立式加工中心主轴箱的抗振特性研究和拓扑优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加工中心作为基础机械产品,是先进制造技术的载体和装备工业的基本生产手段,它直接影响到我国的自动化水平和国防科技的建设。而作为高档数控机床的高速立式加工中心,最重要的性能指标是其动态性能指标(振动、噪声、稳定性等)。对于加工中心系统而言,其动态特性的好坏将直接影响加工中心加工精度的好坏,所以机床振动控制的研究对整个机械行业有重要的现实意义。主轴箱是立式加工中心的关键部件,其动静性能和抗振性能的好坏将直接决定加工中心的性能好坏。
     本论文对高速立式加工中心主轴箱进行了动静态特性分析和优化设计。通过本课题的研究设计出了相对最优的主轴箱方案,保证了主轴箱的静态特性,很大幅度地提高了其动态特性。本文的设计方法为以后同类设计和研究提供了很好的技术支持。
     首先对原始结构的主轴箱进行了静力学分析、模态分析和谐响应分析。得出其相应的静变形、各阶固有频率和相应的振型、谐响应位移等,由结果看出其抗振性能不足,不能很好的满足结构设计的需要。
     其次将蜂窝结构引用到主轴箱设计中来,蜂窝材料不仅具有良好的比强度和比刚度,而且还有良好的抗振和电磁屏蔽等多种功能。采用Solidworks三维建模软件建立了蜂窝结构的主轴箱模型,在有限元分析软件ANSYS Workbench中进行有限元分析,步骤大致为材料的设置、边界条件和载荷的确定以及求解结果。分别进行了静力学分析、模态分析和谐响应分析。将蜂窝结构主轴箱与原始结构主轴箱进行动静态特性的对比,结果表明蜂窝结构的主轴箱能够提高X方向的静态性能,并且动态性能方面也是蜂窝结构的主轴箱较优些。
     再次对蜂窝结构的主轴箱进行了优化设计。对其进行了拓扑优化,根据优化结果设计了新的蜂窝结构的主轴箱。优化后的主轴箱在能保证静态性能的基础上动态性能有了很大的提高。通过本课题的研究,提高了主轴箱的抗振性能,得出了相对最优的主轴箱设计方案。
     为了验证理论分析结果的正确性,对加工中心样机进行了动静刚度的测试试验,设计了该试验的试验方案,分析了测试结果。由于理论分析时的简化和测试时的一些误差,使得测试结果与理论分析的结果有些差距,但是动静刚度的变化趋势是一样的。
Processing center as the foundation of mechanical products is thecarrier of advanced manufacturing technology and the basic mean ofproduction of the equipment industry. It directly affects the level ofautomation and the construction of national defense. As the High-endCNC machine tools, the dynamic performance (vibration, noise, stability,etc.) is the most important performance indicator. For the processingcenter system, its performance will directly influence the accuracy ofmachining centers, so the research on machine tool vibration controllinghas the important practical significance for the mechanical industry. Theheadstock is the key component of vertical machining center, its staticand dynamic performance and vibration resistance will directly determinethe performance quality of the machining center.
     This paper analyzes of the static and dynamic characteristic andoptimization of the vertical machining headstock. Relative optimalheadstock was designed by the research of this subject, which not onlyensures that static characteristics of the headstock, but also improves itsdynamic characteristics. This paper provides technical support for thesimilar design and research in the future.
     First, it gives the static analysis, modal analysis and harmoniousresponse analysis for the headstock of the original structure. Then thepaper gets their static deformation, the natural frequencies and the modeshapes. The result shows that the anti-vibration performance isinsufficient, and it cannot meet the needs of the structure design.
     Second, the paper leads the honeycomb material into the design ofthe headstock. The cellular material has not only good specific strengthand specific stiffness, but also a good anti-vibration and electromagnetic shielding. We use the Solidworks3D modeling software to establish thehoneycomb structure of the headstock model, and finish finite elementanalysis in the ANSYS Workbench software. The steps include settingmaterial, determining the boundary conditions, loads, and solving theresults. The paper carries out static analysis, modal analysis and harmonicresponse analysis on the honeycomb structure headstock. It also contraststhe honeycomb structure headstock to the original structure headstock. Itshow that honeycomb structure headstock is better that the originalstructure headstock.
