isman MB, Feng Q, Plettner E, Theilmann DA. Developmental expression patterns of four chemosensory protein genes from the Eastern spruce budworm, Chroistoneura fumiferana. Insect Mol Biol,2005,14(3):289-300.
    180.Wanner KW, Willis LG, Theilmann DA, Isman M B, Feng Q, Plettner E. Analysis of the insect os-d-like gene family. J Chem Ecol,2004,30(5):889-911.
    181.Wetzel CH, Behrendt HJ, Gisselmann G, Stortkuhl KF, Hovemann B, Hatt H. Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc Natl Acad Sci USA,2001,98(16):9377-9380.
    182.Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature,2008,452(7190):1007-1011.
    183.Wogulis M, Morgan T, Ishida Y, Leal WS, Wilson DK. The crystal structure of an odorant binding protein from Anopheles gambiae:Evidence for a common ligand release mechanism. Biochem Biophys Res Commun,2006,339(1):157-164.
    184.Wojtasek H, Leal WS. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J Biol Chem, 1999,274(43):30950-30956.
    185.Xu PX, Zwiebel LJ, Smith DP. Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol,2003,12:549-560.
    186.Xu P, Atkinson R, Jones DN, Smith DP. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron,2005,45:193-200.
    187.Xu YL, He P, Zhang L, Fang SQ, Dong SL, Zhang YJ, Li F. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genomics,2009,10:632.
    188.Zhang S, Zhang YJ, Su HH, Gao XW, Guo YY. Identification and expression pattern of putative odorant-binding proteins and chemosensory proteins in antenna of the Microplitis mediator (Hymenoptera:Braconidae). Chem Senses,2009,34(6): 503-512.
    189.Zhang X, Linit MJ. Comparison of oviposition and longevity of Monochamus alternatus and M. carolinensis (Coleoptera:Cerambycidae) under laboratory conditions. Environmental Entomology,1998,27:885-891.
    190.Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD. Reverse transcriptase template switching:a SMART approach for full length cDNA library construction. Biotechniques,2001,30(4):892-897.
    191.Ziegelberger G. The multiple role of the pheromone-binding protein in olfactory transduction. Ciba Found Symp,1996,200:267-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700