焦磷酸和核苷三磷酸阴离子荧光探针的制备及其分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦磷酸(PPi)和核苷三磷酸阴离子(NTP,其中N=A, C,G, U)在生命体的正常运转中发挥必不可少的作用,因此对它们的识别与检测具有非常重要的意义。目前文献报道的有效策略是利用金属配合物中金属离子和磷酸根的强配位作用实现焦磷酸和核苷三磷酸阴离子的识别与检测。但是很多作为荧光探针的金属配合物合成步骤繁琐,水溶性不好,且不能从众多的含磷酸根阴离子中特异性的识别某一种。因此,寻找合成方法简单、水溶性好、选择性好的荧光探针很有必要。本文试图通过简单的试剂制备一系列荧光探针,包括金属配合物、金属有机骨架和金属纳米簇,依次实现PPi和核苷三磷酸阴离子的高选择性识别与检测,具体的研究内容分为三部分。
     1.金属配合物识别与检测PPi
     这部分主要是利用金属离子和PPi的强配位作用,包括两个方面的内容:
     (1)利用竹红菌甲素(HA)的锌离子配合物实现了选择性识别PPi。锌离子与HA反应形成HA-Zn2+配合物,HA在604nm处的荧光发生猝灭,同时在629nm处产生一个新的荧光发射峰,但该荧光发射随着PPi的加入逐渐降低,而604nm处的荧光得以恢复,说明PPi和HA发生了配体的交换。其它的核苷酸阴离子如ATP, UTP, CTP, GTP, GDP和GMP等都不会引起HA-Zn2+产生类似的光谱变化,据此可以选择性识别PPi。布尔计算(Boolean calculations)显示,该体系可以成功用于设计分子逻辑门,且可以区分PPi和其它的核苷酸阴离子。该方法非常简单,不需要复杂的有机合成。
     (2)2,6-双-(2-苯咪唑)吡啶(bbimp)与铜离子形成的配合物可以用于选择性检测PPi。该配体分子bbimp只需一步合成,简单易得,它能和铜离子形成1:1的配合物,此时,bbimp的荧光发生猝灭。在PPi存在时,bbimp的荧光逐渐恢复,且恢复程度与PPi的浓度在一定范围内成线性关系,以此实现PPi的检测。选择性实验证明,bbimp-Cu2+配合物对PPi具有良好的选择性。相比之下,各核苷酸阴离子,如ATP, GTP, CTP, UTP, GDP等响应较小,其它的无机阴离子几乎无响应。
     2.金属有机骨架(MOFs)识别核苷三磷酸阴离子
     MOFs是一种新兴的基于有机配体和金属离子的配位作用形成的材料,在气体的储存和分离、药物的运载以及小分子的传感方面有了广泛的应用。本论文首次将MOFs用于核苷三磷酸阴离子的识别,解决了传统的金属配合物识别核苷三磷酸阴离子时选择性差的问题。
     (1)利用锌离子和对苯二甲酸构建的发光MOF—[Zn(BDC)(H2O)2]n实现了腺苷三磷酸阴离子(ATP)的选择性识别。该MOF的水分散体系在427.6nm处有明显的荧光发射。在ATP存在时,该发射峰发生红移,但GTP, CTP, UTP, PPi,磷酸根,醋酸根以及其它的无机阴离子等都不会引起[Zn(BDC)(H2O)2]n的荧光发射峰发生明显红移,说明该MOF对ATP的选择性很好。核磁共振和拉曼光谱证明,[Zn(BDC)(H2O)2]n与ATP之间既有π-π堆垛,又有配位作用,其中ATP中的腺嘌呤和磷酸根都参与了与锌离子的配位反应。相对于之前的金属配合物,引入了金属有机骨架,并以此建立了一种简单、选择性良好的识别ATP的方法。
     (2)基于铽离子的发光MOF用于高选择性传感胞苷三磷酸阴离子(CTP)。研究发现,2,3-吡嗪二羧酸和铽离子在水热条件下可以生成[Tb2(2,3-pzdc)2(ox)(H2O)2]n [2,3-pzdc2-=2,3-吡嗪二羧酸盐,ox2-=草酸根]。由于天线效应的存在,该MOF表现出强烈的Tb3+荧光发射。在CTP存在时,MOF的发射会逐渐被猝灭。GTP, UTP, ATP, PPi和其它无机阴离子,以及胞嘧啶、胞苷、CMP等对该MOF的荧光猝灭程度很小或者几乎没有猝灭,说明该发光MOF对CTP具有良好的选择性。机理研究表明,胞嘧啶和三磷酸基团是该选择性响应必不可少的两部分。实验进一步发现,与CTP反应后,该MOF的拉曼光谱和X-射线衍射(XRD)光谱都没有变化,说明,二者反应后没有明显的化学键生成,而且该MOF的结构也没有被破坏。氮气吸附实验证明该MOF的孔径很小,几乎无氮气吸附,通过计算得知,CTP的体积远大于氮气的体积,表明CTP不能进入该MOF的孔径,而是吸附在MOF的表面,通过阻止配体到Tb3+之间的天线效应引起了荧光的猝灭。
     3.发光金属纳米簇用于核苷三磷酸阴离子的识别
     有机配体和金属离子在一定条件下会发生配位反应,当条件改变时,二者也可能发生氧化还原反应。研究发现,室温下组氨酸和铜离子会发生配位反应,生成没有荧光的蓝色配合物。但该配合物在700C搅拌反应12小时后,溶液的颜色逐渐变成棕色,说明组氨酸和铜离子发生了氧化还原反应,铜离子被还原生成了铜纳米簇。用350nm的紫外光激发时,有较强的蓝绿色荧光发射;在GTP存在时,铜簇的荧光会发生一定程度的猝灭。与ATP, CTP和UTP相比,GTP对铜纳米簇的猝灭程度最大,其它的无机阴离子包括PPi、磷酸根、醋酸根等都不会猝灭铜簇的荧光,据此可实现GTP的选择性识别。该体系报道了一种一步法合成发光铜纳米簇的方法,不需要氮气保护,不需要模板分子:利用碱基还原性的差异,首次将发光铜簇用于核苷三磷酸阴离子的识别。
     总而言之,本论文建立了简单而高选择性的识别与检测PPi和核苷三磷酸阴离子的分析方法。除了金属配合物,还引入了两种新的荧光探针一一金属有机骨架和发光铜纳米簇,并成功用于含磷酸根阴离子的选择性识别中。本文解决了探针合成步骤繁琐以及选择性差的问题。实验证明,通过一步法合成的探针一样可以高选择性的识别含磷酸根阴离子;而且在选择性识别核苷三磷酸阴离子时,碱基的参与至关重要,这直接决定了体系的特异性。
Pyrophosphate (PPi) and nucleosides triphosphate (NTP, N=A, C, G, U) play indispensable roles in the normal functions of organisms, and so recognition and detection of them become very significant. At present, the effective strategy reported for recognition and detection of these phosphate-containing anions is to utilize the strong coordination ability of the PPi with metal ion in the metal complex. However, many of the metal complexes, which have been reported to be fluorescent probes for PPi and nucleosides triphosphate, either need complicated synthesis steps, or have bad water-solubility. Also, it is noteworthy that most of the fluorescent probes can't recognize a specific one among all the phosphate-containing anions owing to the same group of the phosphate. So, it is necessary to prepare simple and water-soluble fluorescent probes with good selectivity for a certain phosphate-containing anion. Here, we obtain a series of fluorescent probes through very simple synthesis steps including metal complexes, metal-organic frameworks and metal nanoclusters, and make the selective recognition and detection of PPi and a certaion nucleoside triphosphate come true. The main contents of this research include three sections.
