泡沫铝/环氧树脂复合材料力学行为及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫铝是近年来发展起来的一种新型材料,由于其独特的结构特点,使其具有许多良好的功能特性,在诸多应用领域显示出良好的应用前景,成为力学和材料科学等领域的研究热点。目前国内外对泡沫铝的研究取得了一定的成果,但仍有许多有待进一步研究的问题。如泡沫铝结构中的大量孔洞,使其力学性能必然有所损失,为此,如何在保持其原有功能特性的基础上进一步提高其力学性能成为该领域国内外研究学者共同关注的课题。本文采用浸渗法制备了泡沫铝/环氧树脂类复合材料,对该材料的力学行为和应用进行了研究。主要研究的内容和得出的结论如下:
     通过常压水浴加热向泡沫铝孔洞中渗入环氧树脂和环氧树脂纳米蒙脱土,制备出了泡沫铝/环氧树脂类复合材料。
     综合运用实验、有限元模拟和理论分析研究等方法对泡沫铝/环氧树脂复合材料的压缩行为进行了研究。结果表明:泡沫铝/环氧树脂复合材料压缩行为取决于泡沫铝的结构参数和填充材料的性能参数及载荷应变率。与泡沫铝相比泡沫铝/环氧树脂复合材料强度和刚度均有一定的提高,其中以渗入环氧树脂纳米蒙脱土的复合材料为最佳。泡沫铝/环氧树脂类复合材料在压缩载荷的作用下,其微观变形机制与泡沫铝相比略有改变,在准静态压缩的情况下,应力-应变曲线仍大致满足多孔材料的三阶段特征,但压缩开始时的弹性阶段,该材料的应力-应变曲线的斜率(即有效弹性模量)及平台阶段的坪应力均有一定提高,提高的程度依填充材料的性能的不同而不同;而在动态压缩的情况下,只表现出线弹性阶段和屈服平台2阶段,而没有致密化阶段,且塑性平台区比泡沫铝的高且长,尤其是泡沫铝/环氧树脂纳米蒙脱土复合材料。泡沫铝几何参数对其环氧树脂类复合材料压缩力学行为的影响规律类似于对泡沫铝的:相对密度越大,有效弹性模量和屈服平台阶段的坪应力越大;孔径对应力—应变曲线的影响受应变率的制约,对静态压缩,几乎无影响,对动态压缩有影响。在相同的应变率下,泡沫铝复合材料的压缩坪应力随孔径的增大而升高。应变率越高,升高得越多。有限元模拟方法是研究泡沫铝及其环氧树脂复合材料力学行为的一种省时、省力、低成本且较为可靠的研究方法。
     根据网络交织复合材料细观力学胞元方法,对泡沫铝及其环氧树脂复合材料的压缩行为进行了理论分析,建立了该材料的有效弹性模量预测模型和弹塑性本构关系框架。采用复合材料的“混合率”和“协同效应”建立了泡沫铝/环氧树脂复合材料的压缩坪应力的数学模型。通过所建立的模型与实验结果和有限元模拟结果的比较,证明所建模型的正确性。
     综合运用实验研究、理论分析研究方法对泡沫铝及其环氧树脂复合材料的阻尼的机理、影响因素进行了研究,并尝试建立了泡沫铝/环氧树脂复合材料阻尼的半定量化数学模型,该模型可对材料的阻尼变化规律做出合理地解释。研究表明,在泡沫铝孔隙中渗入环氧树脂特别是环氧树脂纳米蒙脱土,可进一步提高材料的阻尼性能。
     以泡沫铝及其环氧树脂复合材料在齿轮阻尼环中的应用为例,较系统地研究该材料在减振降噪方面应用的优越性。
     通过理论分析和数值模拟研究,对泡沫铝及其环氧树脂复合材料填充金属园管压缩力学行为进行了系统地研究,建立了考虑管与填充物相互作用的泡沫铝填充圆管的压缩吸能特性理论模型。在此基础上对泡沫铝/环氧树脂复合材料填充金属园管压缩吸能性进行了预见。研究结果表明:泡沫铝/环氧树脂复合材料填充圆管的吸能性优于泡沫铝填充圆管的吸能性,更优于金属空心圆管的吸能性。
     系统研究了泡沫铝及其环氧树脂复合材料在汽车保险杠中的应用,结果表明泡沫铝填充圆管特别是泡沫铝高分子复合材料填充圆管制造的汽车保险杠可设计性强,有利于汽车向轻质量、小体积、低能耗、安全和环保等方向发展,泡沫铝/环氧树脂复合材料在吸能缓冲应用领域具有更大的潜能。
Foamed aluminum (FA) is a new-type material developing in recent years. Because of its unique structure characteristics, it has a lot of good functional properties, shows a good applying prospect in many fields and becomes the researching focus in the fields of mechanics and science of material. But because of lots of holes in the foamed aluminum, it,s mechanical properties has lost somewhat. So it becomes a significant to increase its mechanical properties on the basis of keeping its functional properties. This paper processes the foamed aluminum/ epoxy resin compound material (FA/ERCM) by the infiltration method and studies on the mechanical behavior and application of the FA/ERCM. The main contents and conclusions are as following:
     The FA/ERCM is perpetrated by infiltration ER and ER with nanomotmorillonite into the holes of foamed aluminum.
