模卡式拼装节能墙体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑墙体的发展已经和土地、资源、能源、环境和建筑节能发生了密切的关系。新型墙体的研发已经成为科研的热点。模卡式拼装节能墙体研究的目的在于提供一种条形榫卯砌块拼装式墙体及施工方法。模卡式拼装节能墙体是由工厂化生产的条形榫卯砌块,连接件及发泡聚苯保温板在建筑施工现场直接拼装而成,形成高标准节能墙体,使墙体与保温节能一体化,并在施工作业面上一次完成。
     论文设计了模卡式节能墙体结构的基本构造。模卡式节能墙体由榫卯砌块、连接件、保温材料构成。确定了榫卯砌块的基本尺寸、连接件的作用及构造,采用的保温材料基本性能等。同时,基于现有砌块制造技术,分析了榫卯砌块的基本生产工艺流程,并对模卡式墙体施工提出了建议。
     在墙体基本性能研究方面,将模卡式墙体看成两向非均质围护结构计算其平均热阻;利用平壁稳定传热的基本理论计算其传热系数;最后对其保温层的经济厚度进行了讨论。计算结果表明,模卡式拼装节能墙体传热系数仅为0.689W/(m2·K),远低于其它常用墙体,具有良好的节能效果。墙体的聚苯板厚度采用0.08m时,能取得最佳经济指标,墙体的传热系数仅为0.400 W/(m2·K)。利用环境噪声学理论,探讨了模卡式墙体的隔声性能。当入射声波频率为125Hz时,其隔声量为55dB,共振频率为54Hz,满足民用及普通公建要求。模卡式的双层结构由于中间空气层(或添加隔音材料)提高了墙体的隔声性能,采用双层90mm粉煤灰陶粒混凝土加40-60厚空气层能够取得良好的隔声效果。满足节能65%要求的双层90mm粉煤灰陶粒混凝土模卡墙板加聚苯板构成的模卡墙体实际水蒸气分压力远小于饱和水蒸气压力,且在墙体中的分布线不相交,故模卡式陶粒混凝土墙体墙板内部不会出现冷凝结潮,具有良好的抗冷凝结潮性能。
     论文进行了模卡式拼装节能墙体钢框架体系的低周水平往复试验和数值模拟。结果表明,模卡式墙体开裂后通过应力重分布使墙体的裂缝分布均匀。墙体的整体受力性能较好,能够承受较大的水平荷载的作用。连接件协调了墙块之间的变形,并产生阻隔裂缝分布的作用,提高墙体的整体性及延性性能,在大变形的情况下,保证已开裂墙体不致于脱落、倒塌。墙体开裂荷载约为极限荷载的48%,小于同类无框架填充墙体的比值,墙体开裂以后承载力仍有一定的提高。这说明榫卯砌块明显地改善了墙体的变形能力,增加了结构的延性,在墙体达到极限荷载后,可保持裂而不倒。模卡式墙体由于该墙体榫头、插口等的榫卯作用,使墙体在水平荷载的作用下能够承受较大的往复荷载而只产生非常小的水平位移,从而保证墙体的正常工作。试验与数值模拟结果也同时表明,新型模卡式拼装节能墙体整体受力性能优良,在较大的往复水平荷载的作用下,墙体的大部分区域都没有达到极限荷载。如对该墙体的插孔等特殊部位进行适当的改动,可以进一步提高其承受荷载的能力。
Development of building wall has got in great touch with land, resource, environment and energy-saving building. It has been tidal current in scientific research to develop new kinds of building wall. In order to provide a kind of strip consolidation wallboard with tenon-and-mortise work building blocks and job practice, research on a molded consolidation wall that can save energy has been performed. The wallboard is actually tenon-and-mortise work building blocks made in a factory, while the connecting piece and foamed poly-p-phenylene board are consolidated in job site. The wallboard can set up a kind of stringent specification wall that saves energy. The process can be completed one-time at working face.