     Section one focuses on the recognition and detection of PPi with metal complexes, using the strong coordination ability of metal ions and PPi. The details are listed as follows:
     1. We introduce a hypocrellin A-Zn(II) complex (HA-Zn2+) for highly selective recognition of PPi. The fluorescence emission of HA at604nm can be effectively quenched by Zn2+, accompanied with a new emission at629nm owing to the formation of the HA-Zn2+complex. Upon the addition of PPi, the emission at629nm is gradually quenched with the recovery of the emission at604nm. Other nucleosides phosphate-containing anions including ATP, UTP, CTP, GTP, GDP and GMP have no such spectral actions as PPi. On the basis of this, selective recognition of PPi is achieved. On the other hand, the recognition system can be successfully applied to design logic gates, and can distinguish PPi from the other anions. This method is very simpe, and needs no complicated synthesis.
     2. The copper(II) complex of2,6-bis(2-benzimidazolyl)pyridine (bbimp) can be used to selective detection of PPi. The ligand of bbimp is easy to be obtained with only one synthesis step, and can be complexed with Cu2+by the molar ratio of1:1. The fluorescence of bbimp is quenched by Cu2+once the complex of bbimp-Cu2+is formed. In the presence of PPi, the fluorescence will be recovered gradually. The degree of the fluorescence recovery has a linear relationship with PPi in the range of3-90u.mol/L. This detection method has good selectivity for PPi over other nucleotide anions such as ATP, GTP, CTP, UTP, and GDP as well as some other inorganic anions.
     Section two investigates the application of metal-organic frameworks (MOFs) to the recognition and detection of nucleosides triphosphate.
     MOF is a new kind of material based on the coordination of organic ligands and metal ions, which is widely used in gas storage and separation, drug delivery and sensing of small molecules. Here, we for the first time use MOFs to recognize nucleosides triphosphate, solving the problem of poor selectivity when traditional metal complexes are used.
     1. Highly selective recognition of adenosine5'-triphosphate (ATP) is successfully achieved with a luminescent MOF of [Zn(BDC)(H2O)2]n (BDC=1,4-benzenedicarboxylate). The MOF dispersed in water shows an obvious fluorescence emission centered at427.6nm. In the presence of ATP, there will be a remarkable redshift of the emission wavelength. While guanosine5'-triphosphate (GTP), cytidine5'-triphosphate (CTP), uridine5'-triphosphate (UTP), PPi, PO43-and CH3COO-as well as some other inorganic anions can't induce such spectral change as ATP, indicating the good selectivity of [Zn(BDC)(H2O)2]n for ATP.'HNMR,31P NMR and Raman spectra indicate that π-π stacking interactions and the coordination of Zn2+with both adenine and the phosphate group are involved in the interaction of [Zn(BDC)(H2O)2]n with ATP. In contrast to the metal complex, we introduce a MOF, and establish a simple method for selective recognition of ATP.