     The compressive behavior of the FA/ERCM is studied on by using the method of experiment analysis, FE simulation analysis and theoretical analysis synergistically. It is shown that the properties of FA/ERCM depend on the structure parameters and property parameters of FA and filled material and loading strain rate of force. Compared with FA, the strength and stiffness of the FA/ERCM is increased considerable, especially the ER with nanomotmorillonite. As compressed, FA/ERCM,s micro deformation was a little different from FA. The curve of stress-strain is still fit the three stage as multi-holes material, but at the beginning. Its effective elastic modulus and the plateau stress of the flat stage were increased, the degree of increase varied as the change of property of the filling material.
     Theσ?εcurves of FA/ERCM have tow stages (elastic stage dynamic compression and yielding stage) only, but haven’t the densification stage. Its plateau area was higher and longer than FA,s, especially that of FA/ERCM with nanomotmorillonite. The influence of FA parameters on the compressing mechanical behavior of FA/ERCM is similar to that of FA. The bigger the relative density, the bigger the effective elastic modulus and the plateau stress. The influences of diameter on theσ?εcurve depends on strain rate. It has no influence on static compression but had influence on dynamic compression. As same strain, the compressing plateau stress of FA /ERCM increase with diameter. The higher the strain rate, the more increasing. FE simulation method is a time-saving, energy-saving, low-cost and reliable method to study the mechanical behavior of foamed compound materials.
     By IPC micromechanics unit cell, the compressing behavior of FA /ERCM is analyzed and established model for the elastic modulus and the frame of elastic-plastic construction. The compressive plateau stresses mathematical model of FA /ERCM are established by the“Mixture Law”and“Synergistic Effect Law”of FA /ERCM. The model established was proved to be correct by experiment result and FE simulation result.
     We studies the mechanism and influencing factor of the damping of the FA /ERCM and establish the semi-quantitative mathematic model of FA /ERCM, which can explain the damping changing of FA /ERCM rationally. It indicated that embedding with ER especially nanomotmorillonite into FA hole can increase the damping property.
     By studying on the application of FA /ERCM in the gear-damping ring, we study the priority of the material in the application of noise reduction systematically.
     we study on the compressing mechanical behavior of the circular tube filled with FA and establish the model of energy-absorption considering the interaction of the cube and filling material. It is shown that the energy-absorption property of the circular tube filled with FA /ERCM is better filled with FA which was better than circular cube .
     We study the application of FA and FA /ERCM in the automobile bumper. It is shown that the automobile bumper made of circular tube filled with FA especially FA /ERCM is better design,. It is benefit automobile developing into the direction of light weight, small volume, low energy consumption, safety and environment protection. FA /ERCM have greater latent capacity in the field of application of energy-absorption and buffering.
