泡沫镍/聚四氟乙烯机械密封复合材料及摩擦学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船用机械密封是船舶推进系统的重要组成部分之一。国内外机械密封的研究主要集中在密封面的失效分析、静动环端而间的热效应、摩擦磨损形貌和改进静环材料与制备工艺上。通过对静环密封面的摩擦磨损性能研究可为机械密封系统的设计提供重要依据,从性能或是结构方面都能使设计者有的放矢,减少人力和资源的浪费。
     本文以船用机械密封静环材料为应用背景,对端面材料进行了设计与制备。以设计的聚合物基复合材料为主要研究对象,开展了复合材料设计与工艺研究、网状与颗粒项共混复合材料的摩擦行为、磨损机理以及密封端面受力分析。通过研究,证明了泡沫镍能有效提高聚四氟乙烯的力学与摩擦学性能,特别是耐磨性能。本文的主要工作及成果是:
     1.泡沫镍/聚四氟乙烯复合材料的设计与制备工艺研究。通过实验确定制备密封面原材料配比。确定以聚四氟乙烯作为复合材料基体,泡沫镍为骨架材料,碳纳米管和金刚石微粉为功能性填料。采用高温裂解工艺,将碳纳米管沉积于泡沫镍表面,以提高碳纳米管的分散性能。金刚石微粉、预处理后的泡沫镍与聚四氟乙烯共混高温固化,制得泡沫镍/聚四氟乙烯复合材料。该材料使用连续网状材料作为增强剂不受填料排列方向影响,并具有较好的自润滑性能。
     2.泡沫镍/聚四氟乙烯复合材料力学性能与滑动摩擦特性研究。通过试验考察了不同质量配比的泡沫镍/聚四氟乙烯复合材料,发现此种复合材料的力学性能与泡沫镍的含量成正比。碳纳米管通过沉积的方式混合解决了纳米材料分散不均匀问题,并能提高填料与基体的结合强度。三维形态泡沫镍与纤维或颗粒填料增强的复合材料相比较,它不受填料的排列方向影响。在提高力学性能的同时也能获得稳定较低的摩擦系数。
     3.泡沫镍/聚四氟乙烯复合材料的磨损特性与机理研究。利用磨损试验对材料的磨损率进行记录;扫描电子显微镜对形貌进行分析;X射线衍射对磨损产物定性,重点分析该复合材料的磨损性能。研究复合材料中填料的磨损机理与特性。对复合材料在滑动摩擦过程中沉积于对磨件上的薄膜—转移膜,进行了生成量、物相和特性研究。
     4.泡沫镍/聚四氟乙烯复合材料的蠕变行为研究。应力以压缩方式对材料进行了蠕变性能测试,及温度对蠕变性能的影响。利用压缩蠕变测试结果,对比常用粘弹性模型后。选用广义Kelvin五参数与Brugers模型,分别计算得出复合材料的蠕变模型参数。
     5.机械密封接端面接触应力与热传导数值模拟分析。讨论了船用机械密封的运转特点。结合必要的假设对密封体系简化,分析推导出端面间的受力。最后利用有限元方法对其接触时的特征进行详细讨论。计算模型采用实际机械密封结构尺寸;选用本文研制的泡沫镍/聚四氟乙烯材料参数,计算分析了密封结构接触运转下的应力、应变分布规律。
Marine mechanical seal is one of the major parts of the marine propulsion system. Mechanical seal research on domestic and overseas is mainly concentrated on the researches of sealing surface in failure analysis, the static thermal effects, where morphology and preparation process of sealing materials. As mutual friction mechanical part, no matter on which kinds of materials manufacturing sealing surface, friction and wear performance should be studied. Friction and wear performance research of the stationary ring can provide an important basis for the design, reduce the waste of manpower and resources, make designers earlier realize performance and structural requirements. This thesis according to the operation characteristics and strength requirements of marine mechanical seal designed and prepared a kind of seal face materials. Designed polymer matrix composites are the main object of study, the content is seal face stress analysis, composite material design and preparation process, mesh metal and particles fillers theoretical studies of the wear mechanism.
