SRC框架-RC核心筒混合结构多目标抗震优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SRC框架-RC核心筒混合结构是一种新型的结构体系,它以优良的抗震性能和耐久性而被广泛应用于高层和超高层建筑中。本文采用理论建模的研究手段,对SRC框架-RC核心筒混合结构各构件及整体结构进行系统的优化研究,具体研究内容如下:
     1.将SRC框架梁的工程造价最小化和正截面抗弯承载力最大化定为优化目标,并对其进行无量纲化处理,使得多目标的优化问题转化为单目标优化问题,采用线性加权法构造评价函数,通过调整加权系数来改变两个优化目标在优化中的重要程度。考虑到SRC构件的受力特性,在遗传算法(GA)的编码过程中应用层次分析法理论对各设计变量进行权重赋值,从而建立层次分析GA算法。综合考虑各种约束条件,运用层次分析GA算法实施SRC框架梁的优化设计,并通过优化设计实例证实文中所采用的优化方法和设计思路是有效、可行的。
     2.将SRC框架柱的工程造价最小化和斜截面抗剪承载力最大化定为优化目标,并在理论建模过程中将粘结滑移试验所得的本构方程应用于数值模型。考虑到SRC构件的混凝土截面尺寸和内埋型钢截面尺寸为主要优化设计变量,首先运用优化准则法(OC)确定构件混凝土截面尺寸,以达显著缩小解空间的搜索范围并提高计算效率之目标,进而确定型钢截面尺寸、纵筋直径与数量等设计参数的取值范围。基于以上思路,在优化准则法中,根据最优性准则Kuhn-Tucker条件推导出SRC框架柱混凝土截面尺寸的迭代公式,并将其与层次分析遗传算法相结合,从而建立了层次分析OC-GA算法。综合考虑各种约束条件,运用层次分析OC-GA算法实施SRC框架柱的优化设计,优化设计实例表明文中所采用的优化方法是有效、可行的。
     3.将SRC框架的工程造价及结构层间位移差最小定为优化目标,并根据SRC框架结构在不同受力阶段各类构件的受力特性,提出两阶段优化设计的思路:小震作用下,认为混凝土处于开裂的临近状态,假定钢材未发挥作用,仅有混凝土发挥作用,据此对结构构件的截面尺寸与混凝土用量进行优化;在中震及大震作用下,对满足结构性能要求的钢材用量进行优化。综合考虑各种约束条件,运用层次分析OC-GA算法实施SRC框架的抗震优化设计,并通过优化设计实例证实文中所采用的优化思路是有效、可行的。
     4.以SRC框架-RC核心筒混合结构的失效模式为研究背景,通过引入损伤函数,将结构的工程造价和损伤量最小定为优化目标,并根据建筑结构“三水准”抗震设防的目标要求,以及结构在不同受力阶段各类构件的受力特点,提出三水准优化设计的方法:小震作用下,仅对RC剪力墙和SRC框架梁、柱构件的混凝土用量进行优化;中震作用下,框架与剪力墙处于协同工作状态,据此对整个结构满足层间位移差最小之目标的钢材用量进行优化;大震作用下,结构处于塑性状态,剪力墙基本退出工作,据此对满足结构损伤值最小之目标的钢材用量进行进一步的优化。从而将一个多目标优化问题转化为多个单目标优化问题求解。综合考虑各种约束条件,运用层次分析OC-GA算法实施SRC框架-RC核心筒混合结构失效模式三水准的优化设计。通过优化实例证实文中所采用的优化设计思路是有效、可行的。
     5.基于投资-效益准则的全寿命优化理论,在结构最优设防烈度优化设计阶段引入分灾的概念设计,从而建立基于全寿命分灾优化设计的数学模型,并通过优化实例证实文中所采用的优化设计思路是有效、可行的;进而,按最优设防烈度进行优化设计阶段引入失效模式优化理论,建立基于失效模式的SRC框架-RC核心筒混合结构全寿命分灾优化设计的数学模型。
SRC frame-RC core wall hybrid structure, which was a new structural system withexcellent seismic performance and durability, was widely used in high-rise and superhigh-rise buildings. This paper aimed to study the optimization of the elements and thestructure of SRC frame-RC core wall hybrid structure by the way of theoreticalmodeling, and the main contents were as follows:
     1. The minimum project cost and the maximum flexural capacity of SRC framebeam were taken as the optimization objectives which were dimensionless, and whoseevaluation function could be adjusted by weighting factors and the linear weightedwhich transformed the multi-objective optimization problem into multiple singleobjective optimization problems. According to the the characteristics of SRC elements,the analytic hierarchy process was introduced to give each variable weight in theencoding process of genetic algorithms, thus, the analytic hierarchy process geneticalgorithm (AHPGA) is established. Considering the related design specifications andconstraints, the SRC frame beam was optimized by the AHPGA. The practical examplewas analyzed to verify the rationality of the proposed optimization method and thought.
     2. The minimum project cost and the maximum diagonal shear capacity were takenas the optimization objectives, and the bond slip constitutive equation was applied innumerical model based on experimental results to simulate the characteristics of SRCframe column more accurately. Meanwhile, considering the main design variable ofSRC elements were the size of concrete, by which the sizes of steel section, longitudinalreinforcement diameter and number etc.can be searched quickly, and the computationalefficiency was greatly improved. Based on this, the analytic hierarchy processoptimization criterion genetic algorithm (AHPOCGA) was established by thecombination of the AHPGA with the optimization criterion. Considering the related design specifications and constraints, the SRC frame column was optimized by theAHPOCGA. The practical example was analyzed to verify the rationality of theproposed optimization method.
