高价金属元素掺杂透明导电ITO薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从二十世纪九十年代以来,平面显示技术的进步促进了光电薄膜的发展。由于具有较高的载流子浓度和较宽的光学禁带,透明导电氧化物薄膜展示了较好的光电性能,比如低电阻率和高可见光透过率。其中,ITO(Sn掺杂In2O3)薄膜因其具有较好的光电性能而广泛应用于透明电极。但是ITO薄膜的化学和热不稳定性以及低表面能限制了ITO薄膜的应用,同时其光电性能也需要进一步改善,提高ITO薄膜的综合性能是当前研究的一个重要方向。本论文利用磁控溅射制备了基于氧化铟的多元组分氧化物薄膜。同时,利用第一性原理计算了电子能带结构。
     ITO薄膜的性能主要依赖于其氧化态以及掺杂的浓度,载流子浓度可以通过掺杂进行调节,掺杂施主原子的取代可以提供自由电子而提高载流子浓度。在本文中,锆和钽可作为掺杂施主原子而实现有效的取代,从而释放出自由电子提高薄膜的导电性。掺杂锆和钽离子的半径低于铟离子,可以实现有限固溶体。为了实现高价金属元素的有效掺杂,采用了包含直流和射频功率的双靶溅射系统,共溅射过程中分别采用了ITO靶,Zr靶和Ta2O5靶。
     利用磁控溅射在玻璃基底上沉积了ITO,ITO:Zr和ITO:Ta薄膜,研究了不同实验参数对薄膜光电性能的影响。结果表明,高价金属元素掺杂促进ITO薄膜晶化的同时,导致了(400)晶面择优取向的形成。低温沉积的ITO:Zr和ITO:Ta薄膜比ITO薄膜展示了较好的光电性能,Zr、Ta掺杂使得室温沉积ITO薄膜的效益指数分别由0.003×10-3Ω-1上升到了0.15×10-3Ω-1和0.88×10-3Ω-1。提高基底温度可以显著提高薄膜的光电性能;过量的氧流量会恶化薄膜的透明性;适当的退火处理使薄膜的光电性能得到改善,过高温度空气中退火处理却降低了薄膜的电学性能。透射谱表明各参数的变化引起了明显的“Burstin-Moss”效应,通过直接跃迁的模型研究了光学禁带的变化。共溅射法制备的ITO:Zr和ITO:Ta薄膜比ITO薄膜展示了较好的光电性能和较宽的光学禁带。在相同制备条件下,ITO:Ta薄膜的电阻略低于ITO:Zr薄膜,但ITO:Ta薄膜的可见光透过率高于ITO:Zr薄膜。
     采用第一性原理计算了基于氧化铟的透明导电氧化物的电子能带结构。能带结构中的价带顶和导带底对光电性能有重要影响。计算时采用了各掺杂原子取代晶格中更稳定的In1位置,可以发现:价带顶主要源于O 2p和In 4d态的贡献,导带底主要源于In 5s和Sn 5s态(以及Zr 4d,Ta 5d)的贡献。掺杂原子的掺入引起了费米能级以及导带底和价带顶的偏移,这是高价掺杂材料本征光电性能改善的原因所在。
     根据处于特定介质环境中ITO薄膜的相对电阻变化和表面分析,掺杂ITO薄膜显示了较好的化学稳定性和热稳定性。除了晶体结构的影响之外,稳定性较好的氧化锆和氧化钽也提高了薄膜的化学稳定性和热稳定性。基于薄膜表面接触角的测量,计算了薄膜的表面能和极性度,实验数据和计算结果表明,掺杂使得薄膜的接触角减小,表面能增大,表面极性度增加。薄膜的表面状态和在靠近费米能级处引入d轨道的活性高价原子的存在是促进表面能提高的主要原因。
Since 1990s, the rapid development of panel displays promotes the progress of optical-electrical films. Due to high carrier concentration and wide optical band gap, transparent conductive oxide films exhibit outstanding optical and electrical properties such as low resistivity and high transmittance in the visible range. ITO (Sn doped In2O3) films possess the better optical and electrical properties, which make them have wide applications as the transparent electrodes. But some critical factors, such as chemical and thermal instability and lower surface energy, limit the wider application of ITO films, and optical-electrical properties also should be further improved. The improvement of over-all properties of ITO films is one of the key points. In this paper, In2O3-based multi-component oxides films were deposited by magnetron sputtering.
     The first-principles calculations regarding electronic band structure are performed. The characteristics of ITO films strongly depend on its oxidation state and the content of impurities. Carrier concentration can be modified by the dopant activation state, which is due to a donor atom to substitute the lattice site and produce some free electrons to increase carrier concentration. In this study, zirconium and tantalum are regarded as the donor, which replaces indium in the In2O3 matrix. As a result, some free electrons are released to contribute the electrical conductivity. The ionic radius of Zr4+ or Ta5+ is lower than that of In3+, which implies that a limited solid solution can be formed. In order to realize the effective doping of high valence metal elements, the dual sputtering sources with two targets, including a DC power and a RF power, were used for co-sputtering with an ITO target and a Zr target or Ta2O5 target.
     ITO, ITO:Zr and ITO:Ta films were deposited on glass substrates by magnetron sputtering. Electrical and optical properties of the films at different experiment parameters were contrastively studied. The results show that the doping of high-valence metal element favors a better crystalline structure for ITO films and leads to the formation of the (400) plane preferred orientateon. ITO:Zr and ITO:Ta films show better electrical and optical properties at low substrate temperature than ITO films. The dopings of Zr and Ta improve the figure of merit of ITO films deposited at room temperature from 0.003×10-3Ω-1 to 0.15×10-3Ω-1 and 0.88×10-3Ω-1. The increase in substrate temperature remarkably improves the electrical and optical properties. The excessive oxygen can worsen the optical properties of the films. Better optical-electrical properties of the films can be achieved after the proper annealing treatment, but the atmosphere annealing treatment with overhigh temperature can worsen the electrical property. Obvious“Burstin-Moss”effect can be revealed by transmittance spectra with different parameters, and the direct transition models show the change of optical band gap of the films. ITO:Zr and ITO:Ta films prepared by co-sputtering reveal better optical-electrical properties and higher optical band gap than that of ITO films. Under the same parameters, ITO:Ta films show lower conductivity but higher transmission in the visual region than that of ITO:Zr films.
