基于中密度纤维板传输特性调控甲醛释放量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人的一生80-90%时间在室内度过,室内空气品质影响着人们的生产和生活。但我国装修广泛使用的人造板的甲醛污染制约着产业发展以及人们生活品质和生存健康的提高。弄清污染特征,调控其甲醛释放量是材料界研究的热点。
     本文关注中密度纤维板的甲醛污染,基于甲醛传输特性探索简便且经济的方法对中密度纤维板中的甲醛释放进行调控。通过研究散发过程、扩散机制归纳中密度纤维板甲醛释放关键特性参数,考察几种不同调控手段与释放量间的相关性,再据此设计出一种低释放量中密度纤维板的方法并生产出低甲醛产品,主要学术贡献包括如下六个方面:
     (1)采用密闭环境舱模拟使用条件调查甲醛宏观传输特性。结果表明板边是中密度纤维板甲醛散发的主要通道,通过封边,甲醛浓度峰值可以降低52%。此外,甲醛浓度随环境温湿度和环境湿度上升而增大,随板厚或换气率上升而减小,对指导有效控制中密度纤维板甲醛释放有重要意义;
     (2)采用扫描电子显微镜调查中密度纤维板甲醛微观传输特性并结合中密度纤维板内甲醛宏微观孔径d界线450nm,即10倍分子自由程λ,分别发生菲克和过渡/努森扩散,描绘出中密度纤维板特征单元体,确定宏微观孔串联是甲醛的主要传输路径,同时建立了一种宏观-微观结构模型,为有效控制中密度纤维板甲醛释放提供了理论依据;
     (3)通过检测中密度纤维板及其原料和过程产品(脲醛胶、木片、施胶纤维等)的甲醛释放量研究中密度纤维板的初始散发浓度Co,结果表明中密度纤维板所用脲醛树脂胶是中密度纤维板中甲醛释放的主要来源,建立了二者间的甲醛浓度线性关系式,通过调控干燥和热压工艺可以有效控制中密度纤维板的甲醛释放量,例如干燥和热压工序可使释放量下降47%和66%,为生产实践预测和控制中密度纤维板甲醛释放提供了指导;
     (4)通过比较不同吸附剂(活性炭纤维、硅烷化AL2o3、SiO2和沸石粉)在中密度纤维板中的甲醛吸附效果研究对中密度纤维板甲醛分离系数Ks的影响效果,结果表明2%硅烷化Al2O3与胶混添后压制中密度纤维板效果较好,甲醛释放量降低63%,物理力学性能全部达标,为生产低释放量中密度纤维板提供了方法和思路;
     (5)通过比较不同饰面材料(耐磨纸、平衡纸、装饰纸)和其组合方式以及不同封边材料(石蜡、聚氯乙烯和铝箔)研究其对中密度纤维板中甲醛有效扩散系数De的影响效果,结果表明采用100g平衡纸+70g装饰纸+42g耐磨纸饰面和采用石蜡封边效果较好,甲醛释放量分别降低了45%和60%,为优选阻隔材料和生产低释放量复合木质材料提供了优选方案;
     (6)理论与实际相结合,通过添加吸附剂设计出一种生产低甲醛释放量的新方法并生产出了低释放量产品,甲醛释放量由0.47mg/L降低到0.25mg/L,降低了47%。通过饰面封边甲醛释放量更是降低幅度达95%,产品满足日本F
    
    
    
     甲醛释放限量要求,内结合强度降低0.04Mpa,成本增加1.5-2.5%,产品具有较强的市场竞争力。
People usually spend80-90%of their time in building environment; hence, indoor air quality significantly influences efficiency of production and comfort of life. However, medium density fiberboard (MDF) is widely used for refurbishment in China, the formaldehyde pollution from which has been hindering industrial development and social harmony. Therefore, it has been a hot issue in the field of material science to control formaldehyde emission based on understanding its transport characteristics.
