含缺陷金属蜂窝夹层结构的力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属蜂窝夹层结构具有优异的力学性能,例如轻质、比刚度大、比强度高、隔热性能好等,因此被广泛地应用在火箭、卫星、飞机等航空航天领域。可是金属蜂窝夹层结构在其制备和服役过程中可能在不同位置会产生不同类型、形状和尺寸的随机缺陷,结构内的缺陷势必会对各项力学性能产生不利的影响,但是具有缺陷的金属蜂窝夹层结构能够满足使用过程中各项性能指标的要求仍具备服役能力。因此对含有缺陷的金属蜂窝夹层结构的继续服役能力做出有效评估是很有意义的。本文旨在对具有不同芯子缺失比例和不同面芯脱焊尺寸的缺陷对蜂窝夹层结构的力学性能的影响,实现的主要手段是数值模拟和理论推导的方法。
     本文第二章分别对含芯子缺失缺陷蜂窝夹层板进行了x和y方向的拉伸和压缩的数值模拟研究,以及对无缺陷结构的面内弹性模量的理论推导。蜂窝芯子缺失对金属蜂窝夹层结构的拉伸模量和拉伸强度几乎没有影响,压缩载荷作用下的x和y两方向的破坏模式是不同的。第三章对含有面芯脱焊缺陷的蜂窝夹层结构进行了共面和异面的力学性能的数值模拟研究,以及一些相关的部分理论推导。共面力学性能的模拟研究包括沿x方向的单双侧侧压模拟,单侧面芯脱焊的稳定性要好于双侧面芯脱焊,异面力学性能的模拟研究包括三点弯曲(其中跨距方向为结构的x方向),随面芯脱焊缺陷的增大金属蜂窝夹层结构的弯曲刚度和剪切刚度都随之下降,异面力学性能研究还包括平拉和平压的模拟研究,平拉载荷作用下随面芯脱焊尺寸近似呈线性衰减,面芯脱焊缺陷对平压载荷作用影响不大。
     为了表征金属蜂窝夹层结构面板与蜂窝芯子脱粘的损伤破坏模式,在论文第四章中基于内聚力模型建立了三维界面单元模型,通过利用ABAQUS用户子程序UEL开发了三维界面单元。通过确定面板与蜂窝芯子脱焊的张开位移与桥联应力的曲线,可以对面板与蜂窝芯子脱粘破坏进行数值模拟研究。
Metal honeycomb sandwich panel has a few advantages, such as light weight, great stiffness, excellent insulation and so on. Because of these advantages, metal honeycomb sandwich panel is more and more widely used in rockets, satellites, aircraft and other aerospace applications. However, some defects with different types, shapes or sizes with occur in its preparation and service, and these defects have a negative impact on mechanical properties. But, metal honeycomb sandwich panel with defects meets the performance requirements. Thus, it is of great importance to assess the ability of constant service for the metal honeycomb sandwich panel. The paper gives the effect of different ratio between core missing and different dimension of surface-core connecting defect on the mechanical properties of sandwich structure. The aim of this paper is achieved by means of numerical simulation and theoretical analysis methods.
     The second chapter of this paper gives the numerical simulation results under the stretching and the compressing tests for this structure with part of the core missing in the x direction and the y direction, furthermore, we also made the derivation of the in-plane elastic modulus of the defect-free metal honeycomb sandwich panel in the two directions. Results show that honeycomb core missing has no effect on the tensile modulus and strength. Under the compression load, the failure modes in the two directions are different.