     Essential structure of the molded consolidation wall that can save energy is designed in this thesis. The wall is made up of tenon-and-mortise work building blocks, connecting pieces and heat insulator. It also confirmed basic dimension of tenon-and-mortise work building blocks, action and constitution of connecting pieces and basic nature of heat retaining and so on. At the same time, based on technique of manufacture about the existing building blocks, the production, process and flow path are analysed, and suggestion has been brought forward for execution of the Mortice-Tenon wall.
     In order to research the basic performance of the wall, If Mortice-Tenon wall is regarded as two-way heterogeneous exterior-protected construction, average thermal resistance can be calculated. Planomural stabilization theory may be used to calculate its coefficient of heat transmission. The economic thickness of the insulating layer is finally analyzed. Analysis outcome shows that coefficient of heat transmission is only 0.689 W/(m2-K), it is far lower than that of other common wall, and has very good energy-saving effect. When thickness of the insulating layer of the wall is 0.08m, it will has best economic indicator, and coefficient of heat transmission of the wall is only 0.400 W/(m2·K). Theory of environment noise is also used to analyze noise isolation. When entrance sound wave frequency is 125Hz, sound transmission loss is 55dB, resonance frequency is 54Hz, and the result meets operating requirements of civil and public building. Owing to having medium air of two-layer structure of the wall (or adding noise isolation material), noise isolation of the wall is increased. If two-layer fly ash (90mm thickness) ceramisite concrete together with 40-60mm thickness air can get better noise isolation result. When the energy-saving requirement is 65%, the practical water vapor pressure of the ceramisite concrete wallboard is far lower than the saturation water vapor pressure. The joints of the wallboard do not intersect, so the phenomenon of freezing and dampness in the wallboard will not appear. The wallboard can resist freezing and dampness much well.
     Low-cycle horizontal direction repeated-load test and numerical analysis have been down in this thesis. Research shows that, once Mortice-Tenon wall generates crack, its width is homogeneous along the crack. The whole mechanical property of the wall is better, and it can bear big horizontal load. Connecting pieces does coordination for deformation between two wallboards to resist deformation expansion, to enhance bulk property and tensility. In case of generating large deformation, it can ensure the crazing wall not to pull-out and collapse. The cracking load is about 48 percent of ultimate load. It is smaller than the ratio of homogeneous filler wall with no shell frame, but bearing capacity has improvement in a certain extent. It shows that tenon-and-mortise work building blocks can improve non-deformability of the wall. Tensility of the wall is also improved at the same time. After the wall bear limit load, it do not collapse with crack. Because of tenon-and-mortise work of the wall, small horizontal deformation will appear while the wall bear big horizontal repeated load. The wall works normally. Result from repeated-load test and numerical analysis shows that mortice-tenon energy-saving consolidation wall has wonderful whole mechanical property. Bearing big horizontal repeated load, majority of the wall does not bear limit load. If some especial position of the wall, such as socket, is modified properly, ability on bearing load will be improved ulteriorly.
引文
[1]黄勇.新型墙体材料发展现状及对策研究[J].2007,33(27):180-181.
    [2]崔琪,王武祥.小城镇新型建材技术研究与开发[J].建设科技,2006(13):88-89.
    [3]陈福广.漫漫墙改路——艰辛的跋涉[M].北京:中国建材工业出版社,2003.508-520.
    [4]杜文丽.国外新型墙体材料的发展现状和趋势[J].国外建材科技,2007(1):101-103.
    [5]韩喜林.新型建筑绝热保温材料应用·设计·施工[M].北京:中国建材工业出版社,2005.5-20.
    [6]杨善勤.民用建筑节能设计手册[M].北京:中国建筑工业出版社,1997.1-53.
    [7]朱盈豹.保温材料在建筑墙体节能中的应用[M].北京:中国建材工业出版社,2003:20-198.
    [8]郭延辉,赵霄龙.外墙保温装饰系统的发展与应用[A].墙体保温材料及应用技 术[C].北京:中国电力出版社,2006:3-12.
    [9]Ben Yedder R, Bilgen E. Natural convection and conduction in trombe wall system [J]. Internatioal Journal of Heat and Mass Transfer,1991,34(4/5):1237.