     3. Based on the characteristics of SRC frame, the minimum cost and the structureinterlayer displacement difference of SRC frame were taken as the optimizationobjectives. According to the mechanical characteristics of the structure, the two stagesoptimization design method was presented: the optimization of component section andconcrete volume was actualized assuming that only the concrete works under minorearthquake; the optimization of steel volume was implemented for meeting therequirement of structure under moderate and severe earthquake. Taking the variousconstraints into consideration, the SRC frame was optimized by using AHPOCGA. Thepractical example was analyzed to verify the rationality of the proposed optimizationthought.
     4. Taking the failure modes of SRC frame-RC core wall hybrid structure asbackground, the minimum project cost and damage were taken as the optimizationobjectives by introducing damage function. According to the three-level seismicfortification criterion, as well as the mechanical characteristics of the structure, thethree-level fortification criterion optimization design method was presented: theoptimization of component section and concrete volume of core wall, frame beams andframe columns under minor earthquake; the optimization of steel volume was broughtinto effect for meeting the requirement of minimum displacement difference betweentwo adjacent storey under moderate earthquake, in which the frame and shear wall arein collaborative working state; the optimization of steel volume was implementedfarther for meeting the requirement of minimum structure damage under severeearthquake, in which the structure is in plastic state and the shear wall is out of work.This method transformed the multi-objective optimization problem into multiple singleobjective optimization problems. Taking the various constraints into consideration, thefailure modes-based three-level optimization design of SRC frame-RC core wall hybridstructure was actualized by using AHPOCGA. A numerical example was analyzed toverify the rationality of the proposed optimization thought.
     5. Based on the cost-effectiveness criterion of life-cycle cost optimization theory, the mathematical model of life-cycle cost damage-reduction optimization wasestablished by introducing damage-reduction design in the stage of optimal fortificationintensity, and a numerical example was analyzed to verify the rationality of theproposed optimization thought. Furthermore, the mathematical model of failuremode-based life-cycle cost damage-reduction optimization of SRC frame-RC core wallhybrid structure was established by introducing failure modes optimization theory.
引文
[1-1]聂建国,刘明,叶列平.钢-混凝土组合结构[M].北京:中国建筑工业出版社,2005.
    [1-2]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2004.
    [1-3]包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2005.
    [1-4]刘维亚.型钢混凝土结构在我国高层建筑的应用[J].哈尔滨工业大学学报.2005,37(sup2):18-21.
    [1-5]李宏男,肖诗云,霍林生.地震震害调查与启示[J].建筑结构学报,2008,29(4):10-19.
    [1-6]李忠献,吕杨,徐龙河,等.高层钢框架结构地震失效模式优化及损伤控制研究进展[J].建筑结构学报,2011,32(12):62-70.
    [1-7] Chan C M, Zou X K. Elastic and Inelastic Drift Performance Optimization for ReinforcedConcrete Buildings Under Earthquake Loads [J]. Earthquake Engineering and StructuralDynamics,2004,33(8):929-950.
    [1-8] Ganzerli S, Pantelides C P, Reaveley L D. Performance-Based Design Using StructuralOptimization [J]. Earthquake Engineering and Structural Dynamics,2000,29(11):1677-1690.
    [1-9]李志强.现役钢-砼框架结构的模糊可靠性评判及加固方法的研究[D].西安:西安建筑科技大学,2009.
    [1-10]朱靖华,王光远.多级递阶工程结构系统抗地震设计的全局优化[J].工程力学,2002,19(6):171-180.
    [2-1]张静怡,李春祥.抗震性能设计的发展[J].自然灾害学报,2004,13(5):128-135.
    [2-2]郑山锁,邓国专,李磊,等.型钢高强高性能混凝土框架结构抗震性能的试验研究[J].工程力学,2009,26(5):88-101.
    [2-3] Gregory G. Deierlein, Hiroshi Noguchi. Overview of U.S.-Japan Research on the SeismicDesign of Composite Reinforced Concrete and Steel Moment Frame Structures [J]. Journalof Structural Engineering.2004,130(2):361-367.
    [2-4]邹昀,吕西林,朱杰江.基于性能的抗震设计方法在某复杂超高层结构中的应用研究[J].工程力学,2008,25(9):93-99.
    [2-5]唐兴荣,何葆林.空间钢构架混凝土框架结构抗震性能试验研究和设计建议[J].建筑结构学报,2009,30(3):45-52.
    [2-6]张毅刚,杨大彬,吴金志.基于性能的空间结构抗震设计研究现状与关键问题[J].建筑结构学报,2010,31(6):145-152.
    [2-7]辛力,梁兴文.基于性能理论的RC框架结构抗震设计新法[J].西安建筑科技大学学报,2007,39(6):790-796.
    [2-8] Jinkoo Kim, Hyunhoon Choi. Displacement-Based Design of Supplemental Dampers forSeismic Retrofit of a Framed Structure [J], Journal of Structural Engineering.2006,132(6):873-883.
    [2-9] Brian G. Morgen, Yahya C. Kurama. Seismic Design of Friction-Damped Precast ConcreteFrame Structures [J]. Journal of Structural Engineering.2007,133(11):1501-1511.
    [2-10]马宏旺.建筑结构层等位移延性反应抗震设计方法[J].上海交通大学学报,2008,42(6):975-978.
    [2-11] Iman Hajirasouliha, Hassan Moghaddam. New Lateral Force Distribution for SeismicDesign of Structures [J]. Journal of Structural Engineering,2009,135(8):906-915.
    [2-12]王丰,李宏男,高云莉.多层偏心结构直接基于位移的抗震设计方法[J].工程力学,2009,26(8):82-87.
    [2-13]简斌,翁健,金云飞.直接基于位移的预应力混凝土框架结构抗震设计方法[J].工程力学,2010,27(7):205-211.
    [2-14]童岳生,梁兴文,赵花静,等.采用强化弹塑性模型的钢筋混凝土结构抗震性能设计谱方法[J],建筑结构学报,2011,32(9):50-57.
