柔性机构拓扑优化方法及其在微机电系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性机构是一种依靠构件自身弹性变形来输出全部或部分运动、力和能量的新型装置。由于柔性机构为无铰链机构,因而具有无运动间隙和无摩擦磨损等优点,在微机电系统、精密定位机构和智能结构等领域有广阔的应用前景。本文对柔性机构的拓扑优化设计方法进行了系统的研究,并应用该方法设计制造夹持毛细管的压电式微夹钳和电热驱动的二维微执行器。
     针对连续体结构拓扑优化中出现的棋盘格式等数值计算不稳定性现象,本文提出了一种以节点密度作为设计变量的优化方法,它确保了设计区域内的密度场函数具有C_0连续性,从拓扑优化数学模型描述的本质上克服了棋盘格式问题。算例表明该方法能够有效消除拓扑优化中的棋盘格和网格依赖等数值计算不稳定性现象,而且计算量小于滤波方法,具有良好的实用价值。
     基于互能原理,建立了以互能和应变能比值作为目标函数的柔性机构拓扑优化数学模型,推导了基于节点密度法的柔性机构敏度计算的解析表达式。对热致动器这一多物理场拓扑优化问题进行了研究,建立了相应的数学模型,运用伴随矩阵法完成敏度分析。应用节点密度法对典型算例进行了拓扑优化计算,计算结果表明不需要借助滤波处理,节点密度法就能够得到具有清晰拓扑结构的优化结果,真实地反映了机构的结构细节。
     利用所研究的柔性机构拓扑优化求解理论和算法,设计研制了用于夹持毛细玻璃管的压电驱动式微夹钳,并对其进行了实验测试。实验结果表明,实验值与有限元计算值有较好的吻合性,位移和夹持力与控制电压呈良好的线性关系。
     利用多工况柔性机构拓扑优化方法设计了可用于微平台的二维微执行器,以此为基础,并考虑微加工工艺的限制,确定了其最终的结构尺寸。利用SU-8光刻胶制备电铸模和微电铸工艺,制造了二维微执行器原型。显微立体成像微操作系统上测试了二维微执行器的位移性能。试验结果表明该微执行器基本达到了设计要求。
     本文研究工作表明连续体结构拓扑优化技术在MEME器件的优化设计中有着重要的方法论的作用,具有广阔的应用前景。
Compliant mechanisms are the type of mechanisms that use elastic deformation of flexible members to transfer force, motion or energy. These devices have good prospects in areas such as Micro-Electro-Mechanical Systems, precision position and smart structures due to their advantages such as elimination of friction and wear. In this dissertation, the topology optimization method of compliant mechanisms is deeply investigated. Based on topology optimization method, piezoelectric driven micro-gripper and thermal micro actuator is designed and tested.In this dissertation, a new method using nodal density as design variable of continuum topology optimization is proposed to resolve the checkerboard pattern. This method ensures C_0 continuity of density field in a fixed design domain, which prevents the checkerboard pattern problem from mathematical model in essence. Numerical examples are presented to support the proposed design method which can effectively eliminate the numerical instabilities, such as checkerboard and mesh-dependency in topology optimization results. The calculate speed of the proposed method is faster than the filter method. Therefore, it can be widely used in application.The mathematical model of topology optimization for compliant mechanisms is established based on the principle of mutual energy, in which, the ratio of mutual energy to strain energy of the mechanism is regarded as the objective function. The analytical expression of sensitivity based on nodal density for compliant mechanisms is deduced in detail. The design of thermal actuator is deeply researched, which is a coupling multi-physics problem. The mathematical model of thermal actuator is established based on the nodal density method. The adjoint method is applied to sensitivity analysis of design of thermal actuator. The results of representative numerical examples show that the mechanisms obtained by the nodal density method have clear topology structures which actually reflect
    the structures of the mechanisms without any filtering schemes.The above theory and algorithm for topology optimization of compliant mechanisms is applied on the study of MEMS component. The microgripper used in the assembly of the electrophoresis chip is designed and manufactured. The experimental results of piezoelectric micro gripper show that displacement and clamping fore of gripper are coincident with the FEM results and linear with the control voltage.The 2D micro actuator that can be used in micro stage is designed by using topology optimization of compliant mechanisms with multi load cases. Based on the topology optimization results and restrictions of micro fabrication technology, the size of the micro actuator is finally determined. The prototype of the micro actuator is fabricated by means of micro electroforming and SU-8 photolithography techniques. The displacement of the micro actuator is measured by using the stereo vision micromanipulation systems. The experimental results show that properties of the micro actuator can be fulfilled the designing demand.It can be seen that the topology optimization of compliant mechanisms plays an important methodological role in the optimal design of MEMS component, which will be applied in wide fields.
