MA-SPS方法制备新型高合金工具钢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高合金工具钢具有高强、高韧、耐磨的优点,在工模具制造中应用广泛,但是由于合金化程度高,传统的制备工艺复杂,生产流程较长。利用机械合金化和放电等离子烧结技术制备的新型高合金工具钢,具有高硬度和高的致密度,晶粒细小,组织均匀,无碳化物偏聚。具有良好的综合力学性能,应用前景良好。
     本文首先研究了机械合金化制备HGSF01高合金工具钢粉末,利用X射线衍射(XRD)、扫描电子显微镜(SEM),DSC分析等手段分析了球磨后粉末的特征。采用不同的球磨时间和球料比进行了HGSF01高合金工具钢的球磨实验,球磨时间分别为40h、60h和80h,球料比分别为7.5:1、10:1和15:1。结果表明:混合元素粉末经球磨后得到了细小的粉末颗粒,粉末中有新的合金相生成,主要是(Fe,Cr)3C型碳化物,实现了机械合金化。球磨后的高合金工具钢粉末固相线温度为1161℃,确定烧结温度范围为1100℃左右。制备HGSF01高合金工具钢粉末的合理球料比和球磨时间分别为10:1和60h。
     本文还研究了HGSF01高合金工具钢粉末的放电等离子烧结(SPS)工艺,对HGSF01高合金工具钢粉末的放电等离子烧结进行5因素3水平正交试验。结果表明:在烧结过程中,烧结温度和保温时间对致密度影响最大。正交实验最优工艺参数为:球磨时间为40h,球料比为7.5:1,烧结温度为1100℃,升温速率为100℃/min,保温时间为10min。
     本文还对烧结后的试样进行了球化退火预处理和1100℃氮气淬火+560℃双重回火的最终热处理。利用光学显微镜和扫描电子显微镜观察了热处理前后烧结试样的显微组织,利用阿基米德排水法、洛氏硬度计、CMT5105微机控制电子万能试验机和M-2000型摩擦磨损试验机等手段分析了热处理前后烧结试样的相对密度、洛氏硬度、抗弯强度和摩擦磨损性能。结果表明:SPS烧结试样晶粒细小,晶粒尺寸在5μm左右,碳化物颗粒细小,弥散分布在基体上。同时,试样中存在少量的孔,但是孔直径一般不超过1μm。热处理前试样硬度达到HRC62,最终热处理后硬度为HRC61。热处理前后试样最高抗弯强度均达到1500MPa左右。通过对比摩擦磨损后试样的磨痕宽度发现,烧结态试样比电渣重熔态试样具有更好的耐磨性,热处理态试样比烧结态试样具有更好的耐磨性。往HGSF01高合金工具钢中添加WC颗粒制备成复合材料后,其抗弯强度和耐磨性能显著提高。
High-alloying tool steels are widely used in the industrial production of tools and dies due to their high strength,good ductility and excellent wear resistance. However,the conventional processes are very complex with long production runs because of the high alloying contents. A new kind of high-alloying tool steel was prepared by mechanical alloying and spark plasma sintering,obtaining high hardness and relative density,fine grain size and uniform microstructures without carbide segregation.
     In this work,HGSF01 high-alloying tool steel powders were prepared by mechanical alloying,and the characteristics of ball-milling powders were analyzed by means of SEM,XRD and DSC. The experiments for preparation of HGSF01 high-alloying tool steel powders with different ball milling time and weight ratio of balls to powders were performed. The ball milling time was 40h,60h and 80h and the weight ratio of balls to powders was 7.5:1,10:1 and 15:1. The results show that the powders have been alloyed by ball-milling,after ball-milling a new phase (Fe,Cr)3C carbide appears in the small powder particles. The sintering temperature is selected as about 1100℃because the solidus temperature of the ball-milled high-alloying tool steel powders is 1085℃. A reasonable ball milling time and weight ratio of balls to powders for the preparation of HGSF01 high-alloying tool steel were 10:1 and 60h.