     2. We introduce a terbium(III)-organic framework with2,3-pyrazinedicarboxylic acid (2,3-H2pzdc) as the ligand, which is highly selective for sensing cytidine5'-triphosphate (CTP). The MOF of [Tb2(2,3-pzdc)2(ox)(H2O)2]n can be prepared through hydrothermal reaction of2,3-H2pzdc and Tb(NO3)3-5H2O in water. Owing to the antenna-effect, the MOF shows strong emission features of Tb3+. Upon the addition of CTP, the emission will be gradually quenched. However, GTP, UTP, ATP, PPi and some other inorganic anions, as well as cytosine, cytidine and CMP induce small or even little quenching extent, which indicates that cytosine and the group of triphosphate are two indispensable parts in the highly selective sensing process. Furthermore, we observe that after interacting with CTP, the Raman and powder X-ray diffraction (PXRD) spectra of [Tb2(2,3-pzdc)2(ox)(H2O)2]n don't show any changes, indicating that no new chemical binding species has formed between this MOF and CTP, and the structure of the MOF keeps stable. N2adsorption-desorption experiment show that the pores of the MOF are too small to fit N2to diffuse through it. On the other hand, CTP, as calculated in vacuum, is much larger than N2. So CTP can't easily enter the pores of [Tb2(2,3-pzdc)2(ox)(H2O)2]n, and is able to adsorb on the surface architecture of the MOF. Close contact of CTP and MOF will reduce the antenna-effect, leading to the luminescence quenching.
     Section three mainly studies the application of luminescent metal nanoclusters to the recognition of nucleosides triphosphate.
     Sometimes, metal ions can be complexed by organic ligands. At other times, metal ions can be reduced by organic ligands. Here, at room temperature, histidine and can form nonfluorescent complex. When refluxed for12h at70℃, and the color of the solution changed from blue to brown gradually, indicating the formation of Cu NCs. With the excitation wavelength of350.0nm, the as-synthesized Cu NCs exhibit strong luminescence. In the presence of GTP, the emission of Cu NCs is gradually quenched. Compared to ATP, CTP and UTP, GTP induces the largest quenching extent. And some other inorganic anions such as P2O74-, PO43-, and CH3COO-have no such quenching effect. Based on this, selective recognition of GTP is successfully achieved. Here, we report a very simple method to synthesize water-soluble luminescent Cu NCs through only one step reaction. Neither nitrogen atmosphere nor a template molecule is needed. By using the difference of the bases, we for the first time apply the luminescent Cu NCs to selective recognition of a certain nucleoside triphosphate.
     In summary, we establish a series of simple methods for selective recognition and detection of PPi and nucleosides triphosphate. Apart from metal complex, two new fluorescent probes, metal-organic framework and luminescent copper nanoclusters are introduced, and successfully applied to the selective recognition and detection of the phosphate-containing anions. In this work, the problems of complicated synthesis and poor selectivity are solved. The experimental results show that the probes obtained by one step can also recognize a specific phosphate-containing anion. Furthermore, we find that the base plays an indispensable role in the selective recognition of nucleosides triphosphate, which directly determines the specificity of the probe.
引文
[1]寇德运,聚磷酸盐在食品工业中的应用.中国新技术新产品,2009,(19),144.
    [2]陈华东;曾波;戴元华;宋同彬,六偏磷酸钠的应用及制备技术.无机盐工业 2010,42(2),9-11.
    [3]寇丽华,磷酸盐在造纸工业中的应用.无机盐工业1992,(3),11-14.
    [4]房伟;邹玉琴;陈燕;马少妹;袁爱群,环保型磷酸盐防锈颜料的研究进展.上海涂料2010,48(2),23-25.
    [5]Gourine, A. V; Llaudet, E.; Dale, N.; Spyer, K. M., ATP is a mediator of chemosensory transduction in the central nervous system. Nature 2005,436 (7047),108-111.
    [6]Trajkovska, S.; Dzhekova-Stojkova, S.; Kostovska, S., Determination of validity for blood for transfusion by firefly bioluminescent assay for ATP. Anal. Chim. Acta 1994,290 (1-2), 246-248.
    [7]Jain, V; Kumar, M.; Chatterji, D., ppGpp:Stringent response and survival. J. Microbiol. 2006,44(1),1-10.
    [8]Akinyanju, J.; Smith, R. J., Accumulation of ppGpp and pppGpp during nitrogen deprivation of the cyanophyte Anabaena cylindrica.FEBS Lett.1979,707(1),173-176.
    [9]Ferullo, D. J.; Lovett, S. T., The stringent response and cell cycle arrest in Escherichia coli. PLoS Genetics 2008,4 (12),1-15.