引文
[1] 周兆英,叶雄英,胡敏.微型机电系统的进展.仪器仪表学报.1996,17:20-30
    [2] 苑伟政,马炳和.微机械与微细加工技术.西安:西北工业大学出版社,2001
    [3] 钱令希.工程结构优化设计.北京:水利电力出版社,1983
    [4] W. Prager, J. Taylor. Problem of Optimal Structural Design. Journal of Applied Mechanics. 1968, 35:102-106
    [5] C. Shen, W. Prager. Recent Development in Optimal Structural Design. Applied Mechanics Reviews. 1968, 21:985-992
    [6] L. Schmit. Structural Design by Systematic Synthesis. Progeeding of the 2nd ASCE Conf. Electr. Comp., 1960, 105-122
    [7] R. Haftka, R. Gandhi. Structural shape optimization——A survey. Computer Methods in Applied Mechanics and Engineering. 1986, 57:91-106
    [8] M.P. Bendsφe. Optimization of Structural Topology, Shape, and Material. Berlin Heidelberg: Springer-Verlag, 1995
    [9] M.P. Bendsφe, O. Sigmund. Topology Optimization——Theory, Methods, and Applications. Berlin Heidelberg: Springer-Verlag, 2003
    [10] M. P. Bendsφe. Optimal Shape Design as a Meterial Distribution Problem. Structural Optimization. 1989, 1:193-202
    [11] M. P. Bendsφe, N. Kikuchi. Generating Optimal Topologies in Structural Design using a Homogenization Method. Computer Methods in Applied Mechanics and Engineering. 1988, 71:197-224
    [12] O. Sigmund, J. Pertersson. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization. 1998, 16:68-75
    [13] G. Rozvany. Aims, Scope, Methods, History and Hnified Terminology of Computeraided Topology Optimization in Structural Mechanics. Structural and Multidisciplinary Optimization. 2001, 21:90-108
    [14] W. Prager. A Note on Discretized Michell Structures. Computer Methods in Applied Mechanics and Engineering. 1974, 3:349-355
    [15] G. Rozvany, M.Zhou, M. Rotthaus et al. Continuum-type Optimality Criteria Methods for Large Finite Element Systems with a Displacement Constraint——Part Ⅰ. Structural Optimization. 1989, 1:47-72
    [16] U. Kitsch. On the Relationship between Optimum Structural Topologies and Geometries. Structural Optimization. 1990, 2:39-45
    [17] G. Rozvany, M.Zhou, M. Rotthaus et al. Continuum-type Optimality Criteria Methods for Large Finite Element Systems with a Displacement Constraint——Part Ⅱ. Structural Optimization. 1990, 2:77-140
    [18] G. D. Cheng, Z. Jiang. Study on topology optimization with stress constraint. Engineering Optimization. 1992, 20:129-148
    [19] 程耿东.关于桁架结构拓扑优化中的奇异最优解.大连理工大学学报.2000,40(4):379—383
    [20] G. Cheng, N. Olhoff. An Investigation Concerning Optimal Design of Solid Elastic Plates. International Journal of Solids and Structures. 1981, 17:305-323
    [21] G. Cheng, N. Olhoff. Regularized Formulation for Optimal Design of Axisymmetric Plates. International Journal of Solids and Structures. 1982, 18:153-170
    [22] K. Lurie, A. Cherkaev, A. Fedorov. On the Existence of Solution to Some Problems of Optimal Design for Bars and Plates. Journal of Optimization Theory and Applications. 1984, 42:247-281
    [23] R. Kohn, G. Strang. Optimal Design and Relation of Variational Problems: Part Ⅰ. Communication in Pure and Application Mathematics. 1986, 39:1-25
    [24] R. Kohn, G. Strang. Optimal Design and Relation of Variational Problems: Part Ⅱ. Communication in Pure and Application Mathematics. 1986, 39:139-182
    [25] R. Kohn, G. Strang. Optimal Design and Relation of Variational Problems: Part Ⅲ. Communication in Pure and Application Mathematics. 1986, 39:353-377
    [26] G. Rozvany, T. Ong, W. Seto et al. Least-weight Design of Perforated Elastic Plates: Part Ⅰ. International Journal of Solids and Structures. 1987, 23:521-536