     This dissertation focuses on pollution of MDF and explores effect of emission control with the help of technologically simple and economically cheap approaches in the light of transport features. Here, emission process and diffusion mechanism were investigated to analyze key parameters characterizing MDF emission; then, the relationships between several modified methods and formaldehyde emission were studied. According to above researches, a new kind of low formaldehyde emission MDF was designed and applied in production. The main academic contributions are the following six areas:
     (1) Environmental chamber was applied to simulate actual situation for investigating macroscopic transport characteristics. It is revealed that edge of MDF is the primary channel for formaldehyde emission and a52%reduction in peak chamber concentration was observed after edge sealing. In addition, emission can be promoted by higher environmental temperature and relative humidity but constrained by larger panel thickness and air exchange rate. It is important to guide the effective control of the formaldehyde emission from MDF.
     (2) Scanning electron microscopy was applied to observe surface and edge of MDF for investigating microscopic transport characteristics. It is illustrated that critical diameter between macroscopic and microscopic pores in MDF is450nm, i.e.,10times of mean free path for formaldehyde molecule; in the two pores, Fick and transition/Knudsen diffusion respectively occur. In terms of characteristic element for MDF, series connection between macroscopic and microscopic pores is considered as the significant transport channel and a macroscopic-microscopic structure model was established for providing a theoretical basis on control of formaldehyde emission.
     (3) Investigating material in different production stages (including urea formaldehyde adhesive, wood chip, fiber mixed with adhesive and MDF) for initial emittable concentration C0, it is indicated that adhesive is the major source of formaldehyde release from MDF while a liner correlation for formaldehyde emission was fitted. Besides, drying and hot pressing process can respectively reduce emission for47%and66%. It provides guidance to control and predict the formaldehyde emission in MDF production.
     (4) Investigating effect of adsorbent (including activated carbon fiber, silanated Al2O3, SiO2and zeolite) for partition coefficient Ks, it is demonstrated that2%silanated Al2O3mixed with adhesive for manufacturing MDF is better, leading to63%reduction of formaldehyde emission. Meanwhile, physical and mechanical properties after this treatment can also be acceptable. It is a better method to reducing the formaldehyde emission from MDF.
     (5) Investigating effect of finishing (with abrasion resistant paper, balance paper and decorative paper) and edge sealing (with paraffin wax, PVC and aluminum foil) for effective diffusion coefficient De, it is shown that finishing with100g balance paper+70g decorative paper+42g abrasion resistant paper and edge sealing with paraffin wax are better, respectively attaining45%and60%reduction of formaldehyde emission and also provide a preferred solution fro the low emission products with optimized barrier material.
     (6) Linking theory with practice, a new environmentally friendly design of MDF was proposed combined with doping adsorbent, obtaining47%reduction of formaldehyde emission and even95%after further finishing and edge sealing and meeting the need of Japanese F
    
    
    
     standard. On the other hand, this method causes0.04MPa decrease in internal bond strength and1.5-2.5%increase in cost with strong market competitiveness.
引文
[1]E.罗发埃尔.人造板和其他材料的甲醛散发(中文译本).中国林业出版社,1990.
    [96]范春彦,宋宝林.人造板甲醛释放的控制措施.吉林林业科技,2004,(06):44-46.
    [2]GB17657-1999.人造板及饰面人造板理化性能试验方法.国家质量监督检验检疫总局.北京:中国标准出版社,1999.
    [3]GB18580-2001.室内装饰装修材料人造板及其制品中甲醛释放限量.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [4]GB18581-2001.室内装饰装修材料溶剂型木器涂料中有害物质限量.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [5]GB18582-2001.室内装饰装修材料内墙涂料中有害物质限量.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [6]GB18583-2001.室内装饰装修材料胶粘剂中有害物质限量.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [7]GB18584-2001.室内装饰装修材料木器家具中有害物质限量.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [8]GB18585-2001.室内装饰装修材料壁纸中有害物质限量.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [9]GB18586-2001.室内装饰装修材料聚氯乙烯卷材地板中有害物质限量.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [10]GB18587-2001.室内装饰装修材料地毯、地毯衬垫及地毯胶粘剂中有害物质限量.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [11]GB/T 18883-2002.室内空气质量标准.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [12]GB50325-2001.民用建筑工程室内环境污染控制规范.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [13]韩永新,朱小棉.人造板中甲醛的释放及其控制.职业与健康,2007,(08):643.
    [14]何中凯.人造板VOC散发控制:原理、方法和效果[博士学位论文].北京:清华大学,2011.