    [10]王立雄.建筑节能[M].北京:中国建筑工业出版社,2005:1-5.
    [11]李雅美.浅析建筑节能技术措施[M].常州工学院学报,2005,18(4):55-58.
    [12]李靖颉.面向21世纪的建筑节能技术[J].科技情报开发与经济,2003,13(7):281-282.
    [13]侯平兰,薛永武.外墙保温的墙体节能方法[J].陕西建筑,2006(8):23-26.
    [14]刘素萍.建筑节能与围护结构[J].工业建筑,2001(7):6-7.
    [15]姚谦峰,张萌.新型建筑结构住宅体系发展与应用[M].工业建筑,2002,(8):53-56.
    [16]王立久,李洪义.我国新型住宅结构体系及墙体材料现状[J].建筑技术,2001,(10):73-77.
    [17]范忠武、张振钢.异型柱框架轻型结构技术[J].墙体革新与建筑节能,2001,(2):23-26.
    [18]陈忠汉,朱茂存.新型住宅结构体系初探[M].苏州城建环保学院学报,2000,(4):1-7.
    [19]郭春洪.新型墙体材料发展现状及适用的结构体系[J].加气混凝土,2001,(3):14-33.
    [20]曹力强,李军.不同外墙保温体系的应用分析[A].墙体保温材料及应用技术[C].北京:中国电力出版社,2006:24-28.
    [21]陈福广.新型墙体材料手册[M].北京:中国建材工业出版社,2001:508-509.
    [22]周炳章.混凝土小型空心砌块建筑技术的现状与发展[J].建筑技术,2001,28(2):41-43.
    [23]峦伟.节能墙体空心砌块热阻特性的研究[J].南京工业大学学报,2000,(9):34.
    [24]钱晓倩,邱勇,詹树林.陶粒增强加气砌块外墙自保温体系[J].新型建筑材料,2007,5:56-58.
    [25]白云龙,任鹏,张宇峰.聚苯板插孔混凝土空心砌块墙体热工性能[J].新型建筑材料,2007(12):36-38.
    [26]田维生.新型GRC轻质墙板的开发与生产[J].新型建筑材料,2000(2):9-10.
    [27]崔玉忠.GRC外墙板相关问题探讨[J].墙材革新与建筑节能,2007(5):23-27.
    [28]王少南.GRC制品发展前景广阔[J].墙材革新与建筑节能,2000(6):12-13.
    [29]通讯.一种新型的陶粒复合轻质条板研制成功[J].广东建材,2000(3):43.
    [30]李巍、黄剑秋.纤维增强硅酸钙复合实心轻质隔墙条板[J].2004(8):33-35.
    [31]沈荣熹.中国纤维增强水泥复合材料的新进展[J].硅酸盐通报,2005(5):55-59.
    [32]王全.维纶纤维增强水泥粉煤灰发泡空心隔墙条板[J].砖瓦,2005(7):40-42.
    [33]王平.泰柏板在工程中的应用[J].当代建设,2003(5):89.
    [34]王永飞.新型墙体材料“泰柏板”[J].房材与应用,2000(1):28-29.
    [35]康武文.舒乐舍板内隔墙的安装与抹灰施工技术[J].山西建筑,2003,29(7):100.
    [36]刘丽芬,元红英,顾东辉.舒乐舍板及其施工[J].新型建筑材料,2003(10):45-47.
    [37]胡辉霞、范朝晖.舒乐舍板——一种新型的墙体材料[J].内蒙古科技与经济,2002(8):96-97.
    [38]童文峰、潘利民、乔宝玉.金属面聚苯乙烯夹心板作网架内封隔墙的施工技术[J].建筑技术,2004,35(9):699.
    [39]赖启红.GRC内墙板施工技术探讨[J].山西建筑,2007,33(4):163-164.
    [40]丁永刚.框支密肋壁板结构墙梁受力性能及设计计算方法研究[D].西安:西安建筑科技大学博士学位论文,2006.