    [27] G. Rozvany, T. Ong, W. Seto et al. Least-weight Design of Perforated Elastic Plates: Part Ⅱ. International Journal of Solids and Structures. 1987, 23:537-550
    [28] B. Hassani, E. Hinton. Homogenization and Structural Topology Optimization—— Theory, Practice and Software. Berlin Heidelberg: Springer-Verlag, 1999
    [29] Y. Xie, G. Steven. Evolutionary Structural Optimization. Berlin Heidelberg: Springer-Verlag, 1997
    [30] 隋允康.建模·变换·优化——结构综合方法新进展.大连:大连理工大学出版社,1996
    [31] 隋允康,叶红玲,杜家政.结构拓扑优化的发展及其模型转化为独立层次的迫切性.工程力学.2005,22(增刊):107-118
    [32] H. Eschenauer, H. Kobelev, A. Schumacher. Bubble Method for Topology and Shape Optimization of Structures. Structural Optimization. 1994, 8:142-151
    [33] J. Cea, S. Garreau, P. Guillaume et al. The Shape and Topological Optimization Connection. Computer Methods in Applied Mechanics and Engineering. 2000, 188:713-726
    [34] J.A. Sethian, A. Wiegmann. Structural boundary design via level set and immersed interface methods. Journal of computational physics. 2000, 163:489-528
    [35] 梅玉林.拓扑优化的水平集方法及其在刚性结构、柔性机构和材料设计中的应用:(博士学位论文).大连:大连理工大学,2003
    [36] B. Hassani, E. Hinton. A Review of Homogenization and Topology Optimization I—Homogenization Theory for Media with Periodic. Computers and Structures. 1998, 69:707-717
    [37] H. Eschenauer, N. Olhoff. Topology Optimization of Continuum Structures: A Review. Applied Mechanics Reviews. 2001, 54:331-390
    [38] B. Hassani, E. Hinton. A Review of Homogenization and Topology Optimization Ⅲ—Topology Optimization using Optimality Criteria. Computers and Structures. 1998, 69:739-756
    [39] K. Suzuki, N. Kikuchi. A Homogenization Method for Shape and Topology Optimization. Computer Methods in Applied Mechanics and Engineering. 1991, 93:291-318
    [40] A. Diaz, N. Kikuchi. Solutions to Shape and Topology Eigenvalue Optimization Problems using a Homogenization Method. International Journal for Numerical Methods in Engineering. 1992, 35:1487-1502
    [41] M. Neves, H. Rodrigues, J. Guedes. Generalized Topology Design of Structures with a Buckling Criterion. Structural Optimization. 1995, 10:71-78
    [42] H. Rodrigues, J. Guedes, M. Bendsφe. Hierarchical optimization of material and structure. Structural and Multidisciplinary Optimization. 2002, 24:1-10
    [43] 庄守兵,吴长春.基于均匀化方法的多孔材料细观力学特性数值研究.材料科学与工程.2001,19(4):9-13
    [44] 袁振,吴长春.复合材料周期性线弹性微结构的拓扑优化设计.固体力学学报.2003,24(1):40-45
    [45] 程耿东,刘书田.单向纤维复合材料导热性预测.复合材料学报.1996,13(1):78-85
    [46] 刘书田,程耿东.复合材料应力分析的均匀化方法.力学学报.1997,29(3):306-313
    [47] M. Bendsφe, O. Sigmund. Material Interpolation Schemes in Topology Optimization. Archive of Applied Mechanics. 1999, 69:635-654
    [48] Y. Xie, G. Steven. A Simple Evolutionary Procedure for Structural Optimization. Computers and Structures. 1993, 49:885-896
    [49] A. Baumgartner, L. Harzheim, C. Mattheck. SKO Soft Kill Option: The Biological Way to Find an Optimum Structure Topology. International Journal of Fatigue. 1992, 14:387-393
    [50] E. Hinton, J. Sienz. Fully Stressed Topological Design of Structures using an Evolutionary Procedure. Engineering Computations. 1995, 12:229-244
    [51] O. Querin, G. Steven. Evolutionary Structural Pptimization (ESO) using a Bidirectional Algorithm. Engineering Computations. 1998, 15:1031-1048
    [52] D. Reynolds, J. McConnachie, P. Bettess et al. Reverse Adaptivity—A New Evolutionary Tool for Structural Optimization. International Journal for Numerical Methods in Engineering. 1999, 45:529-552
    [53] Y. Xie, G. Steven. Evolutionary Structural Optimization for Dynamic Problems. Computers and Structures: 1996, 58:1067-1073