    [15]李凯夫.绿色人造板关键技术的一点思考(续).国际木业,2003,(04):12-14.
    [16]刘姝威,杨徽,谢中圆.装修建材零售行业发展趋势.农村金融研究,2006,(08):57-59.
    [17]陆军,张吉先,柴文淼.人造板的甲醛释放及其控制措施的研究进展.林产工业,2003,(06):12-15.
    [18]马心,颜镇.游离甲醛和人造板释放甲醛(续).木材工业,1997,(03):18-21.
    [19]莫金汉.光催化降解室内有机化学污染物的若干重要机理问题研究[博士学位论文].北京:清华大学,2009.
    [20]穆有炳,赵临五,储富祥,等.低成本E_2级人造板用脲醛树脂胶的制备及其应用.中国胶粘剂,2008,(07):32-35.
    [21]钱晓喻.世界人造板工业发展现状与趋势.中华地板网,http://jiaju.sina.com.cn,2013.
    [22]日本.修改建筑基准法实施细则部分内容的政令.2002.
    [23]宋广生.我国城市家庭室内甲醛污染分析.环境经济,2006,(04):55-59.
    [24]孙乐芳.脲醛树脂胶的技术现状及发展对策.化工科技市场,2002,(07):26-28+22.
    [25]孙立人,陈莲梅,王晓凌.人造板甲醛释放量的影响因素.林业机械与木工设备,2003,(04):22-23.
    [26]王春鹏,赵临五,卜洪忠,等.E_0级胶合板用低成本UMF树脂胶的研制.林产工业,2007,(06):46-50.
    [27]王春鹏,赵临五,卜洪忠,等.E_0级胶合板用UMF树脂胶固化体系的研究.林产工业,2008,(05):23-27.
    [28]王恺.木材工业适用大全,人造板表面装饰卷.中国林业出版社,2002.
    [29]王维新.甲醛释放与检测.北京:化学工业出版社,2003.
    [30]王新轲.干建材VOC散发预测、测定及控制研究[博士学位论文].北京:清华大学,2007.
    [31]吴亚明.浅析木质人造板甲醛释放量的控制问题.中国科技论文在线
    [32]熊建银.建材VOC散发特性研究:测定,微介观诠释及模拟[博士学位论文].北京:清华大学,2010.
    [33]严顺英.低毒型脲醛树脂的合成动力学研究[硕士学位论文].云南:昆明理工大学,2006.
    [34]严伟.建材VOC散发关键参数测定及散发模拟研究[硕士学位论文].北京:清华大学,2009.
    [35]张立芳.合成树脂饰面人造板.化学工业出版社,2004.
    [36]张舵.全球近一半人遭受室内空气污染.人民日报,16版,2004-12-30.
    [37]张寅平,张立志,刘晓华,等.建筑环境传质学.中国建筑工业出版社,2006.
    [38]郑东,陈沛霖,张云坤.浅谈室内空气品质,工业建筑.2001.(11):23-25.
    [39]郑慧,王志刚.室内环境污染与环境设计,环境科学动态.2001.(1):31-33.
    [40]中国家具年鉴.中国轻工业信息中心,2010.
    [41]周定国.国外人造板甲醛散发研究现状.世界林业研究,1995,(05):9-17.
    [42]周中平,赵寿堂,朱立,等.室内污染检测与控制.北京:化学工业出版社,2002.
    [43]An Y, Zhang J S, Shaw C Y. Measurements of VOC adsorption/desorption characteristics of typical interior building materials. HVAC&R Research,1999,5(4):297-316.
    [44]ASHRAE. BSR/ASHRAE Standard 62-1989R(public review draft. Atlanta(GA):ASHRAE, 1996(August).
    [45]ASTM. D5116-97. Standard guide for small-scale environmental chamber determinations of organic emissions from indoor materials/product. West Conshohocken, PA:American Society of Test and Materials.1997.
    [46]ASTM. D6670-01. Standard practice for full-scale chamber determination of volatile organic emissions from indoor materials/products. West Conshohocken, PA:American Society of Test and Materials.2001.
    [47]Blondeau P, Tiffonnet A L, Damian A, et al. Assessment of contaminant diffusivities in building materials from porosimetry tests. Indoor Air,2003,13(3):302-310.