     1. On the basis of the sealing interface operating characteristics and failure causes, by the experiment determined the ratio of raw materials for prepared the sealing surface composite, the pre-processing of raw materials and molding process also made a thorough study. The high temperature pyrolysis process was determined, under the conditions of550℃nanotubes (CNTs) deposited on mesh material foamed nickel. After mixing diamond micro powder after3-4times procuring then raised the temperature to280℃for heat preservation two hours completely solidify molding, finally obtained nickel foam/PTFE composites-seal face material.
     2. Experiment tested the effects between different mass ratios of the foamed Ni/PTFE composite material; found that the mechanical properties of such composites are a direct ratio to the amount of nickel foam. Compared with the fibers or particulate filler, metal mesh which has a three-dimensional shape was not impacted by arrangement direction. It simply related to the content of the nickel foam for enhancing the mechanical properties. But when higher the content of nickel foam the coefficient of friction will also increase accordingly. The synergy effect between nickel foam and diamond micro powder fillers in mechanical friction performance will be weakened with increasing nickel foam filler content.
     3. Wear experiment records the wear rate of the material; scanning electron microscopy(SEM) analysis of the morphology; X-ray diffraction(XRD) qualitative wear product of the other couple, analysis focus on the wear properties and study on wear mechanisms and characteristics of the composite filter. Also research of deposition characteristics generated in sliding friction process.
     4. The creep performance of foam Nickel/PTFE composite was tested by compressive creep test mostly close to the actual mechanical seal interface operating. Using the compression creep test results substitution in commonly viscoelastic model for compared accuracy rate. Selection of the generalized Kelvin five parameters model and the Brugers model, calculated the creep parameters of the composite model respectively.
     5. Discussion on the marine mechanical seal operating characteristics, combined with basic and necessary assumption condition for simplifies the force on the end faces in sealing system. Finally, using the finite element method discussed contact characteristics in detail. The model is calculated by the actual mechanical seal structure; selected foam Nickel/PTFE composite material parameters used for the calculation of the simulation process analysis. The main content of the simulation is material contact stress in the operation process and strain distribution with the heat conduction rule.
     By researching proven mesh nickel foam can reinforce material effectively improve the mechanical and technological properties of the composites, especially the wear resistance. However, along with the broaden engineering friction and wear applications, in the field of polymer matrix composites, explore the mesh material (three-dimensional morphology) packing as well as the synthesis of functional filler composite material, friction characteristics, mechanism of failure modes and other issues needs further explored.
引文
[1]顾永泉.机械密封技术的新进展.石油化工设备.1997,26(5):43-49.
    [2]罗斌等.潜艇水润滑机械密封摩擦副材料性能的试验研究.船舶工程,2006(4):56-58.
    [3]李蝙等.机械密封环端面变形研究.润滑与密封,2001(5):44-47.
    [4]洪先志.机械密封端面力变形的解析计算.化工设计,2002.12(2):37-39.
    [5]朱明学,刘正林,朱汉华,等.机械密封环热-结构耦合分析研究.武汉理工大学学报(交通科学与工程版),2005,29(2):198-201.
    [6]袁旭东,谢友柏,顾永泉.机械密封端面温度的确定.化工机械,1996,23(6):333-336.
    [7]程建辉,葛培琪,刘鸣.机械密封环温度场的有限元分析与试验研究.山东大学学报(工学版),2002,32(4):385-358.
    [8]李治国,张国渊,袁小阳,等.流体动静压端面密封的静动特性分析.中国机械工程,2006,17(25):457-460.
    [9]王和顺,陈次昌,黄泽沛等.机械密封端面接触状态测控技术.润滑与密封,2005(3):150-152.
    [10]G.A. Jones, The tribology of the mechanical sealing interface:an evaluation of the ro-le and potential of surface engineering, Ph.D.Thesis, University of Salford,1999.
    [11]雷广山.新型密封材料-复合材料.机械—工程与自动化,2006(5):169-170.
    [12]Schallamach A. The load dependence of rubber friction. Proc Phys Soc 1952;65B(39 3):658-61.
    [13]Petrokovets MI. Effect of temperature on real contact area of rough surfaces. J Fricti-on Wear 1999;20(2):1-6.
    [14]Gibson CT, Watson GS, Mapledoram LD, Kondo H, Myhra S. Characterisation of or ganic thin films by atomic force microscopy—application of force vs. distance analysi s and other modes. Appl Surf Sci 1999;144-145:618-22.