引文
1 刘培生译,Lorna J. Gibson, Michael F. Ashby著(1997).多孔固体结构与性能[M].北京:清华大学出版社,2003
    2 H.P.蒂吉斯切,B.克雷兹特主编.左孝青,周芸译.多孔泡沫金属[M].北京:化学工业出版社,2005
    3 左孝青,赵勇,张喜秋等.泡沫铝制备与其压缩性能研究[J]. 粉末冶金技术. 2006, 24(3): 204~208
    4 王录才,于利民,王芳等.多孔泡沫金属的研究及其前景展望[J].太原重型机械学院学报.2002,23(1):73~76
    5 陈思杰,米国发. 泡沫铝的制备工艺、组织性能及应用前景[J].热加工工艺.2005,5:54~57
    6 王祝堂.泡沫铝材. 生产工艺、组织性能及应用市场(1)~(3)[J].轻合金加工技术.1999,27(10):5~10,(11):1~11,(12):1~5
    7 王兴明,杨国俊,姚广春.泡沫铝制备工艺的改进及关键问题探讨[J]. 轻合金加工技术.2006 34(12):46~55
    8 姜 斌,赵乃勤.泡沫铝的制备方法及应用进展.金属热处理[J].2005,30(6):36~40
    9 赵维民 , 马彦东等 . 泡沫铝的发展现状研究与应用 [J]. 河北工业大学学报,2001,30(3):50~54
    10 黄丽.高分子材料学[M].北京:化学工业出版社,2005
    11 周晓谦.环氧树脂/纳米蒙脱土耐磨防腐涂层力学性能研究[D].2003, 11
    12 李 晓 静 . 泡 沫 铝 / 纳 米 环 氧 树 脂 新 型 复 合 材 料 设 计 [J]. 机 械 工 程师.2003,25(10):55~57
    13 C. S. Dai, L. Zhang, D. L. Wang et al.The newest developments of foam materials.Rare Metal Materials and Engineering .2005,34(3):337~340
    14 田 杰,胡时胜. 基体性能对泡沫铝力学行为的影响[J].工程力学.2006,23(8):168~171
    15 卢子兴,郭 宇.金属泡沫材料力学行为的研究概述[J].北京航空航天大学学报.2003, 29(11):978~983
    16 D.Lehmhus,J. Banhart, and M. A. Rodriguez-Perez. Adaptation of aluminum foam properties by means of precipitation hardening[J]. Materials Science and Technology May 2002,18:1~8
    17 康颖安,张俊彦.相对密度和应变率对泡沫铝压缩行为的影响. 湘潭大学自然科学学报 2006,28(1):54~63
    18 韩福生.泡沫铝的制备及性能研究[D] .中国科学院固体物理研究所博士论文.1997,10
    19 凤仪.泡沫铝动态力学性能及物理性能研究[D].中国科学院固体物理研究所论文.2002, 5
    20 胡孔刚.合金化及填充物对泡沫铝压缩行为的影响[D].合肥工业大学硕士文.2005, 5
    21 程和法,黄笑梅,许玲.泡沫铝的压缩与吸能性研究[J].冶金工程.2003,22(1):70~72
    22 杨东辉,何德平.高比强多孔铝合金的压缩性能和能量吸收特性[J].中国科协首届博士生学术交流大会论文集[M].2002,11:490~494.