     The spark plasma sintering technology for the prepared HGSF01 of high-alloying tool steel powder was also investigated. The orthogonal experiments with 5 factors and 3 levels were studied for preparation of HGSF01 high-alloying tool steel powders by spark plasma sintering. The results show that the sintering temperature and holding time have the greatest effect on relative density of the samples in the sintering process. The best reasonable sintering parameters was that: milling time for 40h,weight ratio of balls to powders for 7.5:1,sintering temperature for 1100℃,heating rate for 100℃/min and holding time for 10min.
     Annealing pretreatment was taken and nitrogen quenching at 1100℃as well as double tempering at 560℃were taken as the final heat treatment for the sintered samples. The microstructure of the sintered samples before and after the heat treatment was observed by optical microscope and scanning electron microscopy. The relative density,Rockwell hardness,bending strength and friction and wear properties of the sample before and after the heat treatment was analyzed by Archimedes' principle,Rockwell hardness tester,and CMT5105 computer controlled electronic universal testing machine and the M-2000 friction and wear tester,respectively. The results show that the properties of the sintered sample obtained by SPS are as follows. Fine grains with a mean grain size of 5μm and very small carbide segregation uniform disperse in the matrix; a small number of holes exist in the sample with the diameter not more than 1μm. Before heat treatment the hardness is HRC 62,while after the final heat treatment the hardness change to HRC 61. The maximum bending strength of samples both before and after treatment is about 1500 MPa. Moreover,the wear resistance of the sintered samples is better than that of the ESR samples,and a better wear resistance of the samples after heat treatment is obtained by compared the wear scar width of sample after friction and wear. The bending strength and wear resistance of HGSF01 high-alloy tool steel is improved evidently by WC particles reinforced.
引文
[1]束德林.金属力学性能(第二版)[M].北京:机械工业出版社, 1993: 182
    [2]株洲硬质合金厂.钢结硬质合金[M].北京:冶金工业出版社, 1983: 1-5
    [3]史海生,颜飞,樊俊飞,等.喷射成形技术在高合金工模具钢中的应用[J].粉末冶金材料科学与工程, 2008, 13(3): 166-170
    [4]Bolton J,Gant A J. Heat treatment of PM high speed steel based metal matrix composites [J]. Metal Powder Report, 1996, 51 (4): 46
    [5]朱心昆,林秋实,陈铁力.机械合金化的研究及进展[J].粉末冶金技术, 1999, 17(4): 291
    [6]罗锡裕.放电等离子烧结材料的最新进展[J].粉末冶金工业, 2001, 11(6): 7?16
    [7]杨君友,张同俊.机械合金化研究的新进展[J].功能材料, 1995, 26(5): 477
    [8]约翰.伯克,沃克.威斯.超细晶粒金属[M].北京:国防工业出版社, 1982
    [9]翁宇庆.钢铁结构材料的组织细化[J].钢铁, 2003, 38(5): 1-11
    [10]李芳.日本开发出纳米结晶结构不锈钢[J].山东冶金, 2002, (2): 31
    [11]耀星.日本开发出用粉末冶金法提高不锈钢强度的新技术[J].粉末冶金工业, 2001, (6): 22
    [12]Choo Wung-Yong. First Stage Achievement of HIPERS-21 Project and Plan of Second Stage [J]. The Proceedings of Second International Conference on Advanced Structural Steels, Shanghai: 2004