    [15]Johnson KL, Greenwood JA. An adhesion map for the contact of elastic spheres. J Colloid Interf Sci 1997;192:326-33.
    [16]程建辉,葛培琪,尹世霞.机械密封端面宽度对密封性能的影响.机械设计与制造,2002,8(4):73-74.
    [17]Bely VA, Sviridenok AI, Petrokovets MI, Savkin VG. Friction and wear in polymer-b-ased materials. Oxford:Pergamon Press; 1982 p.416.
    [18]Bowden FP, Tabor D. Friction and lubrication of solids. Oxford:Clarendon Press; 196 4 p.544.
    [19]Briscoe BJ. Friction of organic polymers. In:Singer IL, Pollok HM, editors. Fundam-ental of friction:macroscopic and microscopic processes. Dordrecht:Kluwer Academi -c Publishers; 1992. p.167-82.
    [20]Chang JY, Shan A. Microstructure and mechanical properties of AlMgSi alloys after equal channel angular pressing at room temperature. Mater Sci Eng A 2003;347:165-70.
    [21]Hutchings IM. Tribology:friction and wear of engineering materials.London:Edward Arnold; 1992 p.273.
    [22]Briscoe BJ. Interfacial friction of polymer composites. General fundamental principles. In:Klaus F, editor. Friction and wear of polymer composites. Amsterdam:Elsevier; 1986. p.25-59.
    [23]M.Z. Rong,M.Q. Zhang, H. Liu, H.M. Zeng, B.Wetzel, K. Friedrich,Microstructure an-d tribological behavior of polymeric nanocomposites, Ind. Lubr. Tribol.53(2001) 72-77.
    [24]Shankar MR, Chandrasekar M, King AH, Compton WD. Micro-structure and stability of nanocrystalline aluminum 6061 created by large strain machining. Acta Mater 200 5;53:4781-93.
    [25]Moore DF. The friction and lubrication of elastomers. Oxford:Pergamon Press; 1972 p.256.
    [26]C.J. Schwartz, S. Bahadur, Studies on the tribological behavior and transfer film-coun-terface bond strength for polyphenylene sulfide filledwith nanoscale alumina particles, Wear 237 (2000) 261-273.
    [27]Z.P.Lu.K, Freidrich, On sliding frication and of PEEK and its composites, Wear,2 (1 995)624-631.
    [28]S. Jahanmir, D.E. Deckman, L.K. Ives, A. Fieldman, E. Farabaugh,Tribological charac-teristics of synthesised diamond films on silicon carbide, Wear 133 (1989) 73-81.
    [29]Q. wang, J Xu, W. Shen. The effect of nanometer SiC filler on the tribological beha-vior of PEEK, Wear,209(1997)316-321.
    [30]Horita Z, Fujinami T, Nemoto M, Langdon TG. Equal-channel angular pressing of co-mmercial aluminum alloys:grain refinement, thermal stability and tensile properties. Metall. Mater. Trans A 2000;31:691-701.
    [31]Myshkin NK, Petrokovets MI. Mechanical behavior of plastics:surface properties and tribology. In:Totten George E, Liang Hong,editors. Mechanical tribology, materials, c-haracterization, and applications. New York:Marcel Dekker; 2004. p.57-94.
    [32]Tanaka K. Kinetic friction and dynamic elastic contact behavior of polymers. Wear 1 984; 100:243-62.
    [33]Z. P. Lu, K. Friedrich, On sliding friction and wear of PEEK and its composites, W -ear,181-183(1995):624-631
    [34]Shooter K, Thomas RH. Frictional properties of some plastics.Research 1992;2:533-54 2.
    [35]Yamaguchi Y. Tribology of plastic materials. Amsterdam:Elsevier; (1990)362-379.
    [36]Bowers RC, Clinton WC, Zisman WA. Frictional behavior of polyethylene, polytetrafl uorethylene and halogenated derivatives.Lubrication Eng 1993;9:204-9.
    [37]薛扬.超高分子量聚乙烯/高密度聚乙烯/纳米碳管摩擦复合材料的制备与摩擦学研究[D].上海:华东理工大学材料科学与工程学院,2006.