    [2-15]吕大刚,贾明明,李佳,等.钢框架结构直接基于位移的抗震性能设计[J].哈尔滨工业大学学报,2011,43(2):14-18.
    [2-16]李国强.基于概率可靠度进行结构抗震设计的若干理论问题[J].建筑结构学报,2000,21(1):12-16.
    [2-17]李刚,程耿东.基于可靠度和功能的框架-剪力墙结构抗震优化设计[J].计算力学学报,2001,18(3):290-294.
    [2-18]李刚,程耿东.基于功能的结构体系目标可靠度优化决策[J].计算力学学报,2002,19(2):127-131.
    [2-19]吕大刚,贾明明.钢框架结构基于变形可靠度的全概率抗震设计[J].工程力学,2011,28(5):117-123.
    [2-20] Foschi R O, Li H, Zhang. Reliability and Performance-Based Design: A ComputationalApproachAndApplications [J]. Structural Safety,2002,24(2):205-218.
    [2-21]李宏男,李钢,李中军,等.钢筋混凝土框架结构利用“双功能”软钢阻尼器的抗震设计[J].建筑结构学报,2007,28(4):36-43.
    [2-22]门进杰,史庆轩,周琦.竖向不规则钢筋混凝土框架结构基于性能的抗震设计方法[J].土木工程学报,2008,41(9):67-75.
    [2-23]李钢,李宏男.基于位移的消能减震结构抗震设计方法[J].工程力学,2007,24(9):88-94.
    [2-24] Stan J. Tuholski, Iris D. Tommelein. Design Structure Matrix Implementation on a SeismicRetrofit [J]. Journal of Management in Engineering.2010,26(3):144-152.
    [2-25]周云,汤统壁,邓雪松,等.耗能减振结构基于性能简化抗震设计方法研究[J].土木工程学报,2008,41(6):14-21.
    [2-26]章永乐,蒋建群,刘加进,等.框架结构地震损伤评估与抗震设计[J].浙江大学学报,2011,45(7):1294-1300.
    [2-27]吕大刚,贾明明.钢框架结构基于变形可靠度的全概率抗震设计[J].工程力学,2011,28(5):117-123.
    [2-28]吕大刚,贾明明,李刚.基于均匀设计响应面法的钢框架结构抗震可靠度分析[J].哈尔滨工业大学学报,2011,43(4):1-5.
    [2-29]戴金华,韩小雷,林生逸.基于性能的钢筋混凝土建筑结构抗震设计方法[J].土木工程学报,2011,44(5):1-5.
    [2-30]方小丹,魏琏.关于建筑结构抗震设计若干问题的讨论[J].建筑结构学报,2011,32(12):46-51.
    [2-31]王丰,李宏男,伊廷华.钢筋混凝土结构直接基于损伤性能目标的抗震设计方法[J].振动与冲击,2009,28(2):128-131.
    [2-32]曲哲,叶列平.基于损伤机制控制的钢筋混凝土结构抗震设计方法研究[J].建筑结构学报,2011,32(10):21-28.
    [2-33] M. Z. Colin, A. J. MacRae. Optimization of Structural Concrete Beams [J]. Journal ofStructural Engineering.1984,110(7):1573-1588.
    [2-34] Victor E. Saouma, Ramadan S, Murad. Partially Prestressed Concrete Beam Optimization [J].Journal of Structural Engineering,1984,110(3):589-604.
    [2-35] Robert E. Abendroth, Charles G. Salmon. Sensitivity Study of Optimum Rc Restrained EndT-Sections [J]. Journal of Engineering Mechanics,1986,112(8):1928-1943.
    [2-36] Robert H. Bryant. Optimal Design of Elastic Beams For Moving Loads[J]. Journal ofEngineering Mechanics,1986,117(1):154-165.
    [2-37] B. K. Chakrabarty. A Model for Optimal Design of Reinforced Concrete Beam [J]. Journalof Structural Engineering,1998,124(5):3238-3242.
    [2-38]贺普生,孙焕纯.钢筋混凝土梁的(0,1)规划优化设计[J].计算结构力学及其应用,1993,10(4):464-472.
    [2-39] Kamal C. Sarma and Hoijat Adeli. Cost Optimization of Concrete Structures [J]. Journal ofStructural Engineering,1998,124(5):570-578.
    [2-40]张苑竹,金伟良.基于可靠度的混凝土梁耐久性优化设计[J].浙江大学学报,2003,37(3):325-330.
    [2-41] C. M. Wang, S. Kitipornchai, V. Thevendran. Optimal Designs of I-Beams Against LateralBuckling [J]. Journal of Engineering Mechanics,1990,116(9):1902-1923.
    [2-42]刘荣桂,吕志涛.预应力开孔梁模糊优化设计[J].工程力学,2001,18(6):1-10.
    [2-43]顾元宪,程耿东.结构形状优化设计数值方法的研究和应用[J].计算力学学报,1993,10(3):321-334.
    [2-44] Hoijat Adeli, Asim Karim. Neural Network Model for Optimization of Cold-Formed SteelBeams [J]. Journal of Structural Engineering.1997,123(11):1535-1543.
    [2-45] D. P. Rath, A. S. Ahlawat, A. Ramaswamy. Shape Optimization of RC Flexural Members [J].Journal of Structural Engineering.1999,125(2):1439-1446.
    [2-46] Peng Pan, Makoto Ohsaki, Hiroshi Tagawa. Shape Optimization of H-Beam Flange forMaximum Plastic Energy Dissipation [J]. Journal of Structural Engineering.2007,133(8):1176-1179.
    [2-47]郁志城,兆文忠.优化设计中梁截面参数间函数关系的形状乘子法[J].计算力学学报,1998,15(3):316-323.
    [2-48]赵彦革,何广乾.变截面门式刚架斜梁的优化设计[J].建筑结构学报,2002,23(6):40-74.