    [13]Buzzichelli G, Anelli.E. Present Status and Perspectives of European Research in the Field of Advanced Structural Steels [J]. ISIJ International,2002,Vol. 42 (12):1354~1363
    [14]Pontremoli M. European Project on Ultra Fine Grained Steels by Innovative Deformation Cycles [J]. The Proceedings of Second International Conference on Advanced Structural Steels,Shanghai: 2004
    [15]王向成.新一代钢铁材料研究进展[J].武钢技术, 2004, (2): 38-42
    [16]钢研总院.纳米级组织的钢铁材料取得阶段性进展[J].钢铁研究, 2003, (5): 12
    [17]贾建军,谷臣清.板条马氏体纳米结构化与超级钢研究[J].热加工工艺, 2003, (3):14-15
    [18]卑多慧,吕坚,卢柯等.表面纳米化预处理对低碳钢气体渗氮行为的影响[J].材料热处理学报, 2002, 23(1): 19-24
    [19] Ding J, Huang H. Magnetic properties of martensite-austenite mixtures in mech- anically milled 304 stainless steel [J]. Journal of Magnetism and Magnetic, 1995, 139: 109-114
    [20]薄鑫涛,刑励.当前合金工具钢生产工艺技术的发展[J].热处理技术与装备, 2006, 27(1): 14-17
    [21]耿文范.工具钢的现状与展望[J].材料导报, 1992, (1): 21-24
    [22]干勇,田志凌,董瀚,等.中国材料工程大典[M]. 2006, 13(5): 307-314
    [23]师江伟,杨涤心,倪峰.电渣重熔的发展及其趋势[J].特钢技术, 2004, (3): 58-60
    [24] Li Z B, Li Y. Journal of Iron and Steel Research [J]. 1998, 15(1): 34
    [25]李正邦.特种冶金新进展(续)[J].中国冶金, 2002, (2): 24-26
    [26]陆锡才.电渣炉重熔技术最新进展[J].工业加热, 2002, (2): 31-32
    [27]孟繁德.电渣重熔的设备选型和工艺选择[J].上海钢研, 2000, (2): 21-27
    [28]陈顺民,张庆,祝新发.粉末冶金高速钢的特性、热处理工艺及应用[J].热处理,2008, 23(2): 14-16
    [29]吴元昌.近年国外粉末冶金工具钢的进展[J].粉末冶金工业, 2004, 14(4): 24
    [30]吴元昌.粉末冶金高速钢应用浅析[J].粉末冶金工业, 2008, (18): 26
    [31]李念辛,李森蓉.新型粉末金属高合金钢制造技术[J].中国机械工程, 1996, 7 (5): 95
    [32]刘珍.纳米材料制备方法及其研究进展[J].材料科学与工艺, 2000, 8(3): 103-108
    [33]Suryanarayana.C. Mechanical alloying and milling [J]. Progress in Materials Science, 2001, (46): 1~184
    [34]张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社, 2000
    [35]Fecht H J, Hellstern E, Fu Z, et al. Nanocrystalline Metals Prepared by High-Energy Ball-Milling [J]. Metall.Trans.A. 1990, 21A (9): 2333-2337
    [36]Koch CC. Processing of metals and alloys vol.15 of materials science and technology-a comprehensive treatment[C]. Weinheim, Germany: VCH Verlagsgesellschaft GmbH, 1991: 193-245199
    [37]Suryanarayana C. Bibliography on mechanical alloying and milling [M]. Cambridge, UK: Cambridge International Science Publishing, 1995
    [38]Lai M O, Lu L. Mechanical alloying [M]. Boston, MA: Kluwer Academic Publishers, 1998
    [39]Suryanarayana C. Mechanical alloying and milling.Progress in Materials Science [J]. 2001, (46): 1~184
    [40]Jari Keskinen, Andrew Pogany, Jim Rubin, et al. Carbide and hydride formation duringmechanical alloying of titanium and aluminium with hexane [J]. Materials Science and Engineering A, 1995, (196): 205~211
    [41]新宫秀夫.メカニカルフィニダの热力学[J].日本金属学会会报, 1988, 27(10):805-811
    [42]李凡,吴炳尧.机械合金化—新型的固态合金化方法[J].机械工程材料, 1999,23(4): 23-24
    [43]李汶霞,鲁燕萍.离子烧结与等离子活化烧结[J].真空电子技术, 1998, (1): 17-23.