    [38]F.H. Su, Z.Z. Zhang, W.M. Liu, Study on the friction and wear properties of glass f abric composites filled with nano-and micro-particles under differentconditions, Mater. Sci. Eng.A-Struct.392 (2005) 359-365.
    [39]J.W. Hutchinson, Z. Sou, Mixed mode cracking in layered materials,Adv. Appl. Mech. 29 (1992) 63-191.
    [40]Gopal P, Dharani LR, Blum FD. Load, speed and temperature sensitivities of a carbo-n-fiber-reinforced phenolic friction material.Wear 1995;181:913-21.
    [41]Oloffson B, Gralben N.Measurement of friction between single fibers.Text Res J 1997; 17:488-96.
    [42]范月英,成会明,苏革,等.气相生长纳米炭纤维的研究进展[J].新型碳材料,1999,14(2):14-20.
    [43]Flom DG, Porile NT. Friction of teflon sliding on teflon. J Appl Phys 1995;26:1080-1092.
    [44]Godet M. The body approach. A mechanical view of wear. Wear 1984; 100:437-452.
    [45]龙春光,张厚安.复合材料的力学性能[J].功能材料,2003,34:589.
    [46]刘功德.超高分子量聚乙烯的加工与高性能化研究[D].成都:四川大学高分子科学与工程学院,2003.
    [47]Israelachvili JN. Adhesion forces between surfaces in liquids and condensable vapours. Surf Sci Rep 1992; 14:109-59.
    [48]Oh YS, Kim CS, Lim DS, Cheong DS. Fracture strengths and microstructures of Si3 N4/SiC nanocomposites fabricated by in-situ process. Scripta Mater 2001;44(8-9):2079-81.
    [49]袁楠.填料改性超高分子量聚乙烯的摩擦磨损性能研究[D].南京:南京理工大学材料科学与工程系,2006.
    [50]何春霞.超高分子量聚乙烯摩擦磨损特性[J].工程塑料应用.2002,30(2):42-44.
    [51]Zhi LJ, Zhao T, Yu YZ. Preparation of phenolic resin/silver nanocomposites via in si-tu reduction. Scripta Mater 2002;47(12):875-9.
    [52]Pappas J, Patel K, Nauman EB. Structure and properties of phenolic resin/nanoclay c omposites synthesized by in situ polimerization.J Appl Polym Sci 2005;95(5):1169-74.
    [53]Myshkin NK, Kovalev AV, Kovaleva IN, Grigoriev AYa. Phenom-enological model of adhesion contact. In:Proceedings of tribology of surface layers and coatings, Prague, Czech Republic,2004. p.3-12.
    [54]K. V. Shooter, D. Tabor, The frictional properties of plastics, Proceedings of the Phy-sical Sciences,65(1952):661-671.
    [55]E. Rabinowicz, K. V. Shooter, Transfer of metal to plastics during sliding, Proceedin gs of the Physical Society,65(1952):671-673.
    [56]R. C. Bowers, Coefficient of friction of high polymers as a function of pressure, Jou rnal of Applied Physics,42(1971):4961-4970.
    [57]B. J. Briscoe, D. Tabor, Shear properties of thin polymeric films, Journal of adhesion, 9(1978):145-155.
    [58]Brian J. Briscoe, David Tabor, Friction and wear of polymers:The role of mechanica-1 properties, The British Polymer Journal,10(1978):74-78
    [59]B. Briscoe, Wear of polymers:an essay on fundamental aspects, Tribological Internati onal,14(1981):231-243
    [60]B. Briscoe, D. Tabor, Friction and wear of polymers:The role of mechanical propert ies, The British Polymer Journal,10(1978):74-78
    [61]R. T. Spurr, The abrasive wear of metals, Wear,65(1981):315-324
    [62]B. J. Briscoe, D. Tabor, The sliding wear of polymers:a brief review, in Nam P. Su h, Nannaji Saka, Fundamentals of Tribology, MIT Press(1981)
    [63]Yoshinori Yamada, Investigation of transfer phenomenon by X-ray photoelectron spect roscopy and tribological properties of polymers sliding against polymers, Wear,210(1 997):59-66
    [64]S.A.G. Oliveira, A.F. Bower, An analysis of fracture and delamination in thin coating s subjected to contact loading, Wear 198 (1996) 15-32.