    [2-49]张旭,侯祥林,孙凤久,等.纯弯曲理想弹塑性模型梁大变形的优化算法[J].沈阳建筑大学学报,2007,23(1):57-60.
    [2-50] Chee Kiong Soh, Jiaping Yang. Fuzzy Controlled Genetic Algorithm Search for ShapeOptimization [J]. Journal of computing in civil Engineering,1996,10(2):143-150.
    [2-51] Asim Karim, Hoijat Adeli. Fuzzy Genetic Algorithm for Optimization of Steel Structures [J].Journal of Structural Engineering,2000,126(5):596-604.
    [2-52] M. B. Anoop, K. Balaji Rao. Application of Fuzzy Sets for Remaining Life Assessment ofCorrosion Affected Reinforced Concrete Bridge Girders [J]. Journal of Performance ofConstructed Facilities,2007,21(2):166-171.
    [2-53] Giuseppe Carlo Marano, Giuseppe Quaranta, Mauro Mezzina. Fuzzy Time-DependentReliability Analysis of RC Beams Subject to Pitting Corrosion [J]. Journal of Materials inCivil Engineering,2008,20(9):578-587.
    [2-54]郭彦林, R. Schardt.冷弯薄壁槽形截面钢柱的优化设计[J].应用力学学报,1998,15(1):136-139.
    [2-55]彭兴黔.等边角钢四肢方阵式格构柱截面的优化设计[J].华侨大学学报,2000,21(2):161-63.
    [2-56]陈波.管材包裹预应力混凝土方形柱优化数值模拟研究[J].工程力学,2011,28(2):107-110.
    [2-57]陶清林,郑山锁,胡义,等.型钢混凝土柱多目标优化设计方法研究[J].工业建筑,2010,40(11):126-130.
    [2-58]曾磊,查春光,郑山锁.基于混合惩罚函数法的型钢混凝土框架柱优化设计[J].四川建筑科学研究,2010,36(2):81-84.
    [2-59] Andrew B. Templeman. Optimization Methods In Structural Design Practice [J]. Journal ofStructural Engineering,1983,109(10):2420-2433.
    [2-60] S. S. Al-Saadoun and J. S. Arora. Interactive Design Optimization of Framed Structures [J].Journal of Computing in Civil Engineering,1989,3(1):60-74.
    [2-61] Sandra Katherine Hall, Gordon Edward Cameron, Donald Edward Grierson. Least-WeightDesign of Steet Frameworks Accounting for P Effects [J]. Journal of StructuralEngineering,1989,115(6):1463-1475.
    [2-62] Franklin Y. Cheng and D. S. Juang. Recursive Optimization for Seismic Steel Frames [J].Journal of Structural Engineering,1989,115(2):445-466.
    [2-63] Chun-Man Chan, Donald E. Grierson and Archibald N. Sherbourne. Automatic OptimalDesign of Tall Steel Building Frameworks [J]. Journal of Structural Engineering,1995,121(5):838-847.
    [2-64] Richard J. Balling, and Xiaoping Yao. Optimization of Reinforced Concrete Frames [J].Journal of Structural Engineering,1997,123(2):193-202.
    [2-65] Kamal C. Sarma and Hoijat Adeli. Cost Optimization of Concrete Structures [J]. Journal ofStructural Engineering,1998,124(5):570-578.
    [2-66] Kamal C. Sarma and Hojjat Adeli. Fuzzy Discrete Multicriteria Cost Optimization of SteelStructures [J]. Journal of Structural Engineering,2000,126(11):1339-1347.
    [2-67] O. J. Koskisto and B. R. Ellingwood. Reliability-Based Optimization of Plant PrecastConcrete Structures [J]. Journal of Structural Engineering,1997,123(3):298-304.
    [2-68]程耿东,蔡悦,蔡文学.基于可靠度的结构优化模型和“强柱弱梁”设计[J].大连理工大学学报,1998,38(6):625-631.
    [2-69]蔡迎建,孙焕纯.框架结构的可靠性优化[J].计算力学学报,1999,16(3):288-294.
    [2-70] Franklin Y. Cheng, Dan Li, and Jeffrey Ger. Multiobjective Optimization of SeismicStructures [C]. Advanced Technology in Structural Engineering Proceedings of StructuresCongress,2000:1-8.
    [2-71] Cheng, F.Y. and Li, D. Multiobjective Optimization of Structures with/without Control [J]. J.Guidance, Control, and Dynamics,1996,19(2):392-397.
    [2-72] Cheng, F.Y. and Li, D. Multiobjective Optimization Design with Pareto Genetic Algorithm[J]. Journal of Structural Engineering,1997,123(9):1252-1261.
    [2-73]李刚,程耿东.基于功能的结构体系目标可靠度优化决策[J].计算力学学报,2002,19(2):127-131.
    [2-74] Lei Xu, Yanglin Gong and Donald E. Grierson. Seismic Design Optimization of SteelBuilding Frameworks [J]. Journal of Structural Engineering,2006,132(2):277-286.
    [2-75] Xu, L. and Grierson, D. E. Computer-Automated Design of Semi-Rigid Steel Frameworks[J]. Journal of Structural Engineering,1993,119(6):1740-1760.
    [2-76] X. K. Zou, C. M. Chan, G. Li, et al. Multiobjective Optimization for Performance-BasedDesign of Reinforced Concrete Frames [J]. Journal of Structural Engineering,2007,133(10):1462-1474.
    [2-77] Chan, C. M. Optimal Lateral Stiffness Design of Tall Buildings of Mixed Steel and ConcreteConstruction [J]. Journal of Struct. Des. Tall Build.2001,10:155-177.