    [10]Neelakandan, P. P.; Hariharan, M.; Ramaiah, D., A supramolecular ON-OFF-ON fluorescence assay for selective recognition of GTP. J. Am. Chem. Soc.2006,128 (35), 11334-11335.
    [11]Wang, L.; Shen, S.; Yun, J.; Yao, K.; Yao, S.-J., Chromatographic separation of cytidine triphosphate from fermentation broth of yeast using anion-exchange cryogel. J. Sep. Sci. 2008,31 (4),689-695.
    [12]Beer, P. D.; Gale, P. A., Anion recognition and sensing:The state of the art and future perspectives. Angew. Chem. Int. Ed.2001,40 (3),486-516.
    [13]Nyren, P.; Lundin, A., Enzymatic method for continuous monitoring of inorganic pyrophosphate synthesis. Anal. Biochem.1985,151 (2),504-509.
    [14]March, J. G; Simonet, B.; Grases, F., Determination of pyrophosphate in renal calculi and urine by meansofan enzymatic method. Clin. Chim.Acta2001 (314),187-194.
    [15]Henin, O.; Barbier, B.; Brack, A., Determination of phosphate and pyrophosphate ions by capillary dectrophoresh. Anal. Biochem.1999,270(1),181-184.
    [16]Yoza, N.; Akazaki, I.; Nakazato, T.; Ueda, N.; Kodama, H.; Tateda, A., High-performance liquid chromatographic determination of pyrophosphate in the presence of a 20,000-fold excess of orthophosphate.Anal. Biochem.1991,199(2),279-285.
    [17]Coolen, E. J. C. M.; Arts, I. C. W.; Swennen, E. L. R.; Bast, A; Stuart, M. A. C; Dagnelie, P. C., Simultaneous determination of adenosine triphosphate and its metabolites in human whole blood by RP-HPLC andUV-detection.J. Chromatogr.B 2008,864 (1-2),43-51.
    [18]Marques, S. M.; Peralta, F.; Silva, J. C. G E. d., Optimized chromatographic and bioluminescent methods for inorganic pyrophosphate based on its conversion to ATP by firefly luciferase. Talanta 2009,77(4),1497-1503.
    [19]Cohen, S.; Jordheim, L. P.; Megherbi, M.; Dumontet, C.; Guitton, J., Liquid chromatographic methods for the determination of endogenous nucleotides and nucleotide analogs used in cancer therapy:A review. J. Chromatogr. B 2010 (878),1912-1928.
    [20]Crauste, C.; Lefebvre, I.; Hovaneissian, M.; Puy, J. Y.; Roy, B.; Peyrottes, S.; Cohen, S.; Guitton, J.; Dumontet, C.; Perigaud, C., Development of a sensitive and selective LC/MS/MS method for the simultaneous determination of intracellular 1-beta-D-arabinofuranosylcytosine triphosphate (araCTP), cytidine triphosphate (CTP) and deoxycytidine triphosphate (dCTP) in a human follicular lymphoma cell line. J. Chromatogr. B 2009,877(14-15),1417-1425.
    [21]Perez-Ruiz, T.; Martinez-Lozano, C.; Tomas, V.; Martin, J., Determination of ATP via the photochemical generation of hydrogen peroxide using flow injection luminol chemiluminescencedetection.Anal. Bioanal. Chem.2003,377(1),189-194.
    [22]Zhang, S.; Yan, Y.; Bi, S., Design of molecular beacons as signaling probes for adenosine triphosphate detection in cancer cells based on chemiluminescence resonance energy transfer. Anal. Chem.2009,81 (21),8695-8701.
    [23]Lu, Y.; Li, X.; Zhang, L.; Yu, P.; Su, L.; Mao, L., Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Anal Chem.2008,80 (6), 1883-1890.
    [24]Zuo, X.; Song, S.; Zhang, J.; Pan, D.; Wang, L.; Fan, C., A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J. Am. Chem. Soc.2007,129(5),1042-1043.
    [25]Goyal. R. N.; Oyama, M.; Tyagi, A., Simultaneous determination of guanosine and guanosine-5'-triphosphate in biological sample using gold nanoparticles modified indium tin oxide electrode. Anal. Chim. Acta 2007,581 (1),32-36.
    [26]Lee, D. H.; Im, J. H.; Son, S. U.; Chung, Y. K.; Hong, J.-I., An azophenol-based chromogenic pyrophosphate sensor in water. J.Am. Chem. Soc.2003125 (26),7752-7753.
    [27]Nishiyabu, R.; Pavel Anzenbacher, J., Sensing of antipyretic carboxylates by simple chromogenic calix[4]pyrroles. J.Am. Chem. Soc.2005,127(23),8270-8271.
    [28]Lee, J. H.; Park, J.; Lah, M. S.; Chin, J.; Hong, J.-I., High-affinity pyrophosphate receptor by a synergistic effect between metal coordination and hydrogen bonding in water. Org. Lett. 2007,9 (19),3729-3731.
    [29]Wang, J.; Wang, L.; Liu, X.; Liang, Z.; Song, S.; Li, W.; Li, G; Fan, C., A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv. Mater.2007,19 (22), 3943-3946.