    [54] D. Manickarajah, Y. Xie, G. Steven. Optimization of Columns and Frames against Buckling. Computers and Structures. 2000, 75:45-54
    [55] J. Rong, Y. Xie, X. Yang. An Improved Method for Evolutionary Structural Optimisation against Buckling. Computers and Structures. 2001, 79:263-263
    [56] G. Rozvany. Stress Ratio and Compliance Based Methods in Topology Optimization—A Critical Review. Structural and Multidisciplinary Optimization. 2001, 21:109-119
    [57] 隋允康,杨德庆,王备.多工况应力和位移约束下连续体结构拓扑优化.力学学报.2000,32(2):171-179
    [58] 隋允康,任旭春,龙连春等.基于ICM方法的刚架拓扑优化.计算力学学报.2003,20(3):286-289
    [59] 隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化的ICM理论与方法.计算力学学报.2000,17(1):28-33
    [60] 隋允康,于新,叶宝瑞.基于“有无复合体”的应力约束下桁架和平面膜结构拓扑优化的统一模型.固体力学学报.2001,22(1):15-22
    [61] J. Sokolowski, A. Zochowski. On the topological derivative in shape optimization. SIAM journal of control optimization. 1999, 37:1251-1272
    [62] S. Garreau, P. P., M. Masmoudi. The topological asymptotic for PDE systems: the elasticitv case. SIAM journal of control optimization. 2001, 39:1756-1778
    [63] S. Osher, J. A. Sethian. Fronts Propagating with Curvature-dependent Speed: Algorithm Based on Hamilton-Jacobi Formulations. Journal of Computational Physics. 1988, 79:12-49
    [64] G. Allaire, F. Jouve, A. M. Taoder. A level-set method for shape optimization. C.R. Acad. Sci. Paris Ser. I. 2002, 334:1-6
    [65] M. Wang, X. Wang, D. Guo. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering. 2003, 192:227-246
    [66] 贾海朋.结构与柔性机构拓扑优化:(博士学位论文).大连:大连理工大学,2004
    [67] L.L. Howell. Compliant Mechanisms. John Wiley & Sons, Inc., 2001
    [68] G.K. Ananthasuresh, S. Kota, Y. Gianchandani. Systematic synthesis of microcompliant mechanisms—preliminary results. Proceeding of The Third National Conference on Applied afechanisms and Robotics, Cincinnati, Ohio, 1993
    [69] I. Her, A. Midha. Compliance number concept for compliant mechanism and type synthesis. ASME Journal of mechanisms, transmissions and automation in design. 1987, 109:348-355
    [70] M. Murphy, A. Midha, L. L. Howell. The topological synthesis of compliant mechanisms. Proceedings of the third national conference on applied mechanisms and robotics, Cincinnati, Ohio, 1994, vol. 12
    [71] L. L. Howell, A. Midha. A loop-closure theory for the analysis and synthesis of compliant mechanisms. Journal of mechanical design, transactions of the ASME. 1996, 118:121-125
    [72] 于靖军,毕树生,宗光华等.基于伪刚体模型法的全柔性机构位置分析.机械工程学报.2002,38(2):75-78
    [73] G. Ananthasuresh. A New Design Paradigm for Micro-Electro-Mechanical Systems & Investigations on the Compliant Mechanism Synthesis. Uhiversity of Michigan, Ph.d. thesis. 1994
    [74] O. Sigmund. Some Inverse Problems in Topology Design of Materials and Mechanisms. D. Bestle, W. Schielen, (Editors) Symposium on optimization of mechanical systems, IUTAM, Netherlands: Kluwer, 1996, 277-284
    [75] M. I. Frecker. Optimal design of compliant mechanisms. University of Michigan, Phd. 1997
    [76] M. Frecker, G. Ananthasuresh, S. Nishiwaki et al. Topological Synthesis of Compliant Mechanisms using Multi-criteria Optimization. Transactions of the ASME. 1997, 19:238-245
    [77] J.A. Hetrick, S. Kota. Energy formulation for parametric size-and shape optimization of compliant mechanisms. Journal of Mechanical Design, Transactions of the ASME. 1999, 121(2):229 - 234
    [78] O. Sigmund. On the Design of Compliant Mechanisms using Topology Optimization. Mechanics of Structures and Machines. 1997, 25:493-524