    [65]N.P. O'Dowd, M.G. Stout, C.F. Shih, Fracture toughness of alumina-niobium interface s. Experiments and analyses, Philos. Mag.A 66 (6) (1992) 1037-1064.
    [66]K. Miyoshi, R.L.C. Wu, A. Garscadden, P.N. Barnes, H.E. Jackson,Friction and wear of plasma deposited diamond films, in:Proceedings of the International Conference a nd Meeting on Coatings and Thin Films, NASA Technical Memorandum 105926, San Diego, CA,1993.
    [67]J.S. Wang, Z. Suo, Experimental determination of interfacial toughness using Brazil-n ut-sandwich, Acta Metall.38 (1990) 1279-1290.
    [68]R. Rezakhanlou, J. Von Stebut, Damage mechanisms of hard coatingson hard substrat es:a critical analysis of failure in scratch and wear testing, in:D. Dowson, C.M. T aylor, M. Godet (Eds.), Mechanics of Coatings, Elsevier, New York,1990, pp.183-192.
    [69]Su FH, Zhang ZZ, Liu WM. Study on the friction and wear properties of glass fabri c composites filled with nano-and micro-particles under different conditions. Mater Sci Eng A 2005;392(1-2):359-65.
    [70]Buckley DH. Surface effects in adhesion, friction, wear, and lubrication. Amsterdam: Elsevier; 1991 p.631-650.
    [71]Milz WC, Sargent LE. Frictional characteristic of plastics. Lubrication Eng 1995;11:3 13-7.
    [72]佟金,任露泉,陈永潭.聚合物及其复合材料的磨料磨损[J].机械工程材料,1991,(2):24-26.
    [73]王乙潜,樊瑞新,黄立萍,等.超高分子量聚乙烯的滑动磨损性能与机理研究[J].材料科学与工程,1999,17(3):35-39.
    [74]赵新泽.弹性金属塑料复合材料轴瓦的摩擦学特性研究[D].武汉:武汉理工大学动力与环境工程学院,2000.
    [75]Shulga H, Kovalev A, Myshkin N, Tsukruk VV. Some aspects of AFM nanomechani cal probing of surface polymer films. Eur Polym J 2004;40:949.
    [76]Myshkin NK, Grigoriev AYa, Dubravin AM. Experimental equipment for interfacialfor ce and friction measurements of micro scale samples. Tribology and lubrication engin eering. In:14th international colloquium tribology, Esslingen, Germany,2004. p.73-8 1.
    [77]Chaing CL, Ma CCM. Synthesis, characterization, thermal proper-ties and flame retar dance of novel phenolic resin/silica nanocompo-sites. Polym Degrad Stabil 2004;83(2): 207-14.
    [78]Cho MH, Kim SJ, Kim D, Jang H. Effects of ingredients on tribological characteristi cs of a brake lining:an experimental case study. Wear 2005;258(11-12):1682-7.
    [79]Kim WJ, Kim JK, Park TY, Hong SI, Kim DI, Kim YS, et al.Enhancement of stren gth and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressin g. Metall Mater Trans A 2002;33:3155-64.
    [80]Bermudez MD, Martinez-Nicolas G, Carrion FJ, Martinez-Mateo I.Rodriguez JA, Herr-era EJ. Dry and lubricated wear resistance of mechanically alloyed aluminium-base si-ntered composites. Wear 2001;248:178-86.
    [81]Iglesias P, Bermudez MD, Carrion FJ, Martinez-Nicolas G, Herrera EJ, Rodriguez JA, et al. Wear of aluminium-base materials processed by mechanical milling in air or a-mmonia. Wear 2003;255:569-72.
    [82]马恒寿,耿庆生·耐高温碳-石墨密封材料的研究[J].精细化工,1993,10(1):26-29.
    [83]Choi MH, Chung IJ. Mechanical and thermal properties of phenolic resin-layered sili-cate nanocomposites. J Appl Polym Sci 2003;90(9):2316-21.
    [84]刘志远,冯勇祥.适用于高温、重载、低、中速装置的新型浸铜密封材料[J].润滑与密封,1990(5):30-33.