    [41]袁泉.密肋壁板框架结构非线性地震反应分析[D].西安:西安建筑科技大学博士学位论文,2003.
    [42]田英侠.密肋复合墙板受力性能试验研究与理论分析[D].西安:西安建筑科技大学,2002.
    [43]胡志广,刘修刚,孙雪梦.免振捣自密实混凝土在CL结构体系中的应用[J].建筑技术,2003,34(7):534-535.
    [44]王春梅、崔晓伟.CL结构体系的施工技术[J].建筑技术,2005,36(7):500-501.
    [45]陈正洪、王立强.CL抗震节能结构体系技术应用[J].科技信息,2006(10):63.
    [46]钟祥璋,莫方朔.FC轻质复合墙板的隔声性能[J].新型建筑材料,2001(10):7-8.
    [47]马保国,郝先成,蹇守卫.新型节能墙体材料施工工艺及保温隔热性能评价[J].施工技术,35(5):49-51.
    [48]Ben Yedder R, Bilgen E. Natural convection and conduction in Trombe wall systems [J]. International Journal ofHeat and Mass Transfer,1991,34(4/5):1237.
    [49]Rees DAS. The onset of Darcy-Brinkman convection in a porous layer:an asymptotic analysis[J]. International Journal of Heat and Mass Transfer,2002,45, 2213—2220.
    [50]Chen Wei, Liu Wei. Numerical and experimental analysis of convection heat transfer in passive solar heating room with greenhouse and heat storage[J].Solar Energy, 2004,76(5):623—633.
    [51]Yu Fei Wu.The effect of longitudinal reinforcement on the cyclic shear behavior of glass fiber reinforced gypsum wall panels:tests. Engineering Structures,2004, (26): 1633-1646.
    [52]朱盈豹,保温材料在建筑墙体节能中的应用[M].北京:中国建材工业出版社,2003.20-198.
    [53]郭延辉、赵霄龙.墙体保温材料及应用技术[M].北京:中国电力出版社,2006.10-67.
    [1]马海峰.工业建筑设计的发展变迁及发展趋势[J].工业建筑,2007,35(增刊):145-147.
    [2]孙德俊、孙成扬.浅谈建筑工业化与工业化建筑[J].科技信息,2007(30):112.
    [3]潘志宏、李爱群.住宅建筑工业化与新型住宅结构体系[J].施工技术,2008,37(2):1-4.
    [4]梁宁.论预应力大板结构设计[J].建材与装饰,2007,12(中旬刊):47-49.
    [5]杨先奎、杨军.框架轻板建筑和装配式大板建筑的工业化施工方法[J].贵州工业大学学报(自然科学版),36(3):54-58.
    [6]徐嘉诚、曲萍、陈信孚、苏振民.自保温混凝土房屋建筑工业化集成研究[J].建筑经济,2007(12):6-8.
    [7]孙伟民,杨兴富,叶燕华.页岩模数多孔砖局部受压性能的研究[J].新型建筑材料,2007(9):3-5.
    [8]傅筱.模数的式微[J].新建筑,2006(6):11-14.
    [9]夏明、刘琦.模数与盒子[J].工业建筑,2007,37(增刊):101-103.
    [10]周藤.建筑模数化设计的探索与工程实践[J].建筑,2006(11):118-121.
    [11]马秀力、肖勇全、李彬.建筑围护结构的综合节能及经济性分析[J].工业建筑,2006,36(1):16-18.
    [12]朱盈豹,保温材料在建筑墙体节能中的应用[M].北京:中国建材工业出版社,2003.20-198.
    [13]陈福广.新型墙体材料手册[M].北京:中国建材工业出版社,2001:508-509.
    [14]高岳毅、张亚梅、荀和生、许锦峰.新型墙体材料综合评价体系的建立[J].新型建筑材料,2005(12):1-5.
    [15]彭亦博、张亚梅.墙体材料质量的模糊评判[A].绿色建材的研究与应用[C].北京:中国建材工业出版社,2004:122-126.
    [1]孙向远.用循环经济的理念发展墙体材料工业[J].砖瓦世界,2007(11):3-5.