    [44]Menapace C, Lonardelli I, Tait M, et al. Nanostructured/ultrafine multiphase steel with enhanced ductility obtained by mechanical alloying and spark plasma sintering of powders [J]. Materials Science and Engineering A, 2009, 517: 1-7
    [45]张久兴,张忻,岳明,等.放电等离子烧结技术与新材料研究[J].功能材料信息,2004, 1(3): 14– 21
    [46]郭俊明,陈克新,刘光华,等.放电等离子(SPS)快速烧结可加工陶瓷Ti3AlC2[J].稀有金属材料与工程, 2005, 34(1): 132-134
    [47]张厚兴,黄勇,李海峰,等.放电等离子烧结超快速合成MgAlON尖晶石的研究[J].陶瓷学报, 2005, 26 (1): 13-16
    [48]刘光华,陈克新,周和平,等.添加燃烧合成晶种SPS烧结Ybα-SiAlON陶瓷[J].无机材料学报, 2005, 20(3): 659-665
    [49]高濂,宫本大树.放电等离子烧结技术[J].无机材料学报, 1997, (2): 129-133
    [50]张东明,傅正义.放电等离子加压烧结技术特点及应用[J].武汉工业大学学报, 1999, (21): 15-17
    [51]沈志坚. SPS—一种制备高性能材料的新技术[J].材料导报, 2000, 14 (1): 67 - 68
    [52] Kim Y D, Chung J Y, Kim J, etal. Formation of nanocrystalline Fe-Co powders produced by mechanical alloying [J]. Materials Science and Engineering, 2000 A, 291: 17-21
    [53]Chae J H, Kim K H, Choa Y H, et al. Micro structural evolution of Al2O3-SiC nanocomposites during spark plasma sintering[J]. J of Alloys and Compounds, 2006, 413: 259 - 264
    [54]Shen Z J, Johnsson M, Nygren M. TiN/ Al2O3 composites and graded laminates thereof consolidated by spark plasma sintering[J]. Journal of the European Ceramic Society, 2003, 23: 1060-1068
    [55]果世驹.粉末烧结理论[M].北京:冶金工业出版社, 1998: 156
    [56] Shen Z J, Zhao Z, Peng H, et al. Formation of tough interlocking microstructure insilicon nit ride ceramics by dynamic ripening [J]. Nature, 2002, 417: 266-269
    [57]齐宝森,王成国,姚新.高能球磨金属铬、铝粉末的特征[J].稀有金属,2000, 24(5): 325?329
    [58]王尔德,刘京雷,刘祖岩.机械合金化诱导固溶度扩展机制研究进展[J].粉末冶金技术, 2002, 20 (02): 109-112
    [59]《铁合金设计参考资料》编写组.铁合金设计参考资料[M].北京:冶金工业出版社1980: 528
    [60]徐成宇.放电等离子烧结高强度铝合金的组织与性能[D].吉林大学博士学位论文, 2005: 47
    [61]宋晓燕,刘雪梅,张久兴.放电等离子烧结中显微组织演变的自调节机制[J].中国体视学与图像分析, 2004, 9(3): 140-143
    [62]Dwivedi S N, Upadhyay K. Plasma Aided Manufacturing of Ceramics and Composite Materials [J]. International Journal of Production Research, 1993, 31(4): 901-912
    [63]约.盖勒.工具钢[M].北京:国防工业出版社, 1983
    [64]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社, 1993, 11: 278
    [65]邵荷生.金属的磨料磨损和耐磨材料[M].北京:机械工业出版社, 1988
    [66]Berthier L. Mechanics and materials in fretting [J]. Wear, 1988, 125: 25-38
    [67]Colombie ch, Brrthier Y, Floquet A, et al. Fretting: load carrying capacity of wear debris [J]. Transactions of the ASME, Journal of Tribology, 1984, 106: 194-201
    [68]Godet M. Third-bodies in tribology [J]. Wear, 1990, 136: 29-45
    [69]Berthier Y,Vincent L,Godet M. Fretting fatigue and fretting wear [J]. Tribology Inter- nation,1989,22:235-242
    [70]李伟,陈美玲,陈玉喜.铸造金属基颗粒增强复合材料的研究现状与展望[J].铸造, 2002, 51(4): 205- 208
    [71]张静,潘复生,陈万志.铁基复合材料的现状和发展[J].材料导报, 1995, 1: 67-69
    [72]Usmani S, Sampath S, Herman H. HVOF processing of nanostructured WC-Co coatings and their properties [J]. Journal of Thermal Spray Technology, 1998, 7(3): 429-431
    [73]赵敏海,刘爱国,郭面焕. WC颗粒增强耐磨材料的研究现状[J].焊接, 2006, 11: 26-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700