    [85]邓祖柱.浸锑石墨—一种新型的固体润滑材料[J].摩擦学学报,1992(7):285-287.
    [86]程建辉,葛培琪,尹世霞.机械密封端面宽度对密封性能的影响[J].机械设计与制造,2002(8):73-74.
    [87]孙见君,魏龙.机械密封端面摩擦扭矩的测试技术[J].无锡技术学院学报,2004(3):11-12.
    [88]王隽,王娟,周旭辉.船舶艉轴密封装置端面密封摩擦副温度场稳态分析[J].润滑与密封,2007(7)122-124.
    [89]严国平.船用艉轴机械密封热—结构特性数值分析[D].武汉:武汉理工大学,2008.
    [90]于小丹,孙铁,路永力.基于Ansys的机械密封环温度场计算方法.石油化工设备技术,2005,26(3):47-49.
    [91]党建军,秋卫平,钱志博.有限元法在机械密封设计中的应用研究.航空计算技术2000(3):6-8.
    [92]魏龙,顾伯勤,冯飞.机械密封摩擦副端面形貌的分形特性[J].石油化工高等学校学报,2009,(6):59-62.
    [93]Watkinson, C. Improving the reliability of mechanical seals in ethylene oxide applicat ions[J]. Sealing Technology.2007,12-20.
    [94]Wan, Y., and Xiong, D.-S. The effect of laser surface texturing on frictional perform ance of face seal[J]. Journal of Materials Processing Technology.2008,1-3.
    [95]Amaral, M., Mohasseb, F., Oliveira, F. J., Benedic, F., Silva, R. F., and Gicquel, A. Nanocrystalline diamond coating of silicon nitride ceramics by microwave plasma-assi-sted CVD[J]. Thin Solid Films.2005,1-2.
    [96]Vila, M., Carrapichano, J. M., Gomes, J. R., Camargo, S. S., Achete, C. A., and Sil-va, R. F. Ultra-high performance of DLC-coated Si3N4 rings for mechanical seals[J]. Wear.2008(5):940-944.
    [97]Guan, H., Yang, F., and Wang, Q. Study on evaluation index system of rubber mater-ials for sealing[J]. Materials & Design.(2011):2404-2412.
    [98]Rae, P. J., and Brown, E. N. The properties of poly(tetrafluoroethylene) (PTFE) in te-nsion[J]. Polymer. (2005):19-23.
    [99]Degrange, J. M., Thomine, M., Kapsa, P., Pelletier, J. M., Chazeau, L., Vigier, G, D udragne, G., and Guerbe, L. Influence of viscoelasticity on the tribological behaviour of carbon black filled nitrile rubber (NBR) for lip seal application[J]. Wear. (2005):68 4-692.
    [100]Jones, G. A. On the tribological behaviour of mechanical seal face materials in dry line contact[J]. Wear.2004,3-4.
    [101]Mubarok, F., Carrapichano, J. M., Almeida, F. A., Fernandes, A. J. S., and Silva, R. F. Enhanced sealing performance with CVD nanocrystalline diamond films in self-ma ted mechanical seals[J]. Diamond and Related Materials.(2008):1132-1136.
    [102]Camargo, S. S., Gomes, J. R., Carrapichano, J. M., Silva, R. F., and Achete, C. A. Silicon-incorporated diamond-like coatings for Si3N4 mechanical seals[J]. Thin Solid Films. (2005):221-225.
    [103]Pei, Y. T., Bui, X. L., Zhou, X. B., and De Hosson, J. T. M. Tribological behavior of W-DLC coated rubber seals[J]. Surface and Coatings Technology.(2008):1869-187 5.
    [104]Carrapichano, J. M., Gomes, J. R., Oliveira, F. J., and Silva, R. F. Si3N4 and Si3N 4/SiC composite rings for dynamic sealing of circulating fluids[J]. Wear. (2003):695-698.
    [105]K.L. EdwardsU. A designers'guide to engineering polymer technology. Materials an d Design 1998;19:57-67.
    [106]M Roea, Torrance. The surface failure and wear of graphite seals. Tribology Interna-tional 2008;41:1002-1008.