    [2]姚谦峰,张旭峰,魏晓.新型节能复合墙体保温性能及连接构造研究[J].2007,37(9):69-72.
    [3]姚谦峰,黄炜.新型住宅结构体系发展与应用研究综述[J].施工技术,2003(10):6-11.
    [4]李明顺,尚春明.小康住宅建筑结构体系成套技术指南[M].北京:中国建筑工业出版社,2001.
    [4]贾伟,卢立平.EPS外墙保温节能体系的概念设计与应用[J].山西建筑,2005,(1):3-4.
    [5]姜曙光,江煜,章见彬.严寒地区节能住宅外墙保温构造对比分析[J].保温材料与建筑节能,2005,(1):59-61.
    [6]郭樟根,孙伟民,蔡雪斌.预应力砌块带窗洞墙体的刚度研究[J].混凝土与水泥制品,2003,(6):41-42.
    [7]陈忠汉,朱茂存.新型住宅结构体系初探[J].苏州城建环保学院学报,2000,(4):1-7.
    [8]崔启峰.高层节能住宅外墙外保温施工浅谈[J].节能,2001,(6):30-34.
    [9]房树田,高跃春.EPS外保温复合墙体的保温层厚度设计研究.黑龙江工程学院学报(自然科学版)[J],2004,18(1):57-59.
    [10]卢玫臖,欧阳金龙.居住建筑能耗计算中外墙平均传热系数取值的分析[J].新型建筑材料,2005,(12):25-27.
    [11]杨艳超,苏亚欣.复合墙体传热温度分布的数值模拟[J].能源与环境,2005,(4):21-24.
    [12]许建柳,张辉.不同的材料排列顺序复合墙体温度响应[J].南京工业大学学报,2005,27(5):96-99.
    [13]Tenwolde A, Steady state one dimensional water vapor movement by diffusion and convection in a multilayered wall[J].ASHRAE Transactions,1985,91(1A):322-342.
    [14]Burch D M. An analysis of moisture accumulation in walls subjected to hot and humid climates [J]. ASHRAE Trans2 actions,1993,99(2):1013-1022.
    [15]Simonson C J, Tao Y X. Simultaneous heat and moisture transfer in fiberglass insulation with transient boundary conditions [J].ASHRAE Transactions,1999,105(2): 315-327.
    [16]杨艳超.不同结构复合墙体的传热特性[J].建筑节能,2005(3):38-41.
    [17]蔡兵.保温干砂浆在建筑物绝热系统中的应用[J].新型建筑材料,2001(7):21-23.
    [18]朱盈豹.保温材料在建筑墙体节能中的应用[M].北京:中国建材工业出版社,2003:20-198.
    [19]胡达明、叶青.深圳地区外保温复合墙体基于能耗的经济性研究[J].建筑砌块与砌块建筑.2005,(5):30-33.
    [20]吴韬,曹麻茹.GRC轻质隔声复合墙板的施工及其隔声性能测试[J].建筑技术,2005,36(5):665-666.
    [21]Rees DAS. The onset of Darcy-Brinkman convection in a porous layer:an asymptotic analysis [J]. International Journal of Heat and Mass Transfer,2002,45: 2212-2220.
    [22]Lombard C, Mathews E H. A two-port envelope model for building heat transfer [J]. Building and Environment,1999,34(1):19-30.
    [23]Davies M G. An idealized model for room radiant exchange [J]. Building and Environment,1990,25(4):375-378.
    [24]Chen w, Liu W. Numerical and experimental analysis of convection heat transfer in passive solar heating room with greenhouse and heat storage [J]. Solar Energy,2004, 76(5):623-633.
    [25]刘惠玲.环境噪声控制[M].哈尔滨:哈尔滨工业大学出版社,2002.106-121.
    [26]曹孝振,曹勤.建筑中的噪声控制[M].北京:国防工业出版社.12-18.
    [27]刘岩松.严寒地区冬季室内结露问题分析[J].房材与应用,2001.
    [28]黄春华.建筑墙体表面凝水的产生及其防治[J].建筑物理,2002.