    [30]Zhao, X. J.; He, L.; Huang, C. Z., Highly selective visual distinction of pyrophosphate from other phosphate anions with4-[(5-chloro-2-pyridyl)azo]-1,3-diaminobenzene in the presence of copper(Ⅱ)ions. Talanta2012,101,59-63.
    [31]Li, N.; Ho, C.-M, Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J. Am. Chem. Soc.2008,130 (8),2380-2381.
    [32]Spangler, C.; Schaeferling, M.; Wolfbeis, O. S., Fluorescent probes for microdetermination of inorganic phosphates and biophosphates. Microchim.,Acta 2008,161 (1),1-39.
    [33]Kim, S. K.; Lee, D. H.; Hong, J.-I.; Yoon, J., Chemosensors for pyrophosphate. Ace. Chem. Res.2009,42(1),23-31.
    [34]Zhao, X. J.; Huang, C. Z., Small organic molecules as fluorescent probes for nucleotides and their derivatives. TrAC-Trend. Anal. Chem.2010,29 (4),354-367.
    [35]Zhou, Y.; Xu, Z.; Yoon, J., Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH:highlighted research during 2004-2010. Chem. Soc. Rev. 2011,40(5),2222-2235.
    [36]Zhao, X.; Schanze, K. S., Fluorescent ratiometric sensing of pyrophosphate via induced aggregation of a conjugated polyelectrolyte. Chem. Commun.2010,46 (33),6075-6077.
    [37]Chen, W.-H.; Xing, Y; Pang, Y, A highly selective pyrophosphate sensor based on ESIPT turn-on in water. Org. Lett.2011,13 (6),1362-1365.
    [38]Cheng, T.; Wang, T.; Zhu, W.; Chen, X.; Yang, Y; Xu, Y.; Qian, X., Red-emission fluorescent probe sensing cadmium and pyrophosphate selectively in aqueous solution. Org. Lett.2011,13 (14),3656-3659.
    [39]Ganjali, M. R.; Hosseini, M; Aboufazeli, F.; Faridbod, F.; Goldooz, H.; Badiei, A. R., A highly selective fluorescent probe for pyrophosphate detection in aqueous solutions. Luminescence 2012,27(1),20-23.
    [40]Hosseini, ML; Ganjali, M. R.; Tavakoli, M; Norouzi, P.; Faridbod, F.; Goldooz, H.; Badiei, A., Pyrophosphate selective recognition in aqueous solution based on fluorescence enhancement of a new aluminium complex. J. Fluoresc.2011,27(4),1509-1513.
    [41]Kim, K. M.; Oh, D.J.; Ahn, K. H., Zinc(Ⅱ)-dipicolylamine-functionalized polydiacetylene-liposome microarray:A selective and sensitive sensing platform for pyrophosphate Ions. Chem. Asian J.2011,6(1),122-127.
    [42]Lee, J. H.; Jeong, A. R.; Jung, J.-H.; Park, C.-M.; Hong, J.-I., A highly selective and sensitive fluorescence sensing system for distinction between diphosphate and nucleoside triphosphates. J. Org. Chem.2011,76(2),417-423.
    [43]Ravikumar, I.; Ghosh, P., Zinc(II) and PPi selective fluorescence OFF-ON-OFF functionality of a chemosensor in physiological conditions. Inorg. Chem.2011,50 (10), 4229-4231.
    [44]Villamil-Ramos, R.; Yatsimirsky, A. K., Selective fluorometric detection of pyrophosphate by interaction with alizarin red S-dimethyltin(IV) complex. Chem. Commun.2011,47 (9), 2694-2696.
    [45]Wen, J.; Geng, Z.; Yin, Y; Zhang, Z.; Wang, Z., A Zn2+-specific turn-on fluorescent probe for ratiometric sensing of pyrophosphate in both water and blood serum. Dalton Trans.2011, 40(9),1984-1989.
    [46]Zhang, J. F.; Kim, S.; Han, J. H.; Lee, S.-J.; Pradhan, T.; Cao, Q. Y; Lee, S. J.; Kang, C.; Kim, J. S., Pyrophosphate-selective fluorescent chemosensor based on l,8-naphthalimide-DPA-Zn(Ⅱ) complex and its application for cell imaging. Org. Lett.2011, 13 (19),5294-5297.
    [47]Zhang, J. F.; Park, M.; Ren, W. X.; Kim, Y.; Kim, S. J.; Jung, J. H.; Kim, J. S., Apellet-type optical nanomaterial of silica-based naphthalimide-DPA-Cu(II) complexes:recyclable fluorescence detection of pyrophosphate. Chem. Commun.2011,#7(12),3568-3570.
    [48]Pathak, R, K.; Hinge, V K.; Rai, A.; Panda, D.; Rao, C. P., Imino-Phenolic-Pyridyl conjugates of calix[4]arene (Li and L2) as primary fluorescence switch-on sensors for Zn2* in solution and in HeLa cells and the recognition of pyrophosphate and ATP by [Z11L2]. Inorg. Chem.2012,51 (9),4994-5005.