     The first-principles calculations were performed for In2O3-based transparent conductive oxides. The characters of the highest valence states and lowest conduction band are the key characteristics of the band structure responsible for its optical-electrical properties. When Sn, Zr or Ta is introduced into the lattice, it prefers to occupy the less distorted In1 site of In2O3. It is found that the tops of the valence states of those materials are mainly formed by O 2p states and In 4d states. The bottoms of the conduction bands are due to In 5s states hybridized with Sn 5s states (and Zr 4d or Ta 5d). The introduction of Zr or Ta into ITO stimulates the shifts of the Fermi level, conduction band bottom and valence band top, which is related with the improvement in eigen electrical and optical properties observed in the high-valence metal element doped materials.
     According to the result of the relative resistance change of ITO films in the special medium environments and the analysis of the film surface, the doping films show better chemical and thermal stability than that of ITO films. Besides the influence of crystal structure, the better stability of zirconium oxide and tantalum oxide can improve the chemical and thermal stability of ITO films. Based on the measurements of the contact angles, the surface energy and surface polarity of the films were calculated. The experimental data and calculated results show that the doping decreases contact angle, increases surface energy and enhances surface polarity. The surface condition and the present of active high-valence atom with d-orbital states close to Fermi lever are the main contributions to improve the surface energy.
引文
[1] George J, Menon C S. Electrical and optical properties of electron beam evaporated ITO thin films, Surface and Coatings Technology, 2000, 132: 45-48.
    [2]周宏明,易丹青,杨小玲.ITO薄膜的生产技术概况及发展趋势探讨,表面技术,2006,35(1): 1-4.
    [3] Besbes S, Ben Ouada H,Davenas J,Ponsonnet L, Jaffrezic N, Alcouffe P. Effect of surface treatmentand functionalization on the ITO properties for OLEDs, Materials Science and engineering C, 2006, 26: 505-510.
    [4] Aukkaravittayapun S, Wongtida N, Kasecwatin T, Charojrochkul S, Unnanon K, Chindaudom P. Large scale F-doped SnO2 coating on galss by spray pyrolysis, Thin Solid Films, 2006, 496: 117-120.
    [5] Lackner J M. Industrially-styled room-temperature pulsed laser deposition of ZnO:Al films, Thin Solid Films, 2006, 494: 302-306.
    [6] Meng Y, Yang X, Chen H, Shen J, Jiang Y, Zhang Z, Hua Z. A new transparent conductive thin film In2O3:Mo , Thin Solid Films, 2001, 394: 219-223.
    [7] Otto J G, Tao Y, Everett E C. Effect of aluminum doping on the high-temperature stability and piezoresistive response of indium tin oxide strain sensors, Thin Solid Films, 2005, 476: 344-351.
    [8] Minami T, Yamamoto T, Toda Y, Miyata T. Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering, Thin Solid Films, 2000, 373: 189-194.
    [9] Suzuki M, Maeda Y, Muraoka M, Higuchi S, Sawada Y. ITO films sputter-deposited using an ITO target sintered with vanadium oxide additive, Materials Science and Engineering B, 1998, 54: 43-45.
    [10] Hsu C M, Lee J W, Meen T H, Wu W T. Preparation and characterization of Ni-indium tin oxide cosputtered thin films for organic light-emitting diode application, Thin Solid Films, 2005, 474: 19-24.
    [11]李家亮,姜洪义,牛金叶,邹科.透明导电氧化物薄膜的研究现状及展望,现代技术陶瓷,2006, 27(1): 19-23.
    [12]赵谢群.透明导电氧化物薄膜研究现状与产业化进展,电子元件与材料, 2000, 19(1): 40-41.
    [13] Fan J C, Goodenough J B. X-ray phoemission spectroscopy studies of Sn-doped indium-oxide films , Journal of Applied Physics, 1997, 48(8): 3524-3531.
    [14] Carl K, Schmitt H, Friedrich I. Optimization of sputtered ITO films with respect to the oxygen partial pressure and substrate temperature, Thin Solid Films, 1997, 295: 151-155.
    [15] Han O, Kim D, Cho J, Koh S, Song Y. Tin-doped indium oxide (ITO) film depostion by ion beam sputtering, Solar Energy Materials and Solar Cells, 2001, 65: 211-218.
    [16] Veluchamy P, Tsuji M, Nishio T, Aramoto T, Higuchi H, Kumazawa S, Shibutani S, Nakajima J, Arita T, Ohyama H, Hanafusa A, Hibino T, Omura K. A pyrosol processs to deposit large-area SnO2:F thin films and its use as a transparent conducting substrate for CdTe solar cells, Solar Energy Materials and Solar Cells, 2001, 67(1-4): 179-185.
    [17] Gordillo G, Paez B, Jacome C, Florez J M. Characterization of SnO2 thin films through thermoelectric power measurements, Thin Solid Films, 1999, 342(1-2): 160-166.
    [18] Dutta J, Perrin J, Emeraud T, Laurent J M, Smith A. Pyrosol deposition of fluorine doped tin dioxide thin-films, Journal of Materials Science, 1995, 30(1): 53-62.
    [19] Acosta D R, Estrada W, Castanedo R, Maldonado A, Valenzuela M A. Structural and surfacee studies of tin oxide films doped with fluorine, Thin Solid Films, 2000, 375(1-2): 147-150.
    [20] Niklasson G A, Ronnow D, Mattsson M S, Kullman L, Nilsson H, Roos A. Surface roughness of pyrolytic tin dioxide films evaluated by different methods, Thin Solid Films, 2000, 259(2): 203-209.
    [21] Rakhshani A E, Makdisi Y, Ramazaniyan H A. Electronic and optical properties of fluorine-doped tin oxide films, Journal of Applied Physics, 1998, 83(2): 1049-1057.
    [22] Gamard A, Babot O, Jousseaume B, Rascle M, Toupance Thierry, Campet G. Conductive F-doped Tin dioxide sol-gel materials from fluorinatedβ-Diketonate Tin (IV) complexes, characterization and thermolytic behavior, Chemistry of Materials, 2000, 12(11): 3419-3426.
    [23] Mwamburi M, Wachelgard E, Roos A. Prepatation and charactrisation of solar selective SnOx:F coated aluminum reflector surfaces, Thin Solid Films, 2000, 374(1): 1-9.
    [24] Proscoa J, Gordon R G. Properties of flurine-doped tin oxide-films produced by atmospheric pressure chemical vapor-deposition from tetramethyltin, bromotrifluoromethane and oxygen, Thin solid Films, 1992, 214(2): 175-187.