    [48]Bodalal A, Zhang J S, Plett E G. A method for measuring internal diffusion and equilibrium partition coefficients of volatile organic compounds for building materials. Building and Environment, 2000,35(2):101-110.
    [49]Carniglia S C. Construction of the tortuosity factor from porosimetry. Journal of Catalysis,1986, 102(2):401-418.
    [50]Chang J C S, Guo Z. Characterization of organic emissions from a wood finishing product-wood stain. Indoor Air,1992,2:146-153.
    [51]Chen H L, Lee H M, Chen S H, et al. Influence of Ar addition on ozone generation in a non-thermal plasma-a numerical investigation. Plasma Sources Science & Technology,2010,19(5): 1-14.
    [52]Christiansson J, Yu T W, Neretnieks I. Emission of VOCs from PVC-floorings-models for predicting the time dependent emission rates and resulting concentrations in the indoor air. Proceedings of the 6th International Conference on Indoor Air Quality and Climate (Indoor Air 93), Helsinki, Finland,1993:389-394.
    [53]Clausen P A, Laursen B, Wolkoff P, et al. Emission of volatile organic compounds from a vinyl floor covering//Modeling of Indoor Air Quality and Exposure, P.ASTM STP 1205. American Society for Testing and Materials, Nagda N L.1993:3-13.
    [54]Comparative Response of Reconstituted Wood Products to European and North American Test Methods for Determining Formaldehyde Emissions.Environmental Science and Technology, Vol 25, No 1,1991.
    [55]Cox S S, Little J C, Hodgson A T. Measuring concentrations of volatile organic compounds in vinyl flooring. Journal of the Air & Waste Management Association,2001,51(8):1195-1201.
    [56]Cox S S, Zhao D Y, Little J C. Measuring partition and diffusion coefficients for volatile organic compounds in vinyl flooring. Atmospheric Environment,2001,35(22):3823-3830.
    [57]Cozzani V, Gubinelli G, Salzano E. Escalation Thresholds in the Assessment of Domino Accidental Events [J]. J. Hazard. Mater.,2006,129(1/3):1-21.
    [58]Crank J. The mathematics of Diffusion.2nd Edition. New York:Oxford University Press,1975.
    [59]Deng B Q, Kim C N. An analytical model for VOCs emission from dry building materials. Atmospheric Environment,2004,38(8):1173-1180.
    [60]Dorgan C B, Dorgan C E, Kanarek M S, et al. Health and productivity benefits of improved indoor air quality. ASHRAE Transactions,1998,104(1):658-665.
    [61]Dunn J E. Models and statistical-methods for gaseous emission testing of finite sources in well-mixed chambers. Atmospheric Environment,1987,21(2):425-430.
    [62]Elizabeth H, Mestl S, Aunan K. Health Benefits from Reducing Indoor Air Pollution from Household Solid Fuel Use in China, Three Abatement Scenarios [J]. Environ. Int.,2007,33(6): 831-840.
    [63]Fisk W J. Estimates of potential nationwide productivity and health benefits from better indoor environments:an update. In:Spengler J D, Samet J M, McCarthy J F, Hill M, eds. Indoor Air Quality Handbook; 2000.
    [64]Haghighat F, Huang H, Lee C S. Modeling approaches for indoor air VOC emission form drying materials-a review. ASHRAE,2005:635-645.
    [65]Haghighat F, Lee C S, Ghaly W S. Measurement of diffusion coefficients of VOCs for building materials:review and development of a calculation procedure. Indoor Air,2002,12(2):81-91.
    [66]Hansson P, Stymne H. VOC diffusion and absorption properties of indoor materials:consequences for indoor air quality. Proceedings of Healthy Buildings 2000, Espoo, Finland,2000:151-156.
    [67]He Z.K.; Zhang Y. P, "Control of formaldehyde emission from wood-based panels by doping adsorbents optimization and application" Heat and Mass Trassfer, Volume 49, Number 4,2013.
    [68]Hoetjer J J, Koerts F. A model for formaldehyde release from particleboard. Formaldehyde Release from Wood Products, Washington, DC:American Chemical Society,1986:125-144.
    [69]Huang H Y, Haghighat F. Modelling of volatile organic compounds emission from dry building materials. Building and Environment,2002,37(11):1127-1138.