     Third, the honeycomb structure of the headstock has been optimized.First analyzes the topology optimization of the honeycomb structureheadstock. According to the results, we put forward a new type ofheadstock structure. After the optimization, the headstock staticperformance was kept, but the dynamic performance was improvedsignificantly. Through the research on this subject, we can improve theanti-vibration performance of the headstock and obtain the most optimumdesign of the headstock.
     The final part of this paper describes the process of static stiffnesstest on machining center. And it also designs a test scheme and makes awell analysis on the test results. Because of the simplification onmachining center model in computer analysis and some experiment error,it will produce some differences in the two kinds of results. But the totallaws of stiffness changing are the same in the results.
引文
[1]张向东,车俊铁机械减振的基本方法分析[C];北京石油化工学院2006
    [2]王玲玲,李耀刚,陈冠国.振动主动控制技术的研究现状及发展趋势[J].农机化研究,2005(9):30-32.
    [3]潘海兵,刘晋浩,赵文锐.混合振动控制技术的研究[J].煤矿机械,2006(12):11-12.
    [4]万涛讨论机床设计中的减振方法宁国市职业高级中学2008
    [5]王加春,李旦,董申.机械振动主动控制技术的研究现状和发展综述[J].机械强度,2001(23):156-160.
    [6]陈章位,于慧君.振动控制技术现状与进展[J].振动与冲击,2009(3):28-31.
    [7]刘营.系统振动控制的研究现状和发展趋势[J].科技博览,63-65.
    [8]李浩久,强文博,师小燕.结构振动控制的发展和现状[J].四川建筑,200929(3):56-60.
    [9]贺兴书.机械振动学[M].上海交通大学出版社,1991.
    [10]Zhu Jinghao,Wang Chao,Gao David.Global Optimization Over a Box ViaCanonical Dual Function[J].2011,235(5):1141-1147.
    [11]刘晓明.高炉铸铁冷却壁传热计算及炉刚气隙的判定方法[D].2008.
    [12]浦广益. ANSYS Workbench12基础教程与实例详解[M].中国水利水电出版社,2010.
    [13]蔡国忠.有限元素分析及工程应用-ANSYS Workbench[M].加桦国际有限公司,2009.
    [14]白薇,喻海良.通用有限元分析ANSYS8.0基础教程[M].清华大学出版社,2005.
    [15]任重.ANSYS实用分析教程[M].北京大学出版社,2003.
    [16]叶修梓,陈超祥.Solidworks工程图教程[M].机械工业出版社,2009.
    [17]曹茹. Solidworks2009三维设计及应用教程[M].机械工业出版社,2009.
    [18]邹亚军.基于转子动力学得车削颤振模型建立及其动态特性分析[D].大连理工大学,2009.
    [19]刘元.锭脚(胆)同轴度测量仪的研究发表[D].2010.
    [20]李玉军.挖泥船泥泵在线监测系统的研制[D].武汉理工大学,2004.
    [21]东方人华. ANSYS7.0入门与提高[M].清华大学出版社,2005.
    [22]李东伟.高速随动磨床砂轮架的研究[D].武汉理工大学,2007.
    [23]吴丽萍,吴银柱等.非开挖导向钻头力学效应模拟仿真研究[J].长春工程学院学报,2007(8).
    [24]王乾.基于ANSYS的机床主轴箱有限元分析[J].常州轻工职业技术学院学报,2011(3):30-32.
    [25] W.-Y.Lee,K.-W.Kim,H.-C.Sin.Design and Analysis of A Milling Cuteterwith Improved Dynamic Characteristics[J].International Journal of MachineTools and Manufacture,2002,42(8):961-967.
    [26] M.Yoshimura.Computer Aided Design Improvement of Machine Tool StructureIncorporating Joint Dynamics Data.Annals of the CIRP,1979,28:241-246.
    [27]李宁,刘超峰.高速立式加工中心主轴箱有限元分析及结构改进[J].煤矿机械,2011(1):59-61.
    [28]徐建国.轴流泵叶片应力与模态分析[D].扬州大学,2008.
    [29]杨智荣.基于振动模态分析管道腐蚀损伤检测方法研究[D].大连理工大学,2007.