    [25] Suh S G, Zhang Z H, Chu W K, Hoffman D M. Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films, Thin Solid Films, 1999, 345(2): 240-243.
    [26] Lewis B L, Paine D C. Applications and processing of transparent conducting oxides, MRS Bulletin, 2000, 25(8): 22-27.
    [27] Gordon R G. Criteria for choosing transparent conductors, MRS Bulletin, 2000, 25(8): 52-57.
    [28] Hoflund G B. Characterization study of oxidized polycrystalline tin oxide surfaces before and after reduction in H2, Chemistry of materials, 1994, 6(4): 562-568.
    [29] Karzel H, Potzel W, Kofferlein M, Schiessl W, Steiner M, Hiller U, Kalvius G M, Mitchell D W, Das T P, Blaha P, Schwarz K, Pasternak M P, Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressure, Physical Review B, 1996, 53: 11425-11438.
    [30] Kaidashev E M, Lorenz M, Von Wenckstern H, Rahm A, Semmelhack H C, Han K H, Benndorf G, Bundesmann C, Hochmuth H, Grundmann M. High electron mobility of epotaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Applied Physics Letters, 2003, 82(22): 3901-3903.
    [31] Kohan A F, Ceder G, Morgan D, Van de Walle C G. First-principles study of native point defects in ZnO, Physical Review B, 2000, 61: 15019-15027.
    [32] Look D C, Hemsky J W, Sizelove J R. Residual native shallow donor in ZnO, Physics Review Letters, 1999, 82: 2552-2555.
    [33] Demerchant J, Cocivera M. Preparation and doping of zinc-oxide using spray-pyrolysis, Chemistry of Materal, 1995, 7(9): 1742-1749.
    [34] Sato H, Minai T, Takata S. Highly transparent and conductive group-IV impurity-diped ZnO thin films prepared by radio-fryquency magnetron sputtering, Journal of Vacuum Science and Technology A, 1993, 11(6): 2975-1979.
    [35] Hu J H, Gordon R G. Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous-silicon solar-cells, Solar cells, 1991, 30(1-4): 437-450.
    [36]职利,周怀营. ITO薄膜的制备方法与应用,桂林电子工业学院学报, 2004, 24(6): 54-57.
    [37]王树林,夏冬林. ITO薄膜的制备工艺及进展,玻璃与搪瓷, 2004, 32(5): 51-54.
    [38]袭著有,许启明,赵鹏,田晓珍. ITO薄膜特性及发展方向,西安建筑科技大学学报, 2004, 36(1): 1.9-112.
    [39] Aukkaravittayapun S, Wongtida N, Kasecwatin T, Charojrochkul S, Unnanon K, Chindaudom P. Large scale F-doped SnO2 coating on galss by spray pyrolysis, Thin Solid Films, 2006, 496: 117-120.
    [40] Lackner J M. Industrially-styled room-temperature pulsed laser deposition of ZnO:Al films, Thin Solid Films, 2006, 494: 302-306.
    [41] Kim H, Horwitz J Z, Kushto G P, Qadri S B, Kafafi Z H, Chrisey D B. Transparent conduction Zr-doped In2O3 thin films for organic light-emitting diodes, Applied Physics Letters, 2001, 78(8): 1050-1052.
    [42] Van Hest M F A M, Dabney M S, Perkins J D, Ginley D S, Taylor M P. Titanium-doped indium oxide: A high-mobility transparent conductor, Applied Physics Letters, 2005, 87: 032111.
    [43]孟扬,杨锡良,章壮健.新型透明导电薄膜In2O3:Mo,真空科学与技术, 2000, 20(5): 331-335.
    [44] Meng Y, Yang X L, Chen H X, Shen Jie, Jiang Y M, Zhang Z J, Hua Z Y. Molybdenum-doped indium oxide transparent conductive thin films, Journal of Vacuum Science and Technology A, 2002, 20(1): 288-290.
    [45] Yoshida Y, Gessert T A, Perkins C L, Coutts T J. Development of radio-frequency magnetron sputtered indium molybdenum oxide, Journal of Vacuum Science and Technology A, 2003, 21(4): 1092-1097.
    [46] Warmsingh C, Yoshida Y, Readey D W, Teplin C W, Perkins J D, Parilla P A, Gedvilas L M, Keyes B M, Ginley D S. High-mobility transparent conducting Mo-doped In2O3 thin films by pulsed laserdeposition, Journal of Applied Physics, 2004, 95: 3831-3833.
    [47] Sun S Y, Huang J L, Lii D F. Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high-density plasma evaporation, Journal of Vacuum Science and Technology A, 2004, 22(4): 1235-1241.
    [48] Sun S Y, Huang J L, Lii D F. Effects of H2 in indium-molybdenum oxide films during high density plasma evaporation at room temperature, Thin Solid Films, 2004, 469-470: 6-10.
    [49] Yoshida Y, Wood D W, Gessert T A, Coutts T J. High-mobility, sputtered films of indium oxide doped with molybdenum, Applied Physics Letters, 2004, 84(12): 2097-2099.
    [50] Dong J S, Sun H P. Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis, Physica B, 2005, 357: 420-427.
    [51] Li X F, Miao W N, Zhang Q, Huang Li, Zhang Zhuangji, Hua Zhongyi. Preparation of molybdenum-doped indium oxide thin films using reactive direct-current magnetron sputtering, Journal of Materials Research, 2005, 320(6): 1404-1408.
    [52] Li X F, Miao W N, Zhang Q, Huang Li, Zhang Zhuangji, Hua Zhongyi. The electrical and optical properties of molybdenum-doped indium oxide films grown at room temperature from metallic target, Semiconductor Science and Technology, 2005, 20: 823-828.
    [53] Huang L, Li X F, Zhang Q, Miao W N. Properties of transparent conductive In2O3:Mo thin films deposited by Channel Spark Ablation, Journal of Vacuum Science and Technology A, 2005, 23(5): 1350-1353.
    [54]李喜峰,缪维娜,张群,黄丽,章壮健,华中一.高迁移率透明导电In2O3:Mo薄膜,真空科学与技术学报,2005,25(2): 142-145.
    [55]缪维娜,李喜峰,张群,黄丽,章壮健,张莉,严学俭.室温直流反应磁控溅射制备透明导电In2O3:Mo薄膜,真空科学与技术学报, 2005, 25(4): 301-304.
    [56]黄丽,李喜峰,张群,缪维娜,张莉,章壮健,华中一.渠道火花烧蚀法制备In2O3:Mo透明导电薄膜,半导体学报, 2005, 26(11): 152-157.
    [57] Miao W N, Li X F, Zhang Q, Huang L, Zhang Z J, Zhang L, Yan X J. Development of novel tungsten-doped high mobility transparent conductive In2O3:Mo thin films by direct current reactive magnetron sputtering at room temperature, Thin Solid Films, 2006, 500(1-2): 70-73.
    [58]一种新型的高功函数In2O3:Pt,W/IWO透明导电薄膜. TFC’05全国薄膜技术研讨会,大连,大连理工大学..
    [59] Tominaga K, Murayama T, Mori I, Okamoto T, Hiruta K, Moriga T, Nakabayashi I. conductive transparent films deposited by simultaneous sputtering of zinc-oxide and indium-oxide targets,Vacuum, 2000, 59(2-3): 546-552.
    [60] Naghavi N, Marcel C, Dupont L, Rougier A, Leriche J B, Guery C. Structrual and physical characterization of transparent conducting pulsed laser deposited In2O3-ZnO thin films, Journal of Materials Chemistry, 2000, 10(10): 2315-2319.
    [61] Palmer G B, Poeppelmeier K R, Mason T O. Conductivity and transparency of ZnO/SnO2-cosubstituted In2O3, Chemistry of Materials, 1997, 9(12): 3121-3126.
    [62] Kudo A, Yanagi H, Hosono H, Kawazoe H. Enhancement of carrier generation in MgIn2O4 thin film prepared by pulsed laser deposition technique, Materials Science and Engineering B, 1998, 54(1-2): 51-54.
    [63] Minami T, Sonohara H, Takata S, Sato H. Highly transparent and conductive zinc stannate thin films prepared by RF magnetron sputtering, Japanese Journal of Applied Physics, 1994, 33(12A): L1393-L1696.
    [64] Minami T, Sonohara H, Kakumu T, Takata S. Highly transparent and conductive Zn2In2O5 thin films prepared by RF magnetron sputtering, Japanese Journal of Applied Physics, 1995, 34(8A): L971-L974.
    [65] Minami T, Kakumu T, Takeda Y, Takata S. Highly transparent and conductive Zn-In2O3 thin films prepared by DC magnetron sputtering, Thin Solid films, 1996, 391: 1-5.
    [66] Minami T, Takeda Y, Takata S, Kakumu T. Preparation of transparent conducting In4Sn3O12 thin films by DC magnetron sputtering, Thin Solid Films, 1997, 308: 13-18.
    [67] Minami T, Kakumu T, Shimokawa K, Takata S. New transpatent conducting ZnO-In2O3-SnO2 thin films prepared by magnetron sputtering, Thin Solid Films, 1998, 317(1-2): 318-321.
    [68] Minami T, Takeda Y, Kakumu T, Takata S, Fukuda I. Preparation of highly transparent and conducting Ga2O3-In2O3 films by direct current magnetron sputtering, Journal of Vacuum Science and Technology, 1997, 15(3): 958-962.
    [69] Moriga T, Edwards D D, Mason T O, Palmer G B, Poeppelmeier K R, Schindler J L, Kannewurf C R, Nakabayashi I. Phase relationship and physical properties of homologous compounds in the zinc oxide-indium oxide system, Journal of the American Ceramic Society, 1998, 81(5): 1310-1316.
    [70] Miyata T, Suzuki, Ishii M, Minami T. New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering, Thin Solid Films, 2002, 411: 76-81.
    [71] Minami T, Tsukada S, Minamina Y, Miyata T. Preparation of transparent and conductive multicomponent Zn-In-Sn oxide thin films by vacuum arc plasma evaporation, Journal of VacuumScience and Technology A, 2005, 23(4): 1128-1132.
    [72] Lee J H, Lee S Y, Park B O. Fabrication and characteristics of transparent conducting In2O3-ZnO thin films by ultrasonic spray pyrolysis, Materials Science and Engineering B, 2006, 127(2-3): 267-271.
    [73] Lee S Y, Park B O. Electrical and optical properties of In2O3-ZnO thin films prepared by sol-gel method, Thin Solid Films, 2005, 484: 184-187.
    [74] Tominaga K, Fukumoto H, Kondou K, Hayashi Y, Moriga T, Nakabayashi I. Al-impurity-doped transparent conductive oxide films of In2O3-ZnO system, Vacuum, 2004, 74: 683-687.
    [75] Martinez A I, Acosta D R. Effect of the fluorine content on the structural and electrical properties of SnO2 and ZnO-SnO2 thin films prepared by spray pyrolysis, Thin Solid Films, 2005, 483: 107-133.
    [76] Qadri S B, Kim H, Khan H R, Pique A, Horwitz J S, Chrisey D, Kim W J, Skelton E F. Transparent conducting films of In2O3-ZrO2, SnO2-ZrO2, and ZnO-ZrO2, Thin Solid Films, 2000, 377-378: 750-754.
    [77] Ju H, Hwang S, Jeng C, Park C, Jeong E, Park S. Electrical and optical perperties of new transparent conducting oxide In2O3:Ta thin films, Journal of the Korean Physical Society, 2004, 44 (4): 956-961.
    [78] Kammler D R, Harder B J, Hrabe N W, Mcdinald N M, Gonzalez G B, Penake D A, Maaon T O. Subsolidus phase relations and transparent conductors in the cadmium-indium-tin oxide system, Journal of the American Ceramic Society, 2002, 85(9): 2345-2352.
    [79] Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows, Journal of Applied Physics, 1986, 60 (11): 123-159.
    [80] Guillen C, Herrero J. Influence of oxygen in the deposition and annealing atmosphere on the characteristics of ITO thin films prepared by sputtering at room temperature, Vacuum, 2006, 80: 615-620.
    [81] Guillen C, Herrero J. Polycrystalline growth and recrystallization processed in sputtered ITO thin films, Thin Solid Films, 2006, 510: 260-264.
    [82] Bender M, Seelig W, Daube C, Frankenberger H, Ocker B, Stollenwerk J. Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films, Thin Solid Films, 1998, 326: 72-77.
    [83] Biswas P K, De A, Pramanik N C, Chakraborty P K, Ortner K, Hock V, Korder S. Effects of tin on IR reflectivity, tehermal emissivity, hall mobility and plasma wavelength of sol-gel indium tin oxide films on glass, Materials Letters, 2003, 57: 2326-2332.
    [84] Bender M, Trube J, Stollenwerk J. Deposition of transparent and conducting indium-tin-oxide films by the r.f.–superimposed DC sputtering technology, Thin Solid Films, 1999, 354: 100-105.
    [85]孟扬,林剑,刘键,沈杰,蒋益明,杨锡良,章壮健.复合效应对掺杂氧化物透明导电薄膜的影响,光电子技术, 2001, 21(2): 89-101.
    [86] Lee Ho-Chul. The behaviors of the carrier concentrations and mobilities in indium-tin-oxide thin films by DC and RF-superimposed DC reactive magnetron sputtering at the various process temperatures, Applied Surface Science, 2006, 252: 2647-2656.
    [87] Lee Ho-Chul. Electon scattering mechanisms in indium-tin-oxide thin films prepared at the various process conditions, Applied Surface Science, 2006, 252: 3428-3435.
    [88] Lee Ho-Chul, Ok Park O. Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering, Vacuum, 2004, 75: 275-282.
    [89] May C, Strumpfel J. ITO coating by reactive magnetron sputtering-comparison of properties from DC and MF processing, Thin Solid Films, 1999, 351(1-2): 48-52.
    [90] Futagami T, Shigesato Y, Yasui A. Characterization of RF-enhanced DC sputtering to deposit tin-doped indium oxide thin films, Japanese Journal of Applied Physics, 1998, 37(11): 6210-6214.
    [91] Strumpfel J, May C. Low ohm large area ITO coating by reactive magnetron sputtering in DC and MF mode, Vocuum, 2000, 59(2-3): 500-505.
    [92] Bender M, Trube J, Stollenwerk J. Deposition of transparent and conducting indium-tin-oxide films by the rf-superimposed DC sputtering technology, Thin Solid Films, 1999, 354(1-2): 100-105.
    [93] Bae J W, Kim J S, Yeom G Y. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system, Nuclear Instruments and Methods in Physics Research Section B, 2001, 178(1-4): 311-314.
    [94] Coutal C, Azema A, Roustan J C. Fabrication and characterization of ITO thin films deposited by excimer laser evaporation, Thin Solid Films, 1996, 288(1-2): 248-253.
    [95] George J, Menon C S. Electrical and optical properties of electron beam evaporated ITO thin films , Surface and Coatings Technology, 2000, 132(1): 45-48.
    [96] Alam M J, Cameron D C. Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process, Thin Solid Films, 2000, 377-378: 455-459.
    [97] Kim S S, Choi S Y, Park C G, Jin H W. Transparent conductive ITO thin films through the sol-gel process using metal salts, Thin Solid Films, 1999, 347(1-2): 155-160.
    [98] Daoudi K, Canut B, Blanchin M G, Sandu C S, Teodorescu V S, Roger J A. Tin-doped indium oxide thin films deposited by sol-gel dip-coating technique, Materials Science and Engineer, 2002,21(1-2): 313-317.
    [99] Su C, Sheu T K, Chang Y T, Wan M A, Feng M C, Hung W C. Preparation of ITO thin films by sol-gel process and their characterizations, Synthetic Metals, 2005, 153(1-3): 9-12.
    [100]李世涛,乔学亮,陈建国.磁控溅射制备In2O3-SnO2薄膜与分析,中国有色金属学报, 2005, 15(8): 1214-1218.
    [101]史月艳,潘文辉,殷志强.氧化铟锡(ITO)膜的光学及电学性能,真空科学与技术, 1994, 14(1): 35-40.
    [102]马勇,孔春阳. ITO薄膜的光学和电学性质及其应用,重庆大学学报, 2002, 25(8): 114-117.
    [103]张治国. ITO薄膜的能带结构和电导特性,半导体学报, 2005, 27(5): 840-845.
    [104] Daeil K, Sungjin K. AFM observation of ITO films deposited on polycarbonate substrate by sputter type negative metal ion source, Surface and Coatings Technology, 2003, 176: 23-29.
    [105]李世涛,乔学亮,陈建国.塑料基体低温沉积ITO薄膜的研究,材料导报, 2004, 18(11): 3-5.
    [106]杨志伟,韩圣浩,杨田林,赵俊卿,马瑾,马洪磊.偏压磁控溅射法在水冷柔性衬底上制备ITO透明导电膜,物理学报, 2000, 49(6): 1196-1201.
    [107]马瑾,赵俊卿,叶丽娜,田茂华,马洪磊.柔性衬底ITO导电膜的低温制备及特性研究,半导体光电, 1999, 20(6): 46-49.
    [108]马瑾,李淑英,马洪磊,赵俊卿,叶丽娜.有机薄膜衬底ITO透明导电膜的制备及光电特性的研究,太阳能学报, 1998, 49(2): 198-201.
    [109] Hamid R F, Mohsen G, Ali H, Hadi S. The effect of deposition rate on electrical, optical and structural properties of tin-doped indium oxide (ITO) films on glass at low substrate temperature, Physica B, 2006, 373: 274-279.
    [110] Yang Z, Han S, Yang T, Ye L, Ma H, Cheng C. ITO films deposited on water-cooled flexible substrate by bias RF magnetron sputtering, Applied Surface Science, 2000, 161: 279-285.
    [111]胡云慧,李京增,余圣发,彭晶,苏丹丹,彭传才,李伟,蒋力,刘婧.高透明广阻ITO-Ag-ITO柔性镀膜技术,真究, 2001, 2: 36-38.
    [112] Ohsaki H, Kokubu Y. Global market and technology trends on coated glass for architectural, automotive and display application, Thin Solid Films, 1999, 351(1-2): 1-7.
    [113] Katayama M. TFT-LCD technology, Thin Solid Films, 199, 341(1-2): 140-147.
    [114] Park J Y, Kim H S, Lee D H, Kwon K H, Yeom G Y. A study on the etch characteristics of ITO thin film using inductively coupled plasmas, Surface and Coatings Technology, 2000, 131(1-3): 247-251.
    [115] Ishida T, Kouno H, Kobayashi H, Nakato Y. Dependence of photovoltages of spray-depositedindium tin oxide silicon-oxide silicon junction solar-cells on spray solvents, Journal of the Electrochemnical Society, 1994, 141(5): 1357-1361.
    [116] Suzuki K, Hashimoto N, Oyama T, Shimizu J, Akao Y, Kojima H. Large scale and low resistance ITO films formed at high deposition rates, Thin Solid Films, 1993, 226(1): 104-109.
    [1] Moriga T, Okamoto T, Hiruta K, Fujiwara A, Nakabayashi I. Structures and physical properties of films deposited by simultaneous Dcsputtering of ZnO and In2O3 or ITO targets, Journal of Solid State Chemistry, 2000, 155: 312-319.
    [2] Morales M A, Huang M B, Feldman L C. Nitrogen as background gas in pulsed-laser depostion growth of indium tin oxide films at room temperature, Thin Solid Films, 2003, 429: 220-224.
    [3] Akihiko N, Mami A, Hisanao U, Eiji S, Yoshio T. Fabrication of nickel oxide and Ni-doped indium tin oxide thin films using pyrosol process, Thin Solid Films, 2006, 498: 240-243.
    [4] Moyata T, Okamoto T, Hiruta K, Fujiwara A, Nakabayashi I, Tominaga K. Structures and physicalproperties of films deposited by simultaneous DC sputtering of ZnO and In2O3 or ITO targets, Journal of Solid State Chemistry, 2000, 155: 312-319.
    [5] Otto J Gregory, Tao You, Everett E Crisman. Effect of aluminum doping on the high-temperature stability and piezoresistive response of indium tin oxide strain sensors, Thin Solid Films, 2005, 476: 344-351.
    [6] Minami T, Yamamoto T, Toda Y, Miyata T. Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering, Thin Solid Films, 2000, 373: 189-194.
    [7] Hsu C, Lee J, Meen T, Wu W. Preparation and characterization of Ni-indium tin oxide cosputtered thin films for organic light-emitting diode application, Thin Solid Films, 2005, 474: 19-24.
    [8] Suzuki M. Maeda Y, Muraoka M, Higuchi S, Sawada Y. ITO films sputter-deposited using an ITO target sintered with vanadium oxide additive, Materials Science and Engineering B, 1998, 54: 43-45.
    [9]王一禾,杨赝善.非晶态合金,冶金工业出版社,1989.
    [10]胡汉起.金属凝固原理,机械工业出版社,1991.
    [11] Kikuchi N, Kusano E, Hanto H, Kinbara A, Hosono H. Phonon scattering in electron transport phenomena of ITO films, Vacuum, 2000, 59: 492-499.
    [12] Lee Ho-Chul, Park O Ok. Behaviors of carrier concentrations and mobilities in indium-tin oxide thin films by DC magnetron sputtering at various oxygen flow rates, Vaccum, 2004, 77: 69-77.
    [13] Lee Ho-Chul. Electron scattering mechanisms in indium-tin-oxyde thin films prepared at the various process conditions, Applied Surface Science, 2006, 252: 3428-3435.
    [14] Terzini E, Thilakan P, Minarini C. Properties of ITO thin films deposited by RF magnetron sputtering at elecated substrate temperature, Materials Science and Engineering B, 2000, 77: 110-114.
    [15] Nisha M, Anusha S, Antony A, Manoj R, Jayaraj M K. Effect of substrate temperature on the growth of ITO thin films, Applied surface science, 2005,252:1430-1435
    [16] Dong X P, Wu J S. Study on the crystallization of amorphous Cr-Si-Ni thin films using in situ X-ray diffraction, Journal of Materials Science and Technology, 2001,17:S43-S46
    [17] Diniz A S A C, Kiely C J, Crystallisation of indium-tin-oxide (ITO) thin films, Renewable Energy. 29 (2004) 2037.
    [18] Hamberg I, Granqvist C G. Theoretical model for the optical properties of In2O3:Sn films in the 0.3-50um range, Solar Energy Materials, 1986, 14: 241-256.
    [19] Guillen C, Herrero J. Influence of oxygen in the deposition and annealing atmosphere on the characteristics of ITO thin films prepared by sputtering at room temperature, Vaccum, 2006, 80:615-620.
    [20] Hamid R F, Mohsen G, Ali H, Hadi S. The effect of annealing on structure, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation[J]. Materials Research Bulletin, 2007, 42: 487-496.
    [21] Lee H C, Park O O. Behaviors of carrier concentrations and mobilities in indium-tin oxide thin films by DC magnetron sputtering at various oxygen flow rates, Vacuum, 2004, 77: 69-77.
    [22] Aldrin A, Nisha M, Manoj R. Influence of target to substrate spacing on the properties of ITO thin films, Applied surface science, 2004,225:294-301.
    [23] Canhola P, Martins N, Raniero L. Role of annealing environment on the performances of large area ITO films produced by rf magnetron sputtering, Thin Solid Films, 2005, 487: 271-276.
    [24] Quaas M, Steffen H, Hippler R. Investigation of diffusion and crystallization processes in thin ITO films by temperature and time resolved grazing incidence X-ray diffractometry, Surface Science, 2003, 540: 337-342.
    [25]赵透玲,任丙彦,赵龙,王文静.射频磁控溅射ITO薄膜中沉积温度对膜特性影响,光电子·激光, 2005, 16(12): 1429-1432.
    [26] Antony A, Nisha M, Manoj R, Jayaraj M K. Influence of target to substrate spacing on the properties of ITO thin films, Applied surface science, 2004, 225: 294-301.
    [27]王树林,夏冬林. ITO薄膜的制备工艺及进展,玻璃与搪瓷, 2004, 32(5): 51-54.
    [28] Biswas P K, De A, Pramanik N C, Chakraborty P K, Ortner K, Hock V, Korder S. Effect of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of sol-gel indium tin oxide films on glass, Material Letters, 2003, 57: 2326-2332.
    [29] Qadri S B, Kim H, Khan H R, Pique A, Horwitz J S, Chrisey D, Kim W J. Transparent conduting films of In2O3-ZrO2,SnO2-ZrO2 and ZnO-ZrO2, Thin Solid Films, 2000, 377: 750-754.
    [1] Van de Walle C G. Defect analysis and engineering in ZnO, Physica B, 2001, 308-310: 899-903.
    [2] Van de Walle C G. Hydrogen as a Cause of Doping in Zinc Oxide, Physical Review Letters, 2000, 85: 1012-1015.
    [3] Minami T. New n-type transparent conducting oxides, MRS Bulletin, 2000, 25(8): 38-44.
    [4] Haug F J, Geller Z S, Zogg H. Influence of depostion conditions on the thermal stability of ZnO:Al films grown by rf magnetron sputtering, Journal of Vacuum Science and Technology, 2001, 19(1): 171-174.
    [5] Kobayashi A, Sankey O F, Dow J D. Deep energy level of defects in the wurtzite semiconductors AlN,CdS, CdSe, ZnS, and ZnO, Physical Review B, 1983, 28(2): 946-956.
    [6] Schrer P, Krger P, Pollmann J. First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS, Physical Review B, 1993, 47(12): 6971-6980.
    [7] Xu Y N, Ching W Y. Electronic, optical, and structure properties of some wurtxite crystals, Physical Review B, 1993, 48(7): 4335-4351.
    [8]张富春,邓周虎,阎军锋,王雪文,张志勇.Ga掺杂ZnO电子结构的密度泛函计算,功能材料,2005, 36(8): 1268-1272.
    [9]张富春,邓周虎,阎军锋,允江妮,张志勇. Ga Al In掺杂ZnO电子结构的第一性原理计算,电子元件与材料, 2005, 24(8): 4-7.
    [10] Segev D, Wei S H. Structure-derived electronic and optical propertyes of transparent conducting oxides, Physical Review B, 2005, 71: 125-129.
    [11] Ren C Y, Chiou S H, Choisnet J. First-principles calculation of the electronic band structure of In4Sn3O12 and In5SnSbO12, Journal of Appled Physics, 2006, 99: 023706.
    [12] Odaka H, Iwata S, Taga N. Study on electronic structure and optoelectonic propertyes of indium oxide by first-principles calculation, Japanese Journal of Applied Physics, 1997, 36: 5551-5554.
    [13] Odaka H, Shigesato Y, Murakami T. Electronic structure analyses of Sn-doped In2O3, Japanese Journal of Applied Physics, 2001, 40: 3231-3235.
    [14] Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows, Joural of Applied Physics, 1986, 60: 123-159.
    [15] Mryasov O N, Freeman A J. Electronic band structure of indium tin oxide and criteria for transpatent conducting behavior, Physical Review B, 2001, 64: 233111.
    [16] Brewer S H, Franzen S. Calculation of the electronic and optical propertyes of indium tin oxide by density functional theory, Chemical Physics, 2004, 300: 285-293.
    [17] Hohenberg P, Kohn W. Inhomogeneous Electron Gas, Physical Review, 1964, 136(3B): B864-B871.
    [18] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects, Physical Review, 1965, 140(4A): A1133-A1138.
    [19]黄琼,赵珊茸.枝晶研究的发展现状,人工晶体学报, 2002, 31(5): 486-489.
    [20] Blochi P E. Projector augmented-wave method, Physical Review B, 1994, 50(24): 17953-17979.
    [21] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, 1999, 59(3): 1758-1775.
    [22] Kresse G, Furthmuller J. Efficiency iterative schemes for ab initio total-energy calculations using a Plane-wave basis set, Physical Review B, 1996, 54(16): 11169-11186.
    [23] Predew J P. Atoms, molecules, solids, and surface: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, 1992, 46(11): 6671-6687.
    [24] Gauckler L J, Sasaki K. Ionic and electronic conductivities of homogeneous and heterogeneous materials in the system ZrO2-In2O3, Solid State Ionics, 1995, 75: 203-210.
    [25] Timo A, Mikko R, Markku L. Atomic layer deposition growth of zirconium doped In2O3 films, Thin Solid Films, 2003, 440: 152-154.
    [26] Qadri S B, Kim H, Khan H R, Pique A, Horwitz J S, Chrisey D, Kim W J, Skelton E F. Transparent conducting films of In2O3-ZrO2, SnO2-ZrO2 and ZnO-ZrO2, Thin Solid Films, 2000, 377-378: 750-754.
    [27] Qadri S B, Khan H R, Skelton E F, Lubitz P. Indium-doped transparent conducting oxides of ZrO2, Surface and Coatings Technology, 1998, 100-101: 94-97.
    [28] Kim H, HorwitZ J S, Kushto G P, Qadri S B, Kafafi Z H, Chrisey D B. Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes, Applied Physics Letters, 2001, 78(8): 1050-1052.
    [1] Yang C H, Lee S C, Lin T C, Zhuang W Y. Opto-electronic properties of titanium-doped indium tin oxide films deposited by RF magnetron sputtering at room temperature, Materials Science and Engineering B, 2003, 134: 68-75.
    [2] Hsu C M, Wu W T. Improved characteristics of organic light-emitting devices by surface modification of nickel-doped indium tin oxide anode, Applied Physics Letters, 2004, 85 (5) : 840-842.
    [3] Suzuki M, Maeda Y, Muraoka M, Higuchi S, Sawada Y. ITO films sputter-deposited using an ITO target sintered with vanadium oxide additive, Materials Science and Engineering B, 1998, 54: 43-45.
    [4] Gregory O J, You T, Crisman E E. Effect of aluminum doping on the high-temperature stability and piezoresistive response of indium tin oxide strain sensors, Thin Solid Films, 2005, 476: 344-351.
    [5] Zhang B, Dong X, Xu X, Zhao P, Wu J. Characteristics of zirconium-doped indium tin oxide thinfilms deposited by magnetron sputtering, Solar Energy Materials and Solar Cells, 2008, 92(10): 1224-1229.
    [6]张波,董显平,吴建生.衬底温度对ITO和ITO:Zr薄膜性能的影响,真空科学与技术学报,2008, 28(2): 164-168.
    [7] Nisha M, Anusha S, Antony A, Manoj R, Jayaraj M K. Effect of substrate temperature on the growth of ITO thin films, Applied Surface Science, 2005: 252: 1430-1435.
    [8]张波,董显平,徐晓峰,赵培,吴建生.退火处理对ITO和ITO:Zr薄膜性能的影响,中国有色金属学报,2008, 18(1): 48-53.
    [9] Warmsingh C, Yoshida Y, Readey D W. High-mobility transparent conducting Mo-doped In2O3 thin films by pulsed laser deposition, Journal of Applied Physics, 2004, 95: 3831-3833.
    [10] Rauf A. The dominant scattering mechanisms in tin-doped indium oxide thin-films, Journal of Physics D, 1994, 27: 1083-1084.
    [11]孟扬,林剑,刘键,沈杰,蒋益明,杨锡良,章壮健.复合效应对掺杂氧化物透明导电薄膜的影响,光电子技术,2001, 21(2): 89-101.
    [12] Freeman A J, Poeppelmeier K R, Mason T O, Chang R P H, Marks T J. Chemical and thin-film strategies for new transparent conducting oxides, MRS Bulletin, 2000, 25: 45-51.
    [13] Tahar R B H, Ban T, Ohya Y, Takahashi Y. Tin doped indium oxide thin films: electrical properties, Journal of Applied Physics, 1998, 83: 2631-2645.
    [14] Chen M, Pei Z L, Wang X, Yu Y H, Liu X H, Sun C, Wen L S. Intrinsic limit of electrical properties of the transparent conductive oxide films, Journal of Physics D, 2000, 33: 2538-2548.
    [15] Wu W F, Chiou B S. Effect of annealing on electrical and optical-properties of RF magnetron sputtered indium tin oxide-films, Applied Surface Science, 1993, 68: 497-504.
    [16] Kikuchi N, Kusano E, Nanto H. Phonon scattering in electron transport phenomena of ITO films, Vacuum, 2000, 59: 492-499.
    [17] Shigesato Y, Paine D C. Study of the effect of Sn doping on the electronic transport-properties of thin film indium oxide, Applied Physics Letters, 1993, 62: 1268-1270.
    [18] Yamada N, Yasui I. Doping mechanisms of Sn in In2O3 power studied using Sn-119 Mossbauer spectroscopy and X-ray diffraction, Japanese Journal of Applied Physics, 1999, 38: 2856-2862.
    [19] Davis L. Properties of transparent conducting oxides deposited at room-temperature, Thin Solid Films, 1993, 236: 1-5.
    [20] Mergel D, Stass W, Ehl G, Barthel D. Oxygen incorporation in thin films of In2O3:Sn prepared by radio frequency sputtering, Japanese Journal of Applied Physics, 1999, 38: 2856-2862.
    [21] Ju H, Hwang S, Jeong C, Park C, Jeong E, Park S. Electrical and optical properties of new transparent conducting oxide In2O3:Ta thin films, Journal of the Korean Physical Society, 2004, 44(4): 956-961.
    [22] Ju H, Hwang S, Jeong C, Park S, Choi J, Park C. Low-resistivity indium tantalum oxide films by magnetron sputtering, Applied Physics A, 2004, 79: 109-111.
    [23] Moon J, Shin Y, Kang K, Park S, Ju H, Jeong C, Park C. Low-resistivity sputtered films of transparent conducting Ta-doped In2O3 oxide, Journal of the Korean Physical Society, 2005, 47(1): 148-151.
    [1]茅昕辉,陈国平. ITO膜的化学稳定性与刻蚀特性,真空,1994; 5: 25-27.
    [2]姚平,刘洪珠,王承遇.热处理对ITO膜膜化学稳定性的影响,中国玻璃,1998; 5: 11-14.
    [3] Tang C W, Vanslyke S A. Organic electroluminescent diodes, Applied Physics Letters, 1987, 51(12): 913-915.
    [4] Gao Z Q, Lee C S, Bello I, Lee S T, Chen R M, Luh T Y, Shi J, Tang C W. Bright-blue electroluminescence from a silyl-substituted ter-(phenylene-vinylene) derivative, Applied Physics Letters, 1999, 74(6): 865-867.
    [5] Lee J, Park Y. High efficiency organic light-emitting devices with Al/NaF cathode, Applied Physics Letters, 2003, 82(2): 173-175.
    [6] Shi J M, Tang C W. Doped organic electroluminescent devices with improved stability, Applied Physics Letters, 1997, 70(13): 1665-1667.
    [7] Kim H, Pique A, Horwitz J S, Mattoussi H, Murata H, Kafafi Z H, Chrisey D B. Indium tin oxide thin films for organic light-emitting devices, Applied Physics Letters, 1999, 74(23): 3444-3446.
    [8] Liu S Y, Zhao Y, Li F, Feng J. Advabces in organic light-emission, Physics, 2003, 32(5): 315-318.
    [9] Besbes S, Ouada H Ben, Davenas J, Ponsonnet L, Jaffrezic N, Alcouffe P. Effect of surface treatment and functionalization on the ITO properties for OLEDs, Materials Science and engineering C, 2006,26: 505-510.
    [10] Kim J S, Friend R H, Cacialli F. Surface wetting properties of treated indium tin oxide anodes for polymer light-emitting diodes, Synthetic Metals, 2000, 111-112: 369-372.
    [11] Ganzoring C, Kwak K, Yagi K, Fujihira M. Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices, Applied Physics Letters, 2001, 79 (2): 272-274.
    [12] Kim J S, Granstrom M, Friend R H, Johansson N, Salaneck R, Daik R, Feast W J. Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes, Journal of Applied Physics, 1998, 84(12): 6859-6870.
    [13] Kim J Y, Lee J L, Kim K B, Tak Y H. Effect of ultraviolet-ozone treatment of indium-tin-oxide on electrical properties of organic light emitting diodes, Journal of Applied Physics, 2004, 95(5): 2560-2563.
    [14] Mason M G, Hung L S, Tang C W, Lee S T, Wong K W, Wang M. Characterization of treated indium-tin-oxide surface used in electroluminescent devices, Journal of Applied Physics, 1999, 86(3): 1688-1692.
    [15]钟志有,尹盛,刘陈,徐重阳.有机发光器件ITO阳极表能的研究,华中科技大学学报,2003,31(2): 40-42.
    [16]刘德武,朱文清,吴有智,蒋雪茵,张志林,许少鸿.高频放电处理ITO电极对有机电致发光器件性能的影响,上海大学学报,2004, 10(6): 551-554.
    [17] Tucceri R. A review about the surface resistance technique in electrochemistry, Surface Science Reports, 2004, 56: 85-157.
    [18]张玉勤.CrSi(Ni,Al)硅化物薄膜微观结构与性能稳定性研究,上海交通大学博士学位论文,2006.
    [19]陈小文,白新德,薛祥义,周庆刚,陈宝山,伍志明,刘芳言.钇离子注入锆的动电位极化曲线研究,稀有金属材料与工程,2004,33: 153-156.
    [20] Wu C C, Wu C I, Sturm J C, Kahn A. Surfce modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices, Applied Physics Letters, 1997, 70(11): 1348-1350.
    [21] Sugiyama K, Iahii H, Ouchi Y, Seki K. Dependence of indium-tin-oxide work function on surface clearing method as studied by ultraviolet and x-ray photoemission sectroscopies, Journal of Applied Physics, 2000, 87(1): 295-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700