    [79] U. Larsen, O. Sigmund, S. Bouwstra. Design and Fabrication of Compliant Mi-cromechanisms and Structures with Negative Poisson's Ratio. Journal of Microelec-tromechanical Systems. 1997, 6:99-106
    [80] N. Kikuchi, S. Nishiwaki, J. Fonseca et al. Design Optimization Method for Compliant Mechanisms and Material Microstructure. Computer Methods in Applied Mechanics and Engineering. 1998, 151:401-417
    [81] S. Nishiwaki, S. Min, J. Yoo et al. Optimal Structural Design Considering Flexibility. Computer Methods in Applied Mechanics and Engineering. 2001, 190:4457-4504
    [82] G. Lau, H. Du, M. Lim. Use of Functional Specifications' as Objective Functions in Topological Optimization of Compliant Mechanism. Computer Methods in Applied Mechanics and Engineering. 2001, 190:4421-4433
    [83] C. Pedersen, T. Buhl, O. Sigmund. Topology Synthesis of Large-displacement Compliant Mechanisms. International Journal for Numerical Methods in Engineering. 2001, 50:2683-2705
    [84] J. Jonsmann, O. Sigmund, S. Bouwstra. Compliant thermal microactuators. Sensors and Actuators, A: Physical. 1999, 76(l-3):463 - 469. 0924-4247 article Microactuators Compliant thermal microactuators;Topology optimization;Thermal expansion coefficient;
    [85] J. Jonsmann, O. Sigmund, S. Bouwstra. Compliant electro-thermal microactuators. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS). 1999:588 -593. Article Microactuators Electrothermal microactuators;Laser micromachining;
    [86] J. Jonsmann, S. Bouwstra. Thermal microactuator characterization. Proceedings of SPIE - The International Society for Optical Engineering. 1999, 3680(II):1046 -1055. 0277-786X article Microactuators Thermal microactuators;
    [87] O. Sigmund. Design of Multiphysics Actuators using Topology Optimization — Part I: One-Material Structures. Computer Methods in Applied Mechanics and Engineering. 2001, 190:6577-6604
    [88] 0. Sigmund. Design, of Multiphysics Actuators using Topology Optimization — Part II: Two-Material Structures. Computer Methods in Applied Mechanics and Engineering. 2001, 190:6605-6627
    [89] L. Yin, G. Ananthasuresh. A Novel Topology Design Scheme for the Multi-physics Problems of Electro-thermally Actuated Compliant Micromechanisms. Sensors and Actuators A. 2002, 97-98:599-609
    [90] G. Allaire. Shape optimization by the homogenization method. New York: Springer-Verlag, 2002
    [91] O. Sigmund. Materials with prescribed constitutive parameters: An inverse homogenization problem. International Journal of Solids and Structures. 1994, 31(17):2313-2329
    [92] O. Sigmund, S. Torquato. Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids. 1997, 45(6):1037-1067
    [93] 刘书田,曹先凡.零膨胀材料设计与模拟验证.复合材料学报.2005,22(1):126-132
    [94] O. Sigmund, S. Torquato, I. Aksay. On the design of 1-3 piezocomposites using topology optimization. Journal of Materials Research. 1998, 13(4):1038-1048
    [95] M. Stolpe, K. Svanberg. On the trajectories of penalization methods for topology optimization. Structural and Multidisciplinary Optimization. 2001, 21(2):128-139
    [96] M. Stolpe, K. Svanberg. On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization. Structural and Multidisciplinary Optimization. 2001, 21(2):140-151
    [97] M. Stolpe, K. Svanberg. An alternative interpolation scheme for minimum compliance topology optimization. Structural and Multidisciplinary Optimization. 2001, 22(2):116-124
    [98] C. Swan, I. Kosaka. Voigt-Reuss topology optimization for structures with linear elastic material behaviours. International Journal for Numerical Methods in Engineering. 1997, 40(16):3033-3057