     The third chapter gives the numerical simulation results of the mechanical performance of the in-planer and the skew of the metal honeycomb sandwich panel with surface-core connecting defect. Also, we made some theoretical analysis. Mechanical performance of coplanar includes the compression in the x direction. One side of the structure have the surface-core connecting defect, which has the better stability than that both sides had the surface-core connecting defect. Mechanical performance of skew includes three point bending, the span for the x direction, both the bending stiffness and the shear stiffness of the metal honeycomb sandwich panel decrease along with the defect dimension increasing, and the skewed compressing and stretching, under the tensile load in the z direction, the strength of the structure is linear attenuation along with defect dimension increasing, however under the compression load the surface-core connecting defect has no effect on the structure
     In order to characterize the failure modes of damage of the honeycomb sandwich panel on the surface-core debonding, we establish the three-dimension interface element model based on the cohesion model. By using ABAQUS user subroutine UEL we developed the three-dimension interface element. By determining the curve of the opening displacement with the bridging stress could simulate the debonding of the surface-core.
引文
[1] P. L. Moses,V. L. Rausch,L. T. Nguyen and J. R. Hill. NASA hypersonic flight demonstrators—overview,status,and future plans [J]. Acta Astronautica,2004,55(3- 4):619~630.
    [2] D. C. Freeman,T. A. Talay,R. E. Austin. Reusable Launch Vehicle Technology Program. Acta Astronautica [J]. 1997,41(11):777~790.
    [3] C. Clay, H. Croop,M. Camden. TPS and Hot Structures for RLV/SOV [J]. Proceedings of the 4th European Workshop on Hot Structures and Thermal Protection Systems for Space Vehicles,Palermo,Italy,2002:73~77.
    [4] S. J. Scotti,C. Clay,M. Rezin. Structures and Materials Technologies for Extreme Environments Applied to Reusable Launch Vehicles [J]. AIAA/ICAS International Symposium and Exposition,AIAA,2003,2697:1~10.
    [5] J. T. Dorsey,C. C. Poteet,R. R. Chen,K. E. Wurster. Metallic Thermal Protection System Technology Development: Concepts, Requirements and Assessment Overview [J]. AIAA. 2002,0502:1~22.
    [6] M. L. Blosser. Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle [J]. NASA Technical Memorandum , Hampton , Virginia , 1996 ,110296:1~21.
    [7] M. A. Dornhein. Bonding bugs delay X-33 first fight [J]. Aviation Week & Space Technology,1999.
    [8]王正忠.轻质蜂窝夹层结构复合隔声材料[J].噪声与振动控制,1993, 6(3): 23~25.
    [9] H. G. Allen. Analysis and Design of Structural Sandwich Panels [J]. Pergamon Press,Oxford,1969.
    [10] K. h. Ha. Finite Element Analysis of Sandwich Construction: A Critical Review[J]. Sandwich Constructions,1991,(1):69-85.
    [11]张广成,赵景利.蜂窝夹层架构复合材料力学性能研究[J].机械科学和技术,2003,22(2):280-282.
    [12] J. Gibson,F. Ashby. Cellular Solids: Structure and Properties [J]. Cambridge University Press,2001.
    [13] J. Zhang,M. Ashby. The out-of-plane properties of honeycomb [J]. International Journal of Mechanical Sciences,1992,(34):475–489.
    [14] S. Kelsey, R. A. Gellatly, B. W. Clark. The Shear Modulus of Foil Honeycomb Core [J]. Aircraft Engineering,1958,30:294~302.
    [15] Jeom Kee Paik , Anil K. Thayamballi , Gyu Sung Kim. The strength characteristics of aluminum honeycomb sandwich panels [J]. Thin-Walled Structures,1999,(35):205-231.
    [16]寇长河,程小全,郦正能.低速冲击后复合材料蜂窝夹芯板的拉伸特性[J].复合材料学报,1998,15(4):69~73.
    [17]程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击损伤研究[J].复合材料学报,1998,15 (3):119~123.
    [18]程小全,寇长河,郦正能.复合材料夹芯板低速冲击后弯曲及横向静压特性[J].复合材料学报,2000,17(2):114~118.
    [19]谢宗蕻,苏霓,张磊,赵剑,李磊,魏宏艳,王俭,杨胜春.复合材料蜂窝夹芯板低速冲击损伤扩展特性[J].南京航空航天大学学报,2009,41(1):30~35.