    [30]傅志方.振动模态分析与参数辨识[M].机械工业出版社,1990.
    [31]成大先.机械设计手册—机械振动、机架设计[M].化学工业出版社,2004.
    [32]刘惟信.机械可靠性设计[M].清华大学出版社,1996.
    [33]师汉民.机械振动系统-分析、测试、建模、对策[M].华中科技大学出版社,2011.
    [34]韩江,孟超等.大型数控落地镗铣床主轴箱的有限元分析[J].组合机床与自动化加工技术,2009(10)
    [35]陈庆堂,汤文成.基于ANSYS的XK713数控铣床主轴箱结构分析[J].机械,2004(3).
    [36]蒋洪平.XH715立式加工中心床身模态分析与结构改进[J].制造技术与机床,2008(9).
    [37]吴琼.超轻质夹芯结构的力学性能分析及优化[D].西北工业大学,2006.
    [38]甄美.瓦楞与蜂窝结构的科学发展[J].机电信息,2004(11).
    [39]左孝青,周芸泽.多孔泡沫金属[M].化学工业出版社,2009.
    [40]寇东鹏.细观结构对多孔金属材料力学性能的影响及多目标优化设计
    [D].2008.
    [41]汤慧萍,张正德.金属多孔材料发展现状[J].稀有金属材料与工程,1997.
    [42]毛志云,高东强.蜂窝结构在机床工作台中的应用研究[J].轻工机械,2010(6).
    [43]康锦霞,王志华,赵隆茂.采用Voronoi模型研究多孔金属材料准静态力学特性[J].工程力学,2011(7):27-29.
    [44] Barnhart J. Manufacture characterization and application of cellular metals andmetal foams. Progress in Materials Science[J].2001,46:559~632.
    [45] Gibson L Ashby M F. Cellular solids: structure and properties [M].CambridgeUniversity Press,1997,307~308.
    [46] Gu S,Lu T J,Evans A G,On the design of two-dimensional cellular metals forcombined heat dissipation and structural load capacity [J]. International Journalof heat and Mass transfer,2001,44:2163~2175.
    [47]张玉凯.机械优化设计入门[M].天津科学技术出版社,1984.
    [48]谢涛,刘静,刘军考.结构拓扑优化综述[J].机械工程师,2009(8)22-25.
    [49]李恒杰.优化迭代学习控制算法及其应用研究[D].兰州理工大学,2009.
    [50]宋晓钰.硅微振子结构的分析和设计[D].上海大学,2000.
    [51]尹汉峰,文桂林,马传帅等.蜂窝结构缓冲装置的优化设计[J].中国机械工程,2011(10).
    [52]简坚得,兰凤崇等.利用蜂窝结构改善汽车耐撞性的仿真研究[J].汽车技术,2010(4).
    [53]周健生,乔红威.基于ANSYS的复合材料蜂窝结构可靠性分析[J].应用科技,2006(8).
    [54]宋兴龙.基于ANSYS的高空作业平台的有限元分析[D].南京林业大学,2009.
    [55]张继深.立式圆盘锯床的研发及其关键部位的特性分析[D].浙江大学,2011.
    [56]殷华林.负刚度被动隔振器的动力学特性研究[D].河海大学,2008.
    [57]盖超会.基于H<,∞>控制的Z型隔振系统控制特性研究[D].华中科技大学,2007.
    [58]夏田,马小刚等.高速立式加工中心滑座的设计与拓扑优化[J].机床与液压,2011(3).
    [59]夏宇辉.基于有限元法的搅拌车主副车架结构拓扑优化设计[D].武汉理工大学,2009.
    [60]刘超峰.高速立式加工中心主轴箱抗振特性及优化分析[D].陕西科技大学,2011.
    [61]刘伟,朱壮瑞,张建润,卢熹.XH6650高速加工中心立柱的拓扑优化[J].机床与液压,2008(4):36-37.
    [62]张浩,大跨度斜拉桥的动测及其模态分析[D].武汉理工大学,2007.
    [63]刘文剑.基于ANSYS Workbench的扫描仪结构分析[D].西安电子科技大学,2009.
    [64]李姣枫.压电智能板的非脆弱鲁棒振动控制[D].西安电子科技大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700