    [49]Pathak, R. K.; Tabbasum, K.; Rai, A.; Panda, D.; Rao, C. P., Pyrophosphate sensing by a fluorescent Zn2*'bound triazole linked Imino-thiophenyl conjugate of calix[4]arene in HEPES buffer medium:spectroscopy, microscopy, and cellular studies. Anal Chem.2012, 84 (11),5117-5123.
    [50]Zhang, Z.; Sharon, E; Freeman, R.; Liu, X.; Wiflner, I., Fluorescence detection of DNA, adenosine-5'-triphosphate (ATP) and telomerase activity by Zn(Ⅱ)-protoporphyrin IX/G-quadruplex labels. Anal. Chem.2012,84 (11),4789-4797.
    [51]Moro, A. J.; Schmidt, J.; Doussineau, T.; Lapresta-Fernandez, A.; Wegener, J.; Mohr, G J., Surface-functionalized fluorescent silica nanoparticles for the detection of ATP. Chem. Commun.2011,47(21),6066-6068.
    [52]Kurishita, Y; Kohira, T.; Ojida, A.; Hamachi, I., Rational design of FRET-based ratiometric chemosensors for in vitro and in cell fluorescence analyses of nucleoside polyphosphates. J. Am. Chem. Soc.2010,132(38),13290-13299.
    [53]Malcolm, A. D. B., A simple fluorimetric assay for guanosine nucleotides. Anal. Biochem. 1977,77 (2),532-535.
    [54]Vuojola, J.; Lamminmaki, U.; Soukka, T., Resonance Energy Transfer from Lanthanide Chelates to Overlapping and Nonoverlapping Fluorescent Protein Acceptors. Anal. Chem. 2009,81 (12),5033-5038.
    [55]Schmidt, F.; Stadlbauer, S.; KSnig, B., Zinc-cyclen coordination to UTP, TTP or pyrophosphate induces pyrene excimer emission. Dalton Trans.2010,39 (31),7250-7261.
    [56]Pu, W. D.; Zhang, L.; Huang, C. Z., Graphene oxide as a nano-platform for ATP detection based on aptamer chemistry. Anal. Methods 2012,4,1662-1666.
    [57]Liang, L. J.; Zhao, X. J.; Huang, C. Z., Zn(Ⅱ) complex of terpyridine for the highly selective fluorescent recognition of pyrophosphate. Analyst 2012,/57(4),953-958.
    [58]Liang, L. J.; Zhen, S. J.; Zhao, X. J.; Huang, C. Z., A ratiometric fluorescence recognition of guanosine triphosphate on the basis of Zn(Ⅱ) complex of 1,4-bis(imidazol-1-ylmethyl) benzene. Analyst 2012,137(22),5291-5296.
    [59]Xu, Z.; Song, N. R.; Moon, J. H.; Lee, J. Y; Yoon, J., Bis-and tris-naphthoimidazolium derivatives for the fluorescent recognition of ATP and GTP in 100% aqueous solution. Org. Biomol. Chem.2011,9(24),8340-8345.
    [60]Lohani, C. R.; Kim, J.-M.; Chung, S.-Y.; Yoon, J.; Lee, K.-H., Colorimetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al3+ complex. Analyst 2010,135 (8),2079-2084.
    [61]Zhen, S. J.; Chen, L. Q.; Xiao, S. J.; Li, Y. R; Hu, P. P.; Zhan, L.; Peng, L.; Song, E. Q.; Huang, C. Z., Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. Anal. Chem.2010,82 (20),8432-8437.
    [62]Wang, J.; Jiang, Y.; Zhou, C; Fang, X., Aptamer-based ATP assay using a luminescent light switching complex. Anal. Chem.2005,77(11),3542-3546.
    [63]Stojanovic, M. N.; Prada, P. d; Landry, D. W., Fluorescent sensors based on aptamer self-assembly. J. Am. Chem. Soc.2000,122(46),11547-11548.
    [64]Yamana, K.; Ohtani, Y; Nakano, H.; Saito, I., Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor. Bioorg. Med. Chem. Lett.2003,13 (20),3429-3431.
    [65]Su, S.; Nutiu, R.; Filipe, C. D. M.; Li, Y; Pelton, R., Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose. Langmuir 2007,23 (3),1300-1302.
    [66]Bunka, D. H. J.; Stockley, P. G, Aptamers come of age-at last Nat. Rev. Microbiol.2006,4 (8),588-596.
    [67]Famulok, M.; Mayer, G, Aptamer Modules as Sensors and Detectors. Ace. Chem. Res.2011, 44(12),1349-1358.
    [68]Fang, X.; Tan, W., Aptamers Generated from Cell-SELEX for Molecular Medicine:A Chemical Biology Approach. Ace. Chem. Res.2010,43(1),48-57.
    [69]Huizenga, D. E.; Szostak, J. W., A DNA aptamer that binds adenosine and ATP. Biochemistry 1995,34 (2),656-665.
    [70]Sazani, P. L.; Larralde, R.; Szostak, J. W., A small aptamer with strong and specific recognition of the triphosphate of ATP. J. Am. Chem. Soc.2004,126(21),8370-8371.
    [71]Davis, J. H.; Szostak, J. W., Isolation of high-affinity GTP aptamers from partially structured RNA libraries. P. Natl. Acad. Sci. USA 2002,99 (18),11616-11621.