    [29]朱盈豹.保温材料在建筑墙体节能中的应用[M].北京:中国建材工业出版社,2003.
    [30]郭延辉、赵霄龙.墙体保温材料及应用技术[M].北京:中国电力出版社,2006.
    [31]厉风卿著,节能墙体的冷桥能耗对供暖负荷的影响,房材与应用,1996.3;
    [32].黄春华著,建筑墙体表面凝水的产生及其防治,建筑物理;
    [33]Lombard C, Mathews E H. A two-port envelope model for building heat transfer [J]. Building and Environment,1999,34(1):19-30.
    [34]Davies M G An idealized model for room radiant exchange [J]. Building and Environment,1990,25(4):375-378.
    [35]Chen w, Liu W. Numerical and experimental analysis of convection heat transfer in passive solar heating room with greenhouse and heat storage [J]. Solar Energy, 2004,76(5):623-633.
    [36].李葳、李蕤、汪庆波著,寒区节能住宅建筑中存在的问题探析,低温建筑技术,2001.3;
    [37].严捍东著,新型建筑材料教程,中国建材工业出版社,2005.1;
    [38].马保国、刘军著,建筑功能材料,武汉理工大学出版社,2004.7;
    [39].王震国著,质轻与隔声矛盾的共存体—轻质墙板,广西土木建筑,1997.9;
    [40]杨国法、季方炯著,泰柏板内隔墙裂缝控制,浙江建筑,2001.6;
    [41]李轩著,轻质复合内墙板接缝开裂对策的研究,新型建筑材料,2002.4;
    [42]刘淑宏、武崇福著,轻质墙板墙体开裂原因的分析及对策,新型建筑材料,2004.1;
    [43]胡泉著,陶粒空心砌块墙体裂缝的防治,新型建筑材料,2005.3;
    [44].姜元阁、郭同利、连宏玉著,陶粒混凝土空心砌块墙体裂缝分析与防治,低温建筑技术,2000.12;
    [45]朱宏君等著,特种混凝土和新型混凝土,北京:化学工业出版社,2004.4;
    [46]P.J.M.Monteiro、A.I.Rashed,、S.J.Batacky,、T.L.Hayes, Ice in cemenpaste as analyzed in the low-temperature scanning electron microscope[J]. Cement & Concrete Resource,1999,19(2):306-319.
    [1]张溶.空腔砌块复合墙体钢框架抗震性能试验研究[D].武汉:武汉理工大学硕士学位论文,2003.
    [2]Stafford Smith B, Pradolin L. Composite design method of masonry wall on steel beams [J]. Can. J. Civ. Eng,1982, (9):96-106.
    [3]Mainstone R J. On the stiffness and strenghs of infilled frames [A]. Proc.Institution of Civil Engineers [C],1971.
    [4]Holmes M. Combined loading on infilled frames[J]. Proc. Instn. Civ. Engrs,1961, (25):231-240.
    [5]Lianw T C, Lee S W. On the behavior and the analysis of multistory infilled frames subject to lateral loading [J]. Proc. Instn. Civ. Engrs,1983, (63):641-656.
    [6]J.L.Dawe, C.K.Seah, and Y.Liu. A computer model for predicting infilled Frame behaviour [J]. Canada. J. Eng.2001,28:133-148.
    [7]丁永刚.框支密肋壁板结构墙梁受力性能及设计计算方法研究[D].西安:西安建筑科技大学博士学位论文,2006.1
    [8]A.Nadjai, P.Kirby. Collapse of infilled steel frames with seimi-rigid connections [J]. Proc. Instn Civ. Engrs Struets & Bldgs.1998:(128):103-111.
    [9]国家标准.建筑抗震设计规范(GB50011—2001)(M).北京:中国建筑工业出版社,2002.
    [10]王春武.钢筋混凝土框架-砌体墙结构性能的试验研究[J].工业建筑,2002,32(7):71-73.
    [11]王春武,孟少平.填充墙框架结构的抗震性能评估[J].工程抗震与加固改造,2006,28(2):20-23.