    23 陈永涛,楼志华,郑钢铁.开孔和闭孔泡沫铝的力学与吸能特性研究[J]. 高能量密度物理 2006,6(2):47~49
    24 程和法.泡沫铝动态压缩力学响应的研究[D].中国科学院固体物理研究所.2003, 6
    25 郑明军,何德坪,陈 锋.多孔铝合金的压缩应力—应变特征及能量吸收性能[J].中国有色金属学报,2001,11(S2):81~85
    26 王 曦,虞吉林.泡沫铝的单向力学行为[J].实验力学,2001,16(4):438~443
    27 曹晓卿,杨桂通.泡沫铝的单向压缩行为及其吸能性[J].有色金属.2006, 58(4):9~13
    28 J. Zhou and W. O. Soboyejo.Compression–compression fatigue of open cell aluminum foams: macro-/micro- mechanisms and the effects of heat treatment [J]. Materials Science and Engineering A.2004, 369:23~35
    29 W. M. Huang.A simple approach to estimate failure surface of polymer and aluminium foams under multiaxial loads[J].International Journal of Mechanical Sciences.2003,45(9):1531-1540
    30 Jong Shin Hua. Fatigue of isotropic open - cell foams under multiaxial loads[J].International Journal of Fatigue.2001, 23:233~240
    31 Harte A~M, Fleck NA,Ashby MF. Fatigue failure of an open cell and a closed cell aluminum alloy foam[J]. Acta Materiala 1999,47:2511~2524
    32 Gioux G, McCormack TM, Gibson LJ. Failure of aluminum foams under multiaxial loads [J]. International Journal of Mechanical Sciences 2000,42:1097~1117
    33 Y.Shen.Modelling compressive cyclic stress-strain behaviour of structural foam[J]. International Journal of Fatigue. 2001,23:491~497
    34 Grant Schaner, Xiang-Dong E. Guo, Matthew J. Silva, Lorna J. Gibson, Modeling fatigue damage accumulation in two-dimensional Voronoi honeycombs [J]. International Journal of Mechanical Sciences 2000,42: 645~656
    35 A. C. F. Cocks and M. F. Ashby Creep—buckling of Cellular Solids [J]. Acta mater. 2000, 48: 3395~3400
    36 E. W. Andrews, J.S. Huang2 and L. J. GIBSON. Creep Behavior of a losed-cell Aluminium Foam[J]. Acta mater. 1999, 47(10):2927~2935.
    37 O. Kesler, L. K. Crews, L. J. Gibson.Creep of sandwich beams with metallic foam cores [J].Materials Science and Engineering A.2003,341: 264~272
    38 S.D. Papka, S. Kyriakides. Biaxial crushing of honeycombs-Part I: Experiments [J]. International Journal of Solids and Structures .1999, 36:3256~3285
    39 S.D. Papka,S. Kyriakides.In-plane biaxial crushing of honeycombs-Part II: Analysis[J].International Journal of Solids and Structures .1999,36: 3286~3312
    40 Lehmhus, C. Marschner,J. Banhart.Influence of heat treatment on compression fatigue of aluminium foams[J]. Journal of Materials Science 2002 (37):3447~3451
    41 黄小清,刘逸平,汤立群等.基于相对即时密度的泡沫铝材料力学性能研究[J]. 实验力学.2004,19(2):170~177
    42 潘 艺,胡时胜,凤 仪等.泡孔尺寸对开孔泡沫铝合金力学性能的影响[J].工程力学. 2003,20(4):171~175
    43 Gent AN, Thomas AG. The deformation of foamed elastic materials J Appl polymer Sci,1959,1:107~133
    44 Gent AN, Thomas AG. Mechanics of foamed elastic materials. Rubber Chem. Techanol, 1963:597~610
    45 Zhu HX, Mills N,K nott JF. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells[J].Mech.Phys.Solids,1997,45(3):319~343.
    46 Warren WE, Kraynik AM. Linear elastic behavior of a low density Kelvin foam with open cells [J].Appl.Mech,1997,64:787~794.
    47 LiK, Gao XL, Roy AK. Micromechanics model for three dimensiona Open-cell foams using a tetrakaidecahedral unit cell and Castigliano.s second theorem [J]. Comp. Sci. Technol, 2003, 63: 1796~1781.