    [72]Carothers, J. M.; Davis, J. H.; Chou, J. J.; Szostak, J. W., Solution structure of an informationally complex high-affinity RNA aptamer to GTP. RNA 2006,12 (A),567-579.
    [73]Carothers, J. M.; Oestreich, S. C; Szostak, J. W., Aptamers selected for higher-affinity binding are not more specific for the target ligand. J. Am. Chem. Soc.2006,128 (24), 7929-7937.
    [74]Wang, J.; Zhang, P.; Li, J. Y; Chen, L. Q.; Huang, C. Z.; Li, Y. F, Adenosine-aptamer recognition-induced assembly of gold nanorods and a highly sensitive plasmon resonance coupling assay of adenosine in the brain of model SD rat. Analyst 2010,135 (11), 2826-2831.
    [75]Zong, G; Xian, L.; Lua, G, L-Arginine bearing an anthrylmethyl group:fluorescent molecular NAND logic gate with H+and ATP as inputs. Tetrahedron Lett.2007,48 (22), 3891-3894.
    [76]Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M., Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate. Org. Biomol. Chem.2005,3 (1),48-56.
    [77]Nishizawa, S.; Kato, Y.; Teramae, N., Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-funetionalized guanidinium receptor. J. Am. Chem. Soc.1999,121 (40),9463-9464.
    [78]Aldakov, D.; Pavel Anzenbacher, J., Dipyrrolyl quinoxalines with extended chromophores are efficient fluorimetric sensors for pyrophosphate. Chem. Commun.2003, (12), 1394-1395.
    [79]Xu, Z.; Singh, N. J.; Lim, J.; Pan, J.; Kim, H. N.; Park, S.; Kim, K. S.; Yoon, J., Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH. J. Am. Chem. Soc.2009,131 (42),15528-15533.
    [80]Wang, D.; Zhang, X; He, C; Duan, C, Aminonaphthalimide-based imidazolium podands for tum-on fluorescence sensing of nucleoside polyphosphates. Org. Biomol. Chem.2010,8 (13),2923-2925.
    [81]Singh, N. J.; Jun, E. J.; Chellappan, K.; Thangadurai, D.; Chandran, R. P.; Hwang, I.-C; Yoon, J.; Kim, K. S., Quinoxaline-imidazolium receptors for unique sensing of pyrophosphate and acetate by charge transfer. Org. Lett.2007,9 (3),485-488.
    [82]Kim, S. K.; Singh, N. J.; Kwon, J.; Hwang, I.-C; Park, S. J.; Kim, K. S.; Yoon, J., Fluorescent imidazolium receptors for the recognition of pyrophosphate. Tetrahedron 2006, 62 (25),6065-6072.
    [83]Neelakandan, P. P.; Hariharan, M; Ramaiah, D., Synthesis of a novel cyclic donor-acceptor conjugate for selective recognition of ATP. Org. Lett.2005,7(26),5765-5768.
    [84]Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M., Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors. Org. Lett.2002, 4(15),2449-2452.
    [85]Wang, S.; Chang, Y.-T., Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward GTP-selective fluorescent chemosensors. J. Am. Chem. Soc. 2006,128(32),10380-10381.
    [86]Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V., Teaching old indicators new tricks. Ace. Chem. Res.2001,34(12),963-972.
    [87]Niikura, K; Metzger, A; Anslyn, E. V., Chemosensor ensemble with selectivity for inositol-trisphosphate. J. Am. Chem. Soc.1998,120(33),8533-8534.
    [88]Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A., Pyrophosphate detection in water by fluorescence competition assays:inducing selectivity through the choice of the indicator. Angew. Chem. Int. Ed.2002,41 (20),3811-3814.
    [89]Ojida, A.; Takashima, I.; Kohira, T.; Nonaka, H.; Hamachi, I., Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(Ⅱ) complex chemosensor. J. Am. Chem. Soc.2008,730(36),12095-12101.
    [90]Shao, N.; Wang, H.; Gao, X.; Yang, R.; Chan, W., Spiropyran-based fluorescent anion probe and its application for urinary pyrophosphate detection. Anal. Chem.2010,82 (11), 4628-4636.
    [91]Lee, D. H.; Kim, S. Y.; Hong, J.-I., A fluorescent pyrophosphate sensor with high selectivity over ATP in water. Angew. Chem. Int. Ed.2004,43 (36),4777-4780.
    [92]Nonaka, A.; Horie, S.; James, T. D.; Kubo, Y, Pyrophosphate-induced reorganization of a reporter-receptor assembly via boronate esterification; a new strategy for the turn-on fluorescent detection of multi-phosphates in aqueous solution. Org. Biomol. Chem.2008,6 (19),3621-3625.
    [93]Ojida, A.; Park, S.-k.; Mito-okac, Y; Hamachi, I., Efficient fluorescent ATP-sensing based on coordination chemistry under aqueous neutral conditions. Tetrahedron Lett.2002,43 (35),6193-6195.
    [94]Ojida, A.; Miyahara, Y; Wongkongkatep, J.;Tamaru, S.-L; Sada, K.; Hamachi, I., Design of dual-emission chemosensors for ratiometric detection of ATP derivatives. Chem. Asian J. 2006,7 (4),555-563.
    [95]Yamaguchi, S.; Yoshimura, I.; Kohira, T.; Tamaru, S.-i.; Hamachi, I., Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives.J.Am. Chem. Soc.2005,727(33),11835-11841.
    [96]Lee, H. N.; Xu, Z.; Kim, S. K.; Swamy, K. M. K.; Kim, Y; Kim, S.-J.; Yoon, J., Pyrophosphate-selective fluorescent chemosensor at physiological pH:formation of a unique excimer upon addition of pyrophosphate. J. Am. Chem. Soc.2007,129 (13), 3828-3829.
    [97]Kim, M. J.; Swamy, K. M. K.; Lee, K. M.; Jagdale, A. R.; Kim, Y; Kim, S.-J.; Yoo, K. R; Yoon, J., Pyrophosphate selective fluorescent chemosensors based on coumarin-DPA-Cu(Ⅱ) complexes. Chem. Commun.2009,(46),7215-7217.
    [98]Jang, Y. J.; Jun, E. J.; Lee, Y J.; Kim, Y S.; Kim, J. S.; Yoon, J., Highly effective fluorescent and colorimetric sensors for pyrophosphate over H2PO4" in 100% aqueous solution. J. Org. Chem.2005,70(23),9603-9606.
    [99]Lee, H. N.; Swamy, K. M. K.; Kim, S. K.; Kwon, J.-Y; Kim, Y; Kim, S.-J.; Yoon, Y. J.; Yoon, J., Simple but effective way to sense pyrophosphate and inorganic phosphate by fluorescence changes. Org. Lett.2007,9 (2),243-246.
    [100]Xu, Z.; Spring, D. R.; Yoon, J., Fluorescent sensing and discrimination of ATP and ADP based on a unique sandwich assembly of pyrene-adenine-pyrene. Chem. Asian J 2011,6 (8), 2114-2122.
    [101]Chen, X.; Jou, M. J.; Yoon, J., An "Off-On" type UTP/UDP selective fluorescent probe and its application to monitor glycosylation process. Org. Lett.2009,77 (10),2181-2184.
    [102]Sastry, M. S.; Gupta, S. S.; Singh, A. J., Copper(Ⅱ), zinc(Ⅱ) and mixed metal copper(Ⅱ)-zinc(Ⅱ) peroxocomplexes containing 2,2',6,'2 "-terpyridine. Transit. Metal Chem.1994,19 (4),421-425.
    [103]Hanan, G S.; Arana, C. R.; Lehn, J.-M.; Baum, G.; Fenske, D., Coordination arrays: synthesis and characterisation of rack-type dinuclear complexes. Chem. Eur. J.1996,2 (10), 1292-1302.
    [104]Barigelletti, R; Flamigni, L.; Calogero, G.; Hammarstrom, L.; Sauvage, J.-P.; Collin, J.-P., A functionalized ruthenium(II)-bis-terpyridine complex as a rod-like luminescent sensor of zinc(Ⅱ). Chem. Commun.1998, (21),2333-2334.
    [105]Suntharalingam, K.; White, A. J. P.; Vilar, R., Two metals are better than one:investigations on Ihe interactions between dinuclear metal complexes and quadruplex DNA. Inorg. Chem. 2010,49 (18),8371-8380.
    [106]Zhou, X.; Jin, X.; Li, D.; Wu, X., Selective detection of zwitterionic arginine with a new Zn(Ⅱ)-terpyridine complex:potential application in protein labeling and determination. Chem. Commun.2011,47(13),3921-3923.
    [107]Tuccitto, N.; Delfanti, I.; Torrisi, V.; Scandola, F.; Chiorboli, C.; Stepanenko, V.; Wurthner, F.; Licciardello, A., Supramolecular self-assembled multilayers ofterpyridine-functionalized perylene bisimide metal complexes. Phys. Chem. Chem. Phys.2009,11 (20),4033-4038.
    [108]Zhao, X. J.; He, R. X; Li, M.; Zhao, N. W.; Li, Y. R; Huang, C. Z., Formation of blue fluorescent ribbons of 4',4""-(1,4-phenylene)bis(2,2':6',2"-terpyridine) and highly selective visual detection of iron(II)cations. RSCAdv.2013,3(1),111-116.
    [109]Meek, S. T.; Greathouse, J. A.; Allendorf, M. D., Metal-organic frameworks:a rapidly growing class of versatile nanoporous materials. Adv. Mater.2011,23 (2),249-267.
    [110]Kreno, L. E; Leong, K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T., Metal-organic framework materials as chemical sensors. Chem. Rev.2012,112 (2% 1105-1125.
    [111]Ronaghi, M.; Karamohamed, S.; Pettersson, B.; Uhlen, M.; Nyre"n, P., Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem.1996,242 (1),84-89.
    [112]Krohn, M.; Wagner, R., A procedure for the rapid preparation of guanosine tetraphosphate(ppGpp) from Escherichia coli ribosomes. Anal. Biochem