    [12]李国强,李欣,孙飞飞等.钢结构住宅体系墙板及墙板节点足尺模型振动台试验研究[J].地震工程与工程振动,2003,23(1):63-70.
    [13]吴绮芸、田家骅、徐显毅.砖墙填充框架在单向及往复水平荷载作用下的性能研究[J].建筑结构学报,1980,4(5)
    [14]童岳生、钱国芳.砖填充墙钢筋混凝土框架在水平荷载作用下结构性能的试验研究[J].西安冶金建筑工程学院学报,1982(2).
    [15]国家标准.建筑抗震试验方法规程(JGJ 101-96)(M).北京:中国建筑工业出版社,1996.
    [16]管克俭.模数多孔砖(DM2, DM3)整型墙片抗震性能及砌体力学性能试验研究[D].武汉工业大学,硕士学位论文.1991.
    [17]Singh H, Paul D K, Sastry V V. Inelastic dynamic response of reinforced concrete frames[J]. Computers& Structures,1998, (69):685-693
    [18]刘曙.新型复合填充墙钢框架研究[J].湖南科技大学学报(自然科学版),2008,23(1):50-54.
    [19]孙修礼.钢梁-钢管混凝土柱框架结构骨架曲线研究[J].盐城工学院学报(自然科学版),2008,21(1):6-8.
    [20]宗周红,林东欣,方贞政,等.两层钢管混凝土组合框架结构抗震性能试验研究[J].建筑结构学报,2002,23(2):27-35.
    [21]Yankelevsky, Reinhardt. UniaxialCyclic Behavious ofConcrete in Tension[J].ASCE. 1989,(1).
    [22]周文峰,鲁瑛,阳霞.几种有代表性的约束混凝土滞回模型[J].四川建筑科学研究,2007,33(5):53-55.
    [23]周文峰,黄宗明,白绍良.约束混凝土几种有代表性应力—应变模型及其比较[J].重庆建筑大学学报,2003,(4):121-127.
    [24]王铁成,王秀芬,王天柱.异形柱框架延性及耗能能力分析[J].河北工业大学学报,2007,37(1):104-108.
    [1]苑振芳,刘斌.我国砌体结构的发展状况与展望[J].建筑结构,1999,29(10):9-10.
    [2]梁辉.烧结页岩粉煤灰多孔砖砌体基本力学性能试验研究和墙体非线性有限元分析[D].长沙:湖南大学,2001.24-53.
    [3]侯汝欣.模数多孔砖砌体力学性能综合分析[J].四川建筑科学研究,1996,22(2):9-12.
    [4]Giovanni Formica, Vittorio Sansalone, Raffaele Casciaro. A mixed solution strategy of the nonlinear analysis of brick masonry walls [J]. Computer methods in applied mechanics and engineering,2002,191(5):5847-5876.
    [5]宋力.混凝土砌块砌体基本力学性能试验研究与非线性有限元分析[D].长沙:湖南大学,2005.51-77.
    [6]杨伟军,施楚贤.砌体受压应力应变关系全曲线的研究[A].1999年全国砌体结构学术会议论文集[C],北京:中国建筑工业出版社,1999.103-108.
    [7]Felix Y Y, Fattal S G Failure hypothesis of masonry shear walls[J]. Journal of the structural division, ASCE,1976,102(3):515-532.
    [8]Matthew Gilbert, Tom Molyneaux, Brian Hobbs. Numerical modeling of unreinforced masonry walls subject to lateral impact[C]. Proc of the 11th IBBMaC. Shanghai, China,1997:1250-1259.
    [9]庄一舟,黄承述.模型砖砌体力学性能的试验研究[J].建筑结构,1997,27(2):22-25.
    [10]梁建国,李卫,陈行之.烧结页岩粉煤灰砖砌体与墙片的抗剪性能研究[J].四川建筑科学研究,1993,19(1):22-24.
    [11]黄尚安,邹银生.底部框剪配筋砌块砌体房屋弹塑性地震反应的数值模拟[J].建筑结构学报,2004,25(1):53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700