    [70]Hu H P, Zhang Y P, Wang X K, et al. An analytical mass transfer model for predicting VOC emissions from multi-layered building materials with convective surfaces on both sides. International Journal of Heat and Mass Transfer,2007,50(11-12):2069-2077.
    [71]IARC, IARC classifies formaldehyde as carcinogenic to humans. Press Release, No.153, June 15, 2004.
    [72]Jorgensen R B, Bjorseth O, Malvik B. Chamber testing of adsorption of volatile organic compounds (VOCs) on material surfaces. Indoor Air,1999,9(1):2-9.
    [73]Kim S, Kim H J, Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins. Bioresour Technol 96:1457-1464,2005.
    [74]Kim Y M, Harrad S, Harrison R M. Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ Sci Technol,2001,35(6):997-1004.
    [75]Kirchner S, Badey J R, Knudsen H N, et al. Sorption capacity and diffusion coefficients of indoor surface materials exposed to VOCs:proposal of new test procedures. Proceedings of the 8th International Conference on Indoor Air Quality and Climate (Indoor Air 99), Edinburgh,1999:430-435.
    [76]Kumar D, Little J C. Characterizing the source/sink behavior of double-layer building materials. Atmospheric Environment,2003,37(39-40):5529-5537.
    [77]Lee C S. A theoretical study on VOC source and sink behavior of porous building materials [PhD Thesis]. Canada:Concordia University,2003.
    [78]Lee C S, Haghighat F, Ghaly W S. A study on VOC source and sink behavior in porous building materials-analytical model development and assessment. Indoor Air,2005,15(3):183-196.
    [79]Little J C, Hodgson A T, Gadgil A J. Modeling emissions of volatile organic-compounds from new carpets. Atmospheric Environment,1994,28(2):227-234.
    [80]Mathews T J, Hawthorne A R, Thompson C V. Formaldehyde sorption and desorption characteristics of gypsum wallboard. Environmental Science and Technology,1987,21:629-634.
    [81]Meininghaus R, Gunnarsen L, Knudsen H N. Diffusion and sorption of volatile organic compounds in building materials-Impact on indoor air quality. Environ Sci Technol,2000,34(15):3101-3108.
    [82]Meyer, B. Determination of the Correlation for E1 Particleboards using the 1m3 Chamber and the Flask Method, WKI Short Report No 13/1996.
    [83]Meyer, B. Determination of the Correlation for E1 Particleboards using the 1m3 Chamber and the Perforator Method, WKI Short Report No 11/1996.(Values given are approximations from the report).
    [84]Myers G E. Effects of post-manufacture board treatments on formaldehyde emission -a literature-review (1960-1984). Forest Products Journal,1986,36(6):41-51.
    [85]Myers G E. Effect of separate additions to furnish or veneer on formaldehyde emission and other properties-a literature-review (1960-1984). Forest Products Journal,1985,35(6):57-62.
    [86]Mo J H, Zhang Y P, Xu Q J, et al. Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. Applied Catalysis B-Environmental,2009,89(3-4):570-576.
    [87]Molhave L. The sick buildings and other buildings with indoor climate problems. Environment International,1989,15:65-74.
    [88]Murakami S, Kato S, Kondo Y, et al. VOC distribution in a room based on CFD simulation coupled with emission/sorption analysis. Proceedings of the 7th International Conference on Air Distribution in Rooms, UK,2000:473-478.
    [89]Murakami S, Kato S, Ito K, et al. Modeling and CFD prediction for diffusion and adsorption within room with various adsorption isotherms. Indoor Air,2003,13:20-27.
    [90]Myers G E. Advances in methods to reduce formaldehyde emission. In:Hamel, M.P.(Ed.), Composite Board Products for Furniture and Cabinet-Innovations in Manufacture and Utilization. Forest Products Society, Madison, WI.1989.
    [91]Myers GE, Effects of post-manufacture board treatments on formaldehyde emission-a literature-review (1960-1984) Forest Prod J 36:41-51,1986.
    [92]Park B D, Kim J W. Dynamic mechanical analysis of urea-formaldehyde resin adhesives with different formaldehyde-to-urea molar ratios. Journal of Applied Polymer Science,2008,108(3): 2045-2051.