    48 I. Schmidt.Deformation induced elasto-plastic anisotropy in metal foams – modelling and simulation [J].International Journal of Solids and Structures.2004, 41:6759-6782
    49 Roberts AP,Garboczi EJ. elastic properties of model random three-dimensional open-cell solids[J].Mech Phys Solids,2002,50:35~55
    50 A. Reyes, O. S. Hopperstad.Constitutive modeling of aluminum foam including fracture and statistical variation of density[J].European Journal of Mechanics - A/Solids.2003,22(6):815~835
    51 K. M. Ryu, J. Y. An, W. S. Cho et al.Mechanical modeling of Al-Mg alloy open-cell foams[J].Materials Transactions2005,46(3):622~625
    52 AndrewsE, SandersW, GibsonLJ. Compressive and tensile behaviour of aluminium foams[J].MaterSciEng,1999,A270(2):113~124
    53 M. Wicklein and K. Thoma.Numerical investigations of the elastic and plastic behaviour of an open-cell aluminium foam [J].Materials Science and Engineering A.2005, 397(12): 391-399
    54 MukaiT,KanahashiH,YamadaY,etal.Dynamic compressive behaviour of an ultra light weight magnesium foam[J].Scripta Mater,1999,41(4):365~371
    55 DeshpandeVS, FleckNA.High strain rate compressive behaviour of aluminium alloy foams [J].IntJImpactEng, 2000,24(3):277
    56 卢子兴,石上路.低密度开孔泡沫材料力学模型的理论研究进展[J].力学与实践.2005, 27(5):13~20
    57 石上路,卢子兴. 基于十四面体模型的开孔泡沫材料弹性模量的有限元分析[J]. 机械强度. 2006, 28(1):108~11
    58 孙悦.泡沫钼材料的吸能性能研究[J].四川大学学报. 2002, 34(1):124~126
    59 曾斐,潘艺,胡时胜.泡沫铝缓冲吸能评估及其特性[J].爆炸与冲击. 2002, 22(4):12~16
    60 Reddy T Y,Hall R J.Axial compression of foam—filled thin—walled circular tubes[ J].Impact Engng,1988,7(2):151~166
    61 Hanssen A G Langseth M ,Hopperstad O S. Static and dynamic crushing of square aluminum extrusions with aluminum foam filler[J].Impact Engage, 2000, 24 (5):347~383
    62 余兴泉,何德坪.泡沫金属机械阻尼性能研究[J].机械工程材料.1994, 4:26~32
    63 何德坪.孔结构对通孔泡沫 AL 非线性阻尼性能的影响[J].材料研究学报.1997, 11(3):101~103
    64 余兴泉,何德坪.泡沫金属—高分子聚合物的复合体机械阻尼性能研究[J].功能材料.1996, 27(2):171~175
    65 李明俊,刘桂武,徐泳文等. 不同边界条件下泡沫铝硅合金的内耗特征[J].噪声与振动控 制.2004, 2:40~42
    66 刘 长 松 , 韩 福 生 , 朱 震 刚 . 泡 沫 铝 的 低 频 内 耗 特 征 研 究 [J]. 物 理 学报,1997,46(8):1585~1592
    67 杨留栓等.ZA27 泡沫金属基高阻尼复合材料[J].特种铸造及有色合金.1999 年增刊第 1 期:53~54
    68 张小农等.金属基复合材料的阻尼机制与性能[J].机械工程材料.1996,20(6):1~5
    69 J. Baumeister, M. Weber. Damping properties of aluminium foams [J].Materials Science and Engineering.1996, A205:221~228
    70 C. S LIU, Z. G. ZHU, F. S. HAN. Internal friction of foamed aluminum in the range of acoustic frequencies [J]. Journal Of Materials Science. 1998, 33:1769~1775
    71 沙全友.ZA27 泡沫金属基复合材料的制备工艺及阻尼和力学性能的研究[D].洛阳工学院硕士论文.1999, 1.30
    72 赵乃勤,赵万祥,姜斌等,冷压-溶解-真空烧结法制备泡沫铝的阻尼性能研究[J]. 粉末冶金技术.2006,24(2):127~130
    73 I.S. Golovin H.R. Sinning I.K. Arhipov, S.A.Golovin M.Bramc.Damping in some cellular metallic materials due to micro plasticity[J].Materials Science and Engineering 2004, 370(4):531~536
    74 I.S. Golovin,1, H.~R. Sinning. Internal friction in metallic foams and some related cellular structures[J]. Materials Science and Engineering 2004, A 370:504~511
    75 C. S. Liu,Z. G. Zhu,F. S. Han and J.Banhart. Study on nonlinear damping properties of foamed Aluminium[J]. Philosophical Magazine A,2000 ,80(5):1085~1092