    [20]张延昌,王自力.蜂窝式夹层板耐撞性能研究[J]. 2007,21(3):1~5.
    [21] Brenda L. Buitrago , Carlos Santiuste , Sonia Sánchez-Sáez , Enrique Barbero,Carlos Navarro. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact [J]. Composite Structures,2010,(92):2090–2096.
    [22] S. Belouettar,A. Abbadi,Z. Azari,R. Belouettar,P. Freres. Experimentalinvestigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests [J]. Composite Structures,2009,(87):265–273.
    [23] G. Belingardi,P. Martella ,L. Peroni. Fatigue analysis of honeycomb-composite sandwich beams [J]. Composites: Part A,2007,38:1183–1191.
    [24] Guo XE,Gibson LJ. Behavior of intact and damaged honeycombs: a finite element study[J]. International Journal of Mechanical Sciences 1999,41:85-105.
    [25] Chen C,Lu TJ,Fleck NA. Effect of imperfections on the yielding of two-dimensional foams [J]. Journal of the Mechanics Physics of Solids 1999,(47):2235-2272.
    [26] D.H. Chen,S. Ozaki. Stress concentration due to defects in a honeycomb structure [J]. Composite Structures 2009,(89):52–59.
    [27]寇东鹏,虞吉林,郑志军.随机缺陷对蜂窝结构动态行为影响的有限元分析[J].力学学报,2009,41(6):859-868.
    [28]刘颖,张新春.缺陷分布不均匀性对蜂窝材料面内冲击性能的影响[J].爆炸与冲击,2009,29(3):237-242.
    [29] De Xie,Sherrill B.Biggers Jr. Progressive crack growth analysis using interface element based on the virtual crack closure technique [J]. Finite Elements in Analysis and Design,2006,42:977-984.
    [30] H. Hosseini-Toudeshky,M. Jalalvand, B.Mohammadi. Delamination analysis of holed composite laminates using interface element [J]. Procedia Engineering,2009,1:39-42.
    [31] Javier Segurado,Javier LLorca. A new three-dimensional interface finite element to simulate fracture in composites [J]. International Journal of Solid and structures,2004,41:2977-2993.
    [32] M.R.Wisnom. Modelling discrete failures in composites with interface elements[J]. Compositers:Part A,2010,41:795-805.
    [33] Abaqus Analysis User’s Manual. ABAQUS Inc,2009.
    [34]赵金森.铝蜂窝夹层板的力学性能等效模型研究[J].硕士学位论文.南京:南京航空航天大学. 7-28.
    [35]彭明军,孙勇,段永华,郭中正,王塞北.钎焊蜂窝铝板侧压变形模式分析研究[J].材料导报:研究篇,2010,24(3):75-77.
    [36] Kelsey S,Gellatly RA,Clark BW. The shear modulus of foil honeycomb cores[J]. Aircraft Engng 1958,30:294–308.
    [37] S.M. Spearing,A.G. Evans. The role of ?bre bridging in the delamination resistance of ?ber-reinforced composites [J]. Acta Metallica Materials, 1992,40(9):2191–2199.
    [38] S. Feih. Modelling cohesive laws in ?nite element simulations via an adapted contact procedure in ABAQUS [J]. Technical Report Ris?-R-1463(EN),Ris? National Laboratory,Roskilde, Denmark,July 2004.
    [39] Stefanie Feih. Development of a user element in ABAQUS for modelling of cohesive laws in composite structures [J]. Ris?-R-1501(EN),Ris? National Laboratory,Roskilde,Denmark,January 2005.
    [40] Z. Suo,G. Bao,B. Fan. Delamination R-curve phenomena due to damage [J]. Journal of Mechanics and Physics in Solids,1992,1(40):1–16.
    [41] T.K. Jacobsen,B.F. S?rensen. Mode I intra-laminar crack growth in composites -modelling of R-curvesmeasured frombridging laws [J]. Composites: Part A,2001,32:1–11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700