    [93]PIZZI A.A molecular mechanics approach to the adhesion of urea-formaldehyde resins to cellulose, Part2:amorphous vs crystalline cellulose I[J]. J Adhe Sci Technol,1990,4(7):589-595.
    [94]Qian K, Zhang Y P, Little J C, et al. Dimensionless correlations to predict VOC emissions from dry building materials. Atmospheric Environment,2007,41(2):352-359.
    [95]Risholm, M. Determination of Formaldehyde Emission with Field and Laboratory Emission Cell (FLEC). Indoor Air 1999:9268-272.
    [96]Risholm-Sundman M, Larsen A, Vestin E, et al. Formaldehyde emission comparison of different standard methods. Atmospheric Environment 2007,41:3193-3202.
    [97]Roffael E. Volatile organic compounds and formaldehyde in nature, wood and wood based panels. Holz Als Roh-Und Werkstoff,2006,64(2):144-149.
    [98]Salari, A., Tabarsa, T., Khazaeian, A., and Saraeian A, "Improving some of applied properties of oriented strand board (OSB) made from understilized low quality of urea-formaldehyde resin adhesive paulownia (Paulownic fortunie) wood employing nano-SiO2" Industrial crops and products 42,1-9, 2013.
    [99]Salthammer T, Mentese S, Marutzky R, Formaldehyde in the indoor environment. Chem Rev 110:2536-2572 2010.
    [100]Saptadi, D; Kurnia, S; Gustan, P; Krisdianto, S "Effect of activated charcoal addition on formaldehyde emission of middle density fiberboard" Journal of Forestry Research Vol.7 No.2,2010: 102100-111.
    [101]Seo J, Kato S, Ataka Y, et al. Evaluation of effective diffusion coefficient in various building materials and absorbents by mercury intrusion porosimetry. Proceedings of the 10th International Conference on Indoor Air Quality and Climate (Indoor Air 2005), Beijing, China,2005:1854-1859.
    [102]Smith J F, Gao Z, Zhang J S, et al. A new experimental method for the determination of emittable initial VOC concentrations in building materials and sorption isotherms for IVOCs. CLEAN-Soil, Air, Water,2009,37(6):454-458.
    [103]Smith J F, Zhang J S, Guo B, et al. Determination of emittable initial VOC concentrations in building materials and sorption isotherm for IVOCs. Proceedings of the 11th International Conference on Indoor Air Quality and Climate (Indoor Air 2008), Copenhagen, Denmark,2008:70.
    [104]Stephen Young and Associates Ltd LabCheck "C TILTS inter-laboratory trials,1999-2000 (limited data).
    [105]Su H J, Chao C J, Chang H Y. The Effects of Evaporating Essential Oils on Indoor Air Quality [J]. Atmos. Environ.,2007,41(6):1230-1236.
    [106]Tang X J, Bai Y, Duong A, et al. Formaldehyde in China:Production, consumption, exposure levels, and health effects. Environment International,2009,35(8):1210-1224.
    [107]Tohmura S, Hse CY, Higuchi M, Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins. J Wood Sci 46:303-309,2000.
    [108]USEPA, Introduction to indoor air quality, a reference manual, EPA/400/3-91/003, Section 7 [M]. US Government Printing Office, Washington, DC,1991.
    [109]USEPA. Reducing risk:setting priorities and strategies for environmental protection. Science advisory board. US Environmental Protection Agency, Washington, DC,1990.
    [110]USEPA. Sick building syndrome (SBS). Indoor Air Facts No.4 (revised).Washington, DC:U.S. Environmental Protection Agency,1991.
    [111]Wang W L, Gardner D J, Baumann M G D. Volatile organic compound emissions during hot-pressing of southern pine particleboard:Panel size effects and trade-off between press time and temperature. Forest Products Journal,2002,52(4):24-30.
    [112]Wang X K, Zhang Y P. A new method for determining the initial mobile formaldehyde concentrations, partition coefficients, and diffusion coefficients of dry building materials. Journal of the Air & Waste Management Association,2009,59(7):819-825.
    [113]Wang X K, Zhang Y P. General analytical mass transfer model for VOC emissions from multi-layer dry building materials with internal chemical reactions. Chinese Science Bulletin,2011, 56(2):222-228.