    76 C.S.Liu,Z. G. Zhu,F. S. Han. Low-frequency internal fraction of foamed Al[J].Philosophical Magazine A, 1998, 78(6):1329~1337
    77 I.S. Golovin,1, H.~R. Sinning. Fatigue-related damping in some cellular metallic materials l[J].Materials Science and Engineering 2004(A 370) :537–541
    79 Y.W. Kwon, R.E. Cooke,C. Park.Representative unit-cell models for open-cell metal foams with or without elastic filler[J]. Materials Science and Engineering, 2003 (A343) :63~70
    80 王二恒,李剑荣,虞吉林,程和法. 硅橡胶填充多孔金属材料静态压缩[J].国 科 学 技 术 大 学 学 报.2004, 34(5):575~580
    81 J. Zhou,P. Shrotriya and W. O. Soboyejo.Mechanisms and mechanics of compressive deformation in open-cell Al foams .Mechanics of Materials[J].2004,36(8):781-797
    82 Harte A M,Fleck N A,Ashby M F,Sandwich panel design using aluminum alloy foam[J]. Advanced Engineering Materials, 2000,2(4):219~222
    83 Santosa, S., Wierzbicki,T.Crash behaviour of box columns filled with aluminium honeycomb or foam[J]. Computers and Structures 1998, 68 (4):2345~2350
    84 Hanssen A G Langseth M, Hopperstad O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. Impact Engng.2000,24 (5):475~507
    85 Abramowicz W, Wierzbicki T.Axial crushing of foam filled columns [J].MeshSci.1998.30 (34):263~271
    86 Santosa S, Wierzbicki T. Crash behavior of box columns filled with aluminum honeycomb or foam[J]. Computers and Structures 1998, 68(4):343~6
    87 Santosa S P, Wierzbicki T.On the modeling of crush behavior of closed—cell aluminum foam structure [J]. Mesh Phys Solids, 1998,46(4):645~669
    88 桂良进,范子杰,王青春.泡沫填充圆管的轴向压缩能量吸收特性[J].清华大学出版社(自然科学版.2003,43(11):1526~1529
    89 桂良进,范子杰,王青春. 泡沫填充圆管的动态轴向压缩吸能特性[J].清华大学学报. 2004, 44(5):709~712.
    90 许 坤,寇东鹏,王二恒,虞吉林. 泡沫铝填充薄壁方形铝管的静态弯曲崩毁行为[J]. 固体力学学报.2005,26(3):261~266
    91 王松林,凤仪,徐屹等. 碳化硅增强泡沫铝层合圆管的制备及力学性能研究[J].中国机械工程. 2006,17(18):1959~1962
    92 T. R. Ramachandran, P. K. Sharma, K. Balasubramanian.Aluminium for automotive applications[J].Transactions of the Indian Institute of Metals.2004,57:409-425
    93 陈平.环氧树脂与环氧树脂涂料[M].北京:化学工业出版社,2003
    94 Onck PR,Andrews EW,Gibson LJ. Size effects in ductile cellular solids Part I: experimental results[J].International Journal of Mechanical Sciences 2001,43:681~699
    95 E.W. Andrews,G. Gioux,Onck P.onck,LJ.Gibson .Size effects in ductile cellular solids Part II: experimental results[J].International Journal of Mechanical Sciences 2001,43:701~713.
    96 王庆五.左肪.ANSYS10.0J机械设计高级应用实例系列[M].北京:机械工业出版社,2006
    97 Saeed Moaeni著.ANSYS理论与应用[M].北京:电子工业出版社,2003
    98 武恭.铝及铝合金手册[M].北京:科学出版社,1994.3
    99 L.D. Wegner,L.J. Gibson.L.D.Wegner,L.J.Gibson.The mechanical behavior of interpenetrating phase composites III:resin - impregnated porous stainless steel[J].International Journal of Mechanical Sciences .43(2001):1061~1072
    100 冯西桥,田智.多相网络交织复合材料的有效弹性性质[J].固体力学会议论文集.2000:1~7
    101 L.D.Wegner,L.J.Gibson.L.D.Wegner,L.J.Gibson. The mechanical behavior of interpenetrating phase composites I: modeling [J].International Journal of Mechanical Sciences, 2000,42: 925~942