    [99] C. Swan, I. Kosaka. Voigt-Reuss topology optimization for structures with nonlinear material behaviors. International Journal for Numerical Methods in Engineering. 1997, 40(20):3785-3814
    [100] C.S. Jog, R. B. Harber. Stability of finite element models for distrubuted parameter optimization and topology design. Computer Methods in Applied Mechanics and Engineering. 1996, 130:203-206
    [101] A.R. Diaz, O. Sigmund. Checkerboard patterns in layout optimization. Structural Optimization. 1995, 10:40-45
    [102] 刘震宇.微型及小型柔性机械结构的拓扑优化设计方法:(博士学位论文).大连:大连理工大学,2000
    [103] L. Ambrosio, G. Buttazzo. An optimal design problem with perimeter penalization. Calculus and Variation. 1993, 1:55-69
    [104] R.B. Haber, C. S. Jog, M. P. Bendsoe. A new approach to variable topology, shape design using a constraint on perimeter. Structural Optimization. 1996, 11:1-12
    [105] J. Petersson, O. Sigmund. Slope constrained topology optimization. International Journal for Numerical Methods in Engineering. 1998, 41:1417-1434
    [106] O. Sigmund. Design of material structures using topology optimization. Technical University of Denmark, Ph.D. thesis. 1994
    [107] 刘震宇,王晓明,郭东明.利用窗函数解决连续体结构拓扑优化中的棋盘格式问题.中国机械工程.2000,11:705-708
    [108] T. Poulsen. Topology optimization in wavelet space. International Journal for Numerical Methods in Engineering. 2002, 53(3):567-582
    [109] G. Yoon, S. Heo, Y. Kim. Minimum thickness control at various levels for topology optimization using the wavelet method. International Journal of Solids and Structures. 2005, 42(23):5945-5970
    [110] G. Yoon, Y. Kim. Triangular checkerboard control using a wavelet-based method in topology optimization. Int. J. Numer. Methods Eng. 2005, 63(1):103-121
    [111] G. Yoon, Y. Kim, M. Bendsφe et al. Hinge-free topology optimization with embedded translation-invariant differentiate wavelet shrinkage. Structural and Multidisciplinary Optimization. 2004, 27(3):139-150
    [112] J. Kim, G. Jang, Y. Kim. Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization. Int. J. Solids Struct. 2003, 40(23):6473-6496
    [113] 左孔天,王书亭,陈立平等.拓扑优化中去除数值不稳定性的算法研究.机械科学与技术.2005,24(1):86-89
    [114] 左孔天.连续体结构拓扑优化理论与应用研究:(博士学位论文).武汉:华中科技大学,2004
    [115] 左孔天,陈立平,钱勤等.求解拓扑优化问题的一种移动渐进—小波混合算法.固体力学学报.2004,25(04):472-475
    [116] B. Bourdin. Filters in topology optimization. International Journal for Numerical Methods in Engineering. 2001, 50(9):2143-2158
    [117] T. Borrvall, J. Petersson. Topology optimization using regularized intermediate density control. Computer Methods in Applied Mechanics and Engineering. 2001, 190(37-38):4911-4928
    [118] X. Guo, Y. X. Gu. A new density-stiffness interpolation scheme for topology opti- mization of continuum structures. Engineering Computations. 2004, 21:9-22
    [119] 袁振,吴长春,庄守兵.基于杂交元和变密度法的连续体结构拓扑优化设计.中国科学技术大学学报.2001,31:694-699
    [120] 袁振.复合材料结构多尺度拓扑优化设计理论与数值研究:(博士学位论文).合肥:中国科学技术大学,2002
    [121] 袁振,吴长春.采用非协调元的连续体拓扑优化设计.力学学报.2003,35:176-180
    [122] M. Zhou, Y. Shyy, H. Thomas. Checkerboard and minimum member size control in topology optimization. Structural and Multidisciplinary Optimization. 2001, 21:152-158
    [123] R. Marler, J. Arora. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization. 2004, 26(6):369-395. Multi-objective;Multi-criteria;Design variables;
    [124] Y. Li. Optimal design of thermally actuated compliant mechanisms and its application to product-embedded disassembly. University Of Michigan, Phd. 2002
    [125] G. I. N. Rozvany. Structural design via optimality criteria: the prager approach to structural optimization. Dordrecht: Kluwer Academic Publishers, 1989