    [2-78] Gholizadeh S, Salajegheh E. Optimal design of structures subjected to time history loadingby swarm intelligence and an advanced metamodel [J]. Computer Methods in AppliedMechanics and Engineering,2009,198:2936-2949.
    [2-79] Safari D, Maheri M R, Maheri A. Optimum design of steel frames using a multiple-demeGA with improved reproduction operators [J]. Journal of Constructional Steel Research,2011,67(8):1232-1243.
    [2-80]李烈轩,梁志华.钢筋混凝土框架优化设计的一种新的混合法[J].华南理工大学学报,1990,18(3):9-21.
    [2-81] Hojjat Adeli and Osama Kamal. Concurrent Optimization of Large Structures. I: algorithms[J]. Journal ofAerospace Engineer,1992,5(1):79-90.
    [2-82] Adeli, H., and Kamal, O. Concurrent Optimization of Large Structures. II. Applications [J].Journal ofAerospace Engineering,1992,5(1):91-110.
    [2-83] S. Rajeev and C. S. Krishnamoorthy. Discrete Optimization of Structures Using GeneticAlgorithms [J]. Journal of Structural Engineering,1992,118(5):1233-1250.
    [2-84]欧阳义为,王全凤.多层框架动力优化[J].华侨大学学报,1996,17(3):266-270.Optimization [J]. Journal of Structural Engineering,2000,126(3):382-388.
    [2-86] Kamal C. Sarma and Hojjat Adeli. Fuzzy Genetic Algorithm for Optimization of SteelStructures [J]. Journal of Structural Engineering,2000,126(5):596-604.
    [2-87]韩波,李慧,许铁生.钢筋砼框架结构的可靠性优化设计研究[J].西安交通大学学报,2001,35(10):1076-1092.
    [2-88] Charles V. Camp, Barron J. Bichon and Scott P. Stovall. Design of Steel Frames Using AntColony Optimization [J]. Journal of Structural Engineering,2005,131(3):369-379.
    [2-89] Camp, C. V., Pezeshk, S., and Cao, G. Optimized design of two-dimensional structures usinga genetic algorithm [J]. Journal of Structural Engineering,1998,124(5):551-559.
    [2-90] Camp, C. V., and Bichon, B. J. Design of space trusses using ant colony optimization [J].Journal of Structural Engineering,2004,130(5):741-751.
    [2-91] Mohsen Kargahi and James C. Anderson. Structural Weight Optimization of Frames UsingTabu Search. II: Evaluation and Seismic Performance [J]. Journal of Structural Engineering,2006,132(12):1689-1879.1677-1690.Dynamics,2004,33(8):929-950.
    [2-94]李刚,程耿东.基于分灾模式的高层结构抗震优化设计[J].大连理工大学学报,2000,40(4):483-488.
    [2-95]李刚,程耿东.灾害荷载下结构体系失效模式的相关性及可靠度计算[J].工程力学,2001,18(3):1-9.
    [2-96] Jian Wang, Michel Ghosn. Hybrid Data Mining/Genetic Shredding Algorithm for ReliabilityAssessment of Structural Systems [J]. Journal of Structural Engineering,2006,132(9):1451-1460.
    [2-97] X. K. Zou, C. M. Chan, G. Li, et al. Multiobjective Optimization for Performance-BasedDesignof Reinforced Concrete Frames[J]. Journal of Structural Engineering, ASCE,2007,133(10):1462-1474.
    [2-98]李忠献,吕杨,徐龙河,等.高层钢框架结构地震失效模式优化及损伤控制研究进展[J].建筑结构学报,2011,32(12):62-70.
    [2-99] Lei Xu, Yanglin Gong, Donald E. Grierson. Seismic Design Optimization of Steel BuildingFrameworks [J]. Journal of Structural Engineering,2006,132(2):277-286.
    [2-100] Oviedo J A, Midorikawa M, Asari T. Earthquake response of ten-story story-drift-controlledreinforced concrete frames with hysteretic dampers [J]. Engineering Structures,2010,32(6):1735-1746.
    [2-101]孙海,梁立孚,侯钢领.结构最弱失效模式组的优化及投资-效益模型[J].哈尔滨工程大学学报,2009,30(3):262-266.
    [2-102]沈霄鹤,欧进萍.超高层巨型钢框架结构失效模式分析[J].东南大学学报,2009,39:1076-1092.
    [2-103]白久林,欧进萍.基于IDA方法的钢筋混凝土结构失效模式优化[J].工程力学,2011,32:198-203.
    [2-104]王光远,于玲.三级设防抗震结构最优设计烈度的决策[J].哈尔滨建筑大学学报,2002,35(2):1-5.
    [2-105]朱靖华,王光远.多级递阶工程结构系统抗地震设计的全局优化[J].工程力学,2002,19(6):171-180.
    [2-106]朱靖华,王光远.多级递阶工程系统抗地震设计整体优化的计算实现[J].计算力学学报,2002,19(4):384-390.
    [2-107] Chan, C.-M., Zou, X.-K. Elastic and inelastic drift performance optimization for reinforcedconcrete buildings under earthquake loads [J]. Journal of Earthquake Eng. Struct. Dyn,2004,33:929-950.
    [2-109]杨迪雄.隔震结构优化设计和工程数值方法中的混沌[D].大连:大连理工大学,2004.
    [2-110]王光远,季天健,张鹏.抗震结构全寿命预期总费用最小优化设计[J].土木工程学报,2003,36(6):1-6.
    [2-111]吕大刚,于晓辉,宋鹏彦,等.抗震结构最优设防水平决策与全寿命优化设计的简化易损性分析方法[J].地震工程与工程振动,2009,29(4):23-31.
    [2-112]李刚,程耿东.基于功能的结构体系目标可靠度优化决策[J].计算力学学报,2002,19(2):127-131.
    [2-113]李刚,程耿东.基于投资-效益准则的现有结构抗震加固策略[J].大连理工大学学报,2003,43(4):412-415.