    [107]F.K. Wright, W. Cameron. The design and selection of materials for a general purp-ose mechanical seal. Materials & Design,1987;8:46-50.
    [108]P. Faughnan, C. Bryan, Y. Gan, H. Aglan, Correlation between the dynamic mechan-ical properties and the fatigue behavior of filled and unfilled PTFE material, Journa-1 of Materials Science Letters 1998;17:1743-1746.
    [109]Navin Chanda,Prabhat Sharma,M. Fahim. Correlation of mechanical and tribological properties of organosilane modified cenosphere filled high density polyethylene. Materi-als Science and Engineering A 2010;527:5873-5878.
    [110]A. Bernasconi, P. Davoli, A. Basile. Effect of fibre orientation on the fatigue behav-eour of a short glass fibre reinforced polyamide-6.International Journal of Fatigue 2 007;29:199-208.
    [111]Mohit Sharma, I. Mohan Rao, Jayashree Bijwe.Influence of fiber orientation on abra-sive wear of unidirectionally reinforced carbon fiber-polyetherimide composites. Trib -ology International 2010;43:959-964.
    [112]Simon Atkinson. Mechanical seals eliminate water and chemical leakage. Sealing Te-chnology 2003; 1:6-7.
    [113]Bob Flitney. Review of features in Sealing Technology during the last year. Sealing Technology 2006; 5:8-12.
    [114]M Roea, Torrance. The surface failure and wear of graphite seals. Tribology Interna-tional 2008;41:1002-1008.
    [115]Jaydeep Khedkar, loan Negulescu, Efstathios I. Meletis. Sliding wear behavior of P-TFE composites. Wear 2002;252:361-369.
    [116]S. McElwain, T. Blanchet, L. Schadler, W. Sawyer, Effect of particle size on the w-ear resistance of alumina-filled PTFE micro-and nanocomposites, Tribology Transac tions 2008;51:247-253.
    [117]Lancaster J K. Polymer-based bearing-materials-the role of fillers and fibre reinforce-ment in wear. Wear:1972; 22(3):412-413.
    [118]Bahadur S, Polineni V. Tribological studies of glass fabric reinforced polyamide co-mposites filled with CuO and PTFE. Wear:1996:200:95-104.
    [119]Bahadur S, Gong D. The transfer and wear of nylon and CuS nylon composites:fil-ler proportion and counterface characteristics. Wear:1993:162:397-406.
    [120]Bahadur S, Gong D, Anderegg J W. Investigation of the influence of CaS, CaO an-d CaF2 fillers on the transfer and wear of nylon by microscopy and XPS analysis. Wear:1996:197:271-279.
    [121]S.B. Ratner, II Farberova. Connection between wear resistance of plastics and other mechanical properties[J]. Sov.Plast, (1996):12-37.
    [122]Lancaster J K..Lubricating polymer surface. Tribology International;1996:29(6):535-53 6.
    [123]Deryagin BV, Muller VM, Toporov YuP. Effect of contact deformation on the adhes-ion of particles. J Colloid Interf Sci 1975;53:314-26.
    [124]Bahadus S, Kapoor A. Teffects of ZnF2, ZnS and PbS fillers on the tribological be-havior of nylonll. Wear,1992; 115:49-61.
    [125]Bahadur S, Anderegg J W. Investigation of the influence of CaS, CaO and CaF2 fil-leTs on the transfer and wear of nylon by microscopy and XPS analysis[J]. Wear, (1996):271-279.
    [126]Crino M, Friedrich K. Evaluation of polymer composites for sliding and abrasive w-ear applications. Composites:1988:19(5):383-392.
    [127]Myshkin NK, Petrokovets MI, Chizhik SA. Simulation of real contact in tribology. Tribol Int 1998;31:79-86.
    [128]邵荷生,曲敬信,等.摩擦与磨损[M].北京:煤炭工业出版社,1992.
    [129]J.F. Archard, Contact and rubbing of flat surfaces[J]. Journal of Applied Physics. (2-000):981-988.
    [130]BermudezMD, Carrion FJ, Iglesias P,Martinez-Nicolas G, Herrera EJ, Rodriguez JA. Influence of milling conditions on the wear resistance of mechanically alloyed alumi nium. Wear 2005;258:906-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700