    102 L.D. Wegner,L.J. Gibson. The mechanical behavior of interpenetrating phase composites II:a case study of a three - dimensionally printed material[J]. International Journal of Mechanical Sciences 42 (2000): 943~964
    103 Peter Le?le,Ming Dong,Siegfried Schmauder.Self-consistent matricity model To simulate the mechanical behavior of interpenetrating microstru -ctures[J].Computational Materials Science,15 (1999) 455~465
    104 127 Xi Qiao Feng, Zhi Tian,Ying Hua Liu and Shou Wen Yu. Effective Elastic and Plastic Properties of Interpenetrating Multiphase Composites [J].Applied Composite Materials.2004, 11:33~55
    105 杜善义,王彪.复合材料细观力学[M].北京:科学出版社,1997
    106 Mura T. Micromechanics of Defects in Solids[M].. The Netherlands: Martinus Nijhoff Publishers, 1987
    107 K.Y.G. Mcullough,N.A.Fleck and M.F.Ashby. Uniaxial Stress—Strain behavior of aluminum alloy foams [J]. Acta mater. 1999, 47(8): 2323~2330
    108 J.Banhart,J.Baumeister.Deformation characteristics of metal foams[J].Journal Of Materials Science and Engineering 2004 (A 370) :531~536
    109 A.P.Roberts, E.J.Garboczi. Elastic Moduli of Model Random Three dimensional Closed-Cell Cellular l[J].Solids. Acta mater.2001, 49:189~197
    110 范赋群,黄小清,曾庆敦.复合材料力学中的屈曲理论和随机临界核理论(综述)[J].暨南大学学报.1996,17(5):8~13
    111 曲忠先,焦 剑,王雪荣,王轶洁.无机纳米粒子填充改性环氧树脂研究进展[J]. 热固性树脂 2006,121(11):45~48
    112 王志远,杨留栓.泡沫金属基高阻尼复合料的研究进展[J].材料开发与应.2002, 19(3):38~40
    113 盛美萍,王敏庆,孙进才.噪声与振动控制技术基础[M].北京:科学出版设,2001.
    114 戴德沛.阻尼技术的工程应用[M].北京清华大学出版社,1991
    115 屈维德.机械振动手册[M].北京:机械工业出版社.1999
    116 Wolfe don A, Walla J M. Dynamic mechanical properties. Metal Matrix Composites: mechanisms and Properties[J].. an Diego: Academic Press Inc,1991
    117 张小农等.金属基复合材料界面阻尼功能研究[J].中国科学,2002,32(1):14~19
    118 哈宽富.金属力学性质的微观理论[M].科学出版社,北京:1983
    119 马中发.橡胶基复合阻尼减振材料的研究[D].西安电子科技大学硕士论文,1999
    120 国家质量技术监督局.阻尼材料阻尼性能测试方法[M].中华人民共和国国家标准(GB/T18258-2000).2001,7
    121 Ledermen W.A. The Damping Properties of Composite Material [D]. the University of Wiscomsin-Milwaukee,1991
    122 马大猷.噪声与振动控制工程手册[M],北京:机械工业出版社,2002
    123 孙涛,沈允文.齿轮阻尼环的最佳摩擦力分析[J]..机械传动.1999,17(2):16~18
    124 李耀中.噪声控制技术[M].北京:化学工业出版社,2001
    125 K. Yamazaki,J. Han. Maximization of the crushing energy absorption of cylindrical shells [J]. Advances in Engineering Software 2000, 31: 425~434
    126 J. 85 by Sigit Santosa,John Banhart,and Tomasz Wierzbicki. Bending Crush Resistance of Partially Foam-Filled Sections[J]. Advanced Engineering Materials 2000,2,(4):223~227
    127 Alexender J M .An approximate analysis of the collapse of thin cylindrical shells under axial loading[J].Quart J Mech App l Math.1960,13(1):10~15
    129 Mikkelson L P .A numerical axisymmetric collapse analysis of viscoplastic cylindrical shells under axial compression[J]. Solids and Structures, 1999, 36(5): 643~668
    130 屈求真.轿车保险杠系统的结构型式及其选用[J].湖北汽车工业学院报,1996,16:1~3
    131 李平飞,巢凯年.轿车保险杠系统低速正面碰撞性能的仿真研究[J].西华大学学报.2005,24(3):26~28
    132 J. Banhart.Aluminium foams for lighter vehicles.International Journal of Vehicle Design[J]. 2005, 37 (2-3): 114-125
    133 范迪彬.汽车构造[M].合肥:安徽科学技术出版社,2001
    134 刘建新,周本宽,赵华.汽车碰撞安全保护结构[J].西南交通大学学报,1997,6: 616~618

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700