    [2-114]李刚,程耿东.基于投资-效益准则的结构目标性能水平[J].大连理工大学学报,2005,45(2):166-171.
    [2-115]马宏旺,陈晓宝.钢筋混凝土框架结构强柱弱梁设计的概率分析[J].上海交通大学学报,2005,39(5):723-726.
    [2-116]马宏旺,孟冉. RC框架结构抗震目标性能水平确定方法研究[J].建筑结构学报,2012,28(2):126-130.
    [2-117]金伟良,宋志刚,赵羽习.工程结构全寿命可靠性与灾害作用下的安全性[J].浙江大学学报(工学版),2006,40(11):1862-1867.
    [2-118]金伟良,钟小平.结构全寿命的耐久性与安全性、适用性的关系[J].建筑结构学报,2009,30(6):1-7.
    [2-119]金伟良,钟小平,胡琦忠.可持续发展工程结构全寿命周期设计理论体系研究[J].防震减灾工程学报,2010,30(sup1):401-406.
    [2-120]金伟良,牛荻涛.工程结构耐久性与全寿命设计理论[J].工程力学,2011,38(sup2):31-37.
    [2-121]罗波,辛志胜,朱长明.工程建设全寿命周期造价控制理论及其应用[J].华中科技大学学报(城市科学版),2006,23(sup1):103-105.
    [2-122]张荫,李慧民,姚谦峰.密肋壁板结构全寿命质量控制分析[J].西安建筑大学学报(自然科学版),2007,39(4):474-478.
    [2-123]张荫,杨增科,姚谦峰,等.基于全寿命的隔震结构费用分析[J].西安建筑大学学报(自然科学版),2008,40(5):608-612.
    [2-124]万冬君.基于全寿命期的建设工程项目集成化管理模式研究[J].土木工程学报,2009,45(sup2):267-271.
    [2-125]孙海,梁立孚,侯钢领.结构最弱失效模式组的优化及投资-效益模型[J].哈尔滨工程大学学报,2009,30(3):262-266.
    [2-126]张毅刚,杨大彬,吴金志.基于性能的空间结构抗震设计研究现状与关键问题[J].建筑结构学报,2010,31(6):145-152.
    [2-127]唐玉,郑七振,楼梦麟.基于“投资―效益”准则的结构全寿命总费用模型[J].地震工程与工程振动,2012,32(4):188-194.5(1):22-27.
    [2-129]李刚,程耿东.基于分灾模式的结构防灾减灾设计概念的再思考[J].大连理工大学学报,1998,38(1):10-15.
    [2-130]李刚,程耿东.基于分灾模式的高层结构抗震优化设计[J].大连理工大学学报,2000,40(4):483-488.
    [2-131]杨迪雄,李刚.结构分灾抗震设计:概念和应用[J].世界地震工程,2007,23(4):95-101.
    [2-132]姚谦峰,师永恒.密肋壁板结构分灾抗震设计[J].工业建筑,2008,38(1):1-3.
    [2-133]苏原,赵崇丰,吴晟.基于分灾模式的抗震加固设计概念初探[J].建筑结构,2010,40:1-3.
    [2-134]赵崇丰.基于分灾模式的抗震加固设计方法研究[D].武汉:华中科技大学,2011.
    [3-1] Robert H. Bryant. Optimal Design of Elastic Beams for Moving Loads [J]. Journal ofEngineering Mechanics,1991,117(1):154-165.
    [3-2] M. Z. Cohn, Z. Lounis. Optimum Limit Design of Continuos Prestressed Concrete Beams[J]. Journal of Structural Engineering,1993,119(12):3551-3570.
    [3-3] AllS. AI-Harthy and Dan M. Frangopol. Reliability-Based Design of Prestressed ConcreteBeams [J]. Journal of Structural Engineering,1994,120(11):3156-3177.
    [3-4] D. P. Rath, A. S. Ahlawat and A. Ramaswamy. Shape Optimization of RC Flexural Members[J]. Journal of Structural Engineering,1999,125(2):1439-1446.
    [3-5]刘荣桂,吕志涛.预应力开孔梁模糊优化设计[J].工程力学,2001,18(6):1-10.
    [3-6]赵焕臣.层次分析法:一种简易的新决策方法[M].北京:科学出版社,1986.
    [3-7]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [3-8]张文元,吴知丰.遗传算法在建筑结构优化设计中的应用[J].哈尔滨建筑大学学报,1999,32(4):18-23.
    [3-9]赵彦革,何广乾.变截面门式刚架斜梁的优化设计[J].建筑结构学报,2002,23(6):70-74.
    [3-10]刘霞,易伟建,沈蒲生.钢筋混凝土深梁的拓扑优化模型[J].工程力学,2006,23(9):93-97.
    [3-11]刘霞,易伟建.钢筋混凝土平面构件的配筋优化[J].计算力学学报,2010,27(1):110-114.
    [3-12]宁响亮.结构振动控制的多目标优化和智能模糊控制[D].哈尔滨:哈尔滨工业大学,2010.
    [3-13]尚晓江,邱峰,赵海峰,等. ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2005.
    [3-14] Gang Li, Ren-Gen Zhou, Lian Duan. Multiobjective and Multilevel Optimization for SteelFrames [J]. Engineering Structures,1999,21:519-529.
    [3-15] GB50010-2010.混凝土结构设计规范[S].北京:建筑工业出版社,2010.
    [3-16] JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:建筑工业出版社,2002.
    [3-17] GB50011-2010.建筑抗震设计规范[S].北京:建筑工业出版社,2011.
    [4-1]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [4-2]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005.
    [4-3]郑山锁,邓国专,杨勇,等.型钢混凝土结构粘结滑移性能试验研究[J].工程力学,2003,20(5):63-69.