    [126] G. Rozvany, M. Zhou. COC algorithm, Part Ⅰ. Cross-section optimization or sizing. Computer Methods in Applied Mechanics and Engineering. 1991, 89(1-3):281-308
    [127] M. Zhou, G. Rozvany. COC algorithm, Part Ⅱ. Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering. 1991, 89(1-3):309-336
    [128] C. Fleury. First and second order convex approximation strategies in structural optimization. Structural Optimization. 1989, 1:3-10
    [129] J. Barthelemy, R. Haftka. Approximation concepts for optimization structural design——a review. Structural Optimization. 1993, 5:129-144
    [130] C. Fleury. CONLIN: an efficient dual optimizer based on convex approximation concepts. Structural Optimization. 1989, 1:81-89
    [131] Z. Wei-Hong, F. C. A modification of convex approximation methods for structural optimization. Computers and Structures. 1997, 4:89-95
    [132] K. Svanberg. Method of moving asymptotes——a new method for structural optimization. International Journal for Numerical Methods in Engineering. 1987, 24(2):359-373
    [133] M. Bruyneel, P. Duysinx, C. Fleury. A family of MMA approximations for structural optimization. Structural and Multidisciplinary Optimization. 2002, 24(4):263-276
    [134] C. Zillober. A globally convergent version of the method of moving asymptotes. Structural Optimization. 1993, 6(5):166-174
    [135] C. Zillober. A combined convex approximation—interior point approach for large scale nonlinear programming. Optimization and engineering. 2001, 2(5):51-73
    [136] C. Zillober. SCPIP—An efficient software tool for the solution of structural optimization problems. Structural and Multidisciplinary Optimization. 2002, 24(5):362-371
    [137] W. Riethmuller, W. Benecke. Thermally Excited Silicon Microactuators. IEEE Transactions on Electron Devices. 1988, 35:758-763
    [138] M. Judy, R. Howe. Polysilicon Hollow Beam Lateral Resonators. IEEE MEMS '93 Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, 1993, 265-271
    [139] H. Guckel, J. Klein, T. Christenson et al. Thermo-Magnetic Metal Flexure Actuators. Solid-State Sensor and Actuator Workshop, 5th Technical Digest, IEEE, 1992, 73-75
    [140] J. Comtois, V. Bright. Applications for Surface-micromachined Polysilicon Thermal Actuators and Arrays. Sensors and Actuators A. 1997, 58:19-25
    [141] J. Reid, V. Bright, J. Butler. Actuated assembly of flip-up micromirrors. Sensors & actuators A. 1998, 66:292-288
    [142] 王瑁成,邵敏.有限单元法基本原理和数值方法.清华大学出版社,1997
    [143] 张培玉,武国英,郝一龙等.微夹钳研究的进展与展望.光学精密工程.2000,8(3):292-296
    [144] 李勇.微夹持理论与系统的研究:(硕士学位论文).北京:清华大学,2002
    [145] 梁大伟,李凌全,曾威等.微夹钳传动分析.大连理工大学学报.2003,43(4):466-469
    [146] V.P. Jaecldin, C. Linder, N. F. de Rooij et al. Micromechanical Comb Actuators with Low Driving Voltage. Journal of Micromechanics and Microengineering. 1992, 2:250-255
    [147] Y. Ando, T. Ikehara, S. Matsumoto. Design, Fabrication and Testing of New Comb Actuators Realizing Three-Dimensional Continuous Motions. Sensors and Actuators, A. 2002, 97-98:579-586
    [148] C. Kim, Y. Kim. Journal of Micromechanics and Microengineering. Micro XY-Stage Using Silicon on a Glass Substrate. 2002, 12:103-107
    [149] L. Chu, Y. Gianchandani. A Micromachined 2D Positioner with Electrothermal Actuation and Sub-nanometer Capacitive Sensing. Journal of Micromechanics and Microengineering. 2003, 13:279-285
    [150] 张立国,陈迪,杨帆等.SU-8胶光刻工艺研究.光学精密工程.2002,10(3):266-270
    [151] 褚德南.基于微电铸的微通道热压成形模具制造技术的研究:(硕士学位论文).大连:大连理工大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700