    [114]Wang X K, Zhang Y P, Zhao R Y. Study on characteristics of double surface VOC emissions from dry flat-plate building materials. Chinese Science Bulletin,2006,51(18):2287-2293.
    [115]WHO. Indoor air pollutants:exposure and health effects. EURO Reports andStudys 78, World Health Organization, Geneva,1983.
    [116]WHO. The World Health Report 2002, Geneva:World Health Organization,2002.
    [117]Wiglusz R, Sitko E, Nikel G. The Effect of Temperature on the Emission of Formaldehyde and Volatile Organic Compounds (VOCs) Form Laminate Flooring Case Study [J]. Building Environ.,2002, 37:41-44.
    [118]Wolkoff P, Nielsen GD (2010) Non-cancer effects of formaldehyde and relevance for setting an indoor air guideline. Environ Int 36:788-799.
    [119]Won D, Corsi R L, Rynes M. Sorptive interactions between VOC and indoor materials. Environ Sci Technol,2000,34(19):4193-4198.
    [120]Xiong J Y, Chen W H, Smith J F, et al. An improved extraction method to determine the initial emittable concentration and the partition coefficient of VOCs in dry building materials. Atmospheric Environment,2009,43(26):4102-4107.
    [121]Xiong J Y, Zhang Y P, He Z K, et al. Effect of Additive Adsorption Fibers within Building Materials on VOC Emission Characteristics. Proceedings of Indoor Air 2008, Copenhagen Denmark, August 17-22.2008.
    [122]Xiong J Y, Zhang Y P, Huang S D. Scaling VOC emission characteristics of building materials in a static chamber:model development and application. Indoor and Built Environment, accepted,2010.
    [123]Xiong J Y, Zhang Y P. Impact of temperature on the initial emittable concentration of formaldehyde in building materials:experimental observation. Indoor Air,2010,20(6):523-529.
    [124]Xiong J Y, Zhang Y P, Wang X K, et al. Macro-meso two-scale model for predicting the VOC diffusion coefficients and emission characteristics of porous building materials. Atmospheric Environment,2008,42(21):5278-5290.
    [125]Xu J, Zhang J S, Grunewald J, et al. A study on the similarities between water vapor and VOC diffusion in porous media by a dual chamber method. Clean-Soil, Air, Water,2009,37(6):444-453.
    [126]Xu Y, Zhang Y P. A general model for analyzing single surface VOC emission characteristics from building materials and its application. Atmospheric Environment,2004,38(1):113-119.
    [127]Xu Y, Zhang Y P. An improved mass transfer based model for analyzing VOC emissions from building materials. Atmospheric Environment,2003,37(18):2497-2505.
    [128]Yang X, Chen Q, Zhang J S, et al. A mass transfer model for simulating VOC sorption on building materials. Atmospheric Environment,2001,35(7):1291-1299.
    [129]Yang X, Chen Q, Zhang J S, et al. Numerical simulation of VOC emissions from dry materials. Building and Environment,2001,36(10):1099-1107.
    [130]Yang X D. Study of Building Material Emissions and Indoor Air Quality [PhD Thesis]. USA: Massachusetts Institute of Technology,1999.
    [131]Yan W, Zhang Y P, Wang X K. Simulation of VOC emissions from building materials by using the state-space method. Building and Environment,2009,44(3):471-478.
    [134]Yuan H, Little J C, Marand E, et al. Using fugacity to predict volatile emissions from layered materials with a clay/polymer diffusion barrier. Atmospheric Environment,2007,41(40):9300-9308.
    [135]Zeki, C.; Turgay A., "Developing environmentally friendly wood composite panels by Nanotechnology" BioResourses 3590-3598,2013.
    [136]Zhang, H; Zhang, J; Song, S; Wu, G; and Pu, J," Modified nanocrystalline cellulose from two kinds of modifiers used for improving formaldehyde emission and bonding strength of urea-formaldehyde resin adhesive," BioResourses 6(4) 4430-4438,2011.
    [137]Zhang L Z, Niu J L. Modeling VOCs emissions in a room with a single-zone multi-component multi-layer technique. Building and Environment,2004,39(5):523-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700