    [4-4]郑山锁,李磊,王斌,等.型钢高强高性能混凝土梁粘结滑移行为研究[J].工程力学,2009,26(1):104-112.
    [4-5]杨勇,郭子雄,薛建阳,等.型钢混凝土粘结滑移性能试验研究[J].建筑结构学报,2005,26(4):1-9.
    [4-6] Park R. Evaluation of Ductility of Structures and Structural Subassemblages FromLaboratory Testing [J]. Bulletin of New Zealand Society for Earthquake Engineering,1989,22(3):155-166.
    [4-7]张亮.型钢高强高性能混凝土柱的受力性能及设计计算理论研究[D].西安:西安建筑科技大学,2011.
    [4-8]邓国专,郑山锁,田微.型钢混凝土结构粘结滑移本构关系的试验研究[J].哈尔滨工业大学学报,2005,37(Sup.):524-527.
    [4-9]杨勇,郭子雄,聂建国,等.型钢混凝土结构ANSYS数值模拟技术研究[J].工程力学,2006,23(4):79-85.
    [4-10]杨勇,薛建阳,赵鸿铁.考虑粘结滑移的型钢混凝土结构ANSYS模拟方法研究[J].西安建筑科技大学学报,2006,38(3):302-310.
    [4-11]赵伟.基于粘结滑移理论的型钢混凝土框架结构优化理论方法研究[D].西安:西安建筑科技大学,2008.
    [4-12]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993.
    [4-13]张志伟,郭子雄.型钢混凝土柱位移延性系数研究[J].西安建筑科技大学学报,2006,38(4):528-532.
    [4-14]李俊华,赵鸿铁,薛建阳.型钢高强混凝土柱延性的试验研究[J].西安建筑科技大学学报,2004,36(4):383-386.
    [4-15]陆海燕.基于遗传算法和准则法的高层建筑结构优化设计研究[D].大连:大连理工大学,2009.
    [4-16] Chan C. M. Optimal Lateral Stiffness Design of Tall Buildings of Mixed Steel And ConcreteConstruction [J]. Journal of Structural Design of Tall Buildings,2001,10(3):155-177.
    [4-17] Chan C. M. An Optimality Criteria Algorithm for Tall Steel Building Design UsingCommercial Sections [J]. Structural optimization,1992,5(2):26-29.
    [4-18] Truman K.Z and Cheng F.Y. Optimality Criteria Algorithm for Mixed Steel and ReinforcedConcrete Seismic Structures [J]. Structural Systems and Industrial Applications,1991,106(6):27-38.
    [4-19] WONG Kin Ming. Evolutionary Structural form Optimisation Ffor Lateral Stiffness Designof Tall Buildings [D]. The Hong Kong University of Science and Technology,2007.
    [4-20] Li Q.,Steven G P., Xie Y M. Evolutionary Structural Optimization for Stress MinimizationProblems by Discrete Thickness Design [J]. Computers&Structures,2000,78:769-780.
    [4-21] Li Q.,Steven G P. Querin O. M.,et al. Evolutionary Shape Optimization for StressMinimization [J]. Mechanics Research Communications,1999,26(6):657-664.
    [4-22]曾磊,郑山锁,查春光,等.型钢混凝土矩形截面梁优化设计[J].哈尔滨工业大学学报,2007,39(sup2):184~187.
    [4-23] GB50010-2010.混凝土结构设计规范[S].北京:建筑工业出版社,2010.
    [4-24] JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:建筑工业出版社,2002.
    [4-25] GB50011-2010.建筑抗震设计规范[S].北京:建筑工业出版社,2011.
    [4-26]陶清林,郑山锁,胡义,等.型钢混凝土柱多目标优化设计方法研究[J].工业建筑,2010,40(11):126-13.
    [5-1] Richard J. Balling, Xiaoping Yao. Optimization of Reinforced Concrete Frames [J], Journalof Structural Engineering,1997,123(2):193-202.
    [5-2]李刚,程耿东.基于可靠度和功能的框架-剪力墙结构抗震优化设计[J].计算力学学报,2001,18(3):290-294.
    [5-3] Chan, C.-M., and Zou, X.-K. Elastic and Inelastic Drift Performance Optimization forReinforced Concrete Buildings Under Earthquake Loads [J]. Earthquake Eng. Struct. Dyn.,2004,33,929–950.
    [5-4] X. K. Zou, C. M. Chan, G. Li, et al. Multiobjective Optimization for Performance-BasedDesign of Reinforced Concrete Frames [J]. Journal of Structural Engineering, ASCE,2007,133(10):1462-1474.
    [5-5]李少泉,沙镇平.钢筋混凝土多高层建筑结构在地震作用下的割线刚度分析法[J].土木工程学报,2003,36(8):37-42.
    [5-6]包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2005.
    [5-7] GB50010-2010.混凝土结构设计规范[S].北京:建筑工业出版社,2010.
    [5-8] JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:建筑工业出版社,2002.
    [5-9] JGJ3-2002.高层建筑混凝土结构技术规程[S].北京:建筑工业出版社,2002.
    [5-10] GB50011-2010.建筑抗震设计规范[S].北京:建筑工业出版社,2011.
    [5-11]赵伟.基于粘结滑移理论的型钢混凝土框架结构优化理论方法研究[D].西安:西安建筑科技大学,2008.
    [5-12]邓国专.型钢高强高性能混凝土结构力学性能及抗震设计的研究[D].西安:西安建筑科技大学,2008.
    [5-13]孙训方,方孝淑,关来泰.材料力学[M].北京:高等教育出版社,2001.
    [6-1] Cheng, G. D., Xu, L., and Jiang, L. A Sequential Approximate Programming Strategy forReliability-Based Structural Optimization [J]. Comput. Struct.,2006,84:1353-1367.
    [6-2] Chun-Man Chan and Qian Wang. Nonlinear Stiffness Design Optimization of TallReinforced Concrete Buildings under Service Loads [J]. Journal of Structural Engineering,2006,132(6):978-990.
    [6-3]李刚,程耿东.基于可靠度和功能的框架-剪力墙结构抗震优化设计[J].计算力学学报.2001,18(3):290-294.
    [6-4]王光远,吕大刚.基于最优设防烈度和损伤性能的抗震结构优化设计[J].哈尔滨建筑大学学报.1999,32(5):1-5.
    [6-5]李刚,程耿东.灾害荷载下结构体系失效模式的相关性及可靠度计算[J].工程力学,2001,18(3):1-9.
    [6-6] X. K. Zou, C. M. Chan, G. Li, et al. Multiobjective Optimization for Performance-BasedDesignof Reinforced Concrete Frames [J]. Journal of Structural Engineering, ASCE,2007,133(10):1462-1474.
    [6-7]孙海,梁立孚,侯钢领.结构最弱失效模式组的优化及投资-效益模型[J].哈尔滨工程大学学报,2009,30(3):262-266.
    [6-8]李忠献,吕杨,徐龙河,等.高层钢框架结构地震失效模式优化及损伤控制研究进展[J].建筑结构学报,2011,32(12):62-70.
    [6-9]白久林.结构失效模式分板及优化初探[D].哈尔滨:哈尔滨工业大学,2010.
    [6-10]欧进萍,段忠东,肖仪清.海洋平台结构安全评定-理论、方法与应用[M].北京:科学出版社,2003.
    [6-11] GB50011-2010.建筑抗震设计规范[S].北京:建筑工业出版社,2011.
    [6-12]丰定国,王社良.抗震结构设计[M].武汉工业大学出版社,2001.
    [6-13]张淑云.高层型钢混凝土框架-混凝土筒体混合结构地震灾变响应与分析[D].西安:西安建筑科技大学,2009.
    [6-14]胡健.框架-剪力墙结构的抗震分析和优化设计[D].武汉:武汉理工大学,2006.
    [6-15] GB50010-2010.混凝土结构设计规范[S].北京:建筑工业出版社,2010.
    [6-16] JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:建筑工业出版社,2002.
    [6-17] JGJ3-2002.高层建筑混凝土结构技术规程[S].北京:建筑工业出版社,2002.
    [6-18] HUANG MINGFENG. Performance-based Serviceability Design Optimization of Windsensitive Tall Building [D]. The Hong Kong University of Science and Technology.2008.
    [6-19]陶清林.地震激励下混合结构损伤演化规律的研究[D].西安:西安建筑科技大学,2010.
    [6-20] Lei Xu, Yanglin Gong, and Donald E. Grierson. Seismic Design Optimization of SteelBuilding Frameworks [J]. Journal of Structural Engineering,2006,132(2):277-286.
    [6-21]李志强,郑山锁,陶清林,等.基于失效模式的SRC框架-RC核心筒混合结构三水准抗震优化设计[J].振动与冲击,2013.
    [6-22]李磊.混合结构的数值建模理论及在地震工程中的应用[D].西安:西安建筑科技大学,2010.
    [7-1]师永恒.基于投资-效益准则的密肋壁板结构分灾抗震设计方法研究[D].北京:北京交通大学,2007.
    [7-2]白广忱,王光远.系统可靠度的模糊优化分配[J].哈尔滨建筑工程学院学报.1994,27(6):1-6.
    [7-3]李刚,程耿东.基于可靠度和功能的框架-剪力墙结构抗震优化设计[J].计算力学学报.2001,18(3):290-294.
    [7-4] Cheng, G. D., Xu, L., and Jiang, L. A Sequential Approximate Programming Strategy forReliability-Based Structural Optimization [J]. Comput. Struct.,2006,84:1353-1367.
    [7-5] Wen Y K, Kang Y J. Minimum Building Life-Cycle Cost Design Criteria. I: Methodology [J].Journal of Structural Engineering,ASCE,2001,127(3):330-337.
    [7-6]王光远,季天健,张鹏.抗震结构全寿命预期总费用最小优化设计[J].土木工程学报,2003,36(6):1-6.
    [7-7]吕大刚,于晓辉,宋鹏彦,等.抗震结构最优设防水平决策与全寿命优化设计的简化易损性分析方法[J].地震工程与工程振动,2009,29(4):23-31.
    [7-8]李刚,程耿东.基于投资-效益准则的结构目标性能水平[J].大连理工大学学报,2005,45(2):166-171.
    [7-9]程耿东,蔡文学.基于分灾模式的结构防灾减灾设计概念初探[J].自然灾害学报,1996,5(1):22-27.
    [7-10]李刚,程耿东.基于分灾模式的结构防灾减灾设计概念的再思考[J].大连理工大学学报,1998,38(1):10-15.
    [7-11]李刚,程耿东.基于分灾模式的高层结构抗震优化设计[J].大连理工大学学报,2000,40(4):483-488.
    [7-12]杨迪雄,李刚.结构分灾抗震设计:概念和应用[J].世界地震工程,2007,23(4):95-101.
    [7-13]王光远,邵卓民,等.抗震结构的最优设防烈度与可靠度[M].北京:科学出版社,1999.
    [7-14]孙鸿玲.抗震结构与系统的全寿命全局优化[D].成都:西南石油学院,2003.
    [7-15]王光远,谭东耀.失效相关工程系统的可靠度[J].地震工程与工程振动,1992,12(1):1-6.
    [7-16]王光远,朱靖华.地震作用下串、并联工程系统中结构失效相关性的近似处理[J].地震工程与工程振动,1998,18(4):1-7.
    [7-17] D M Rosyid. Elemental Reliability Index-Based System Design for Skeletal Structures [J].Struct. Opt.,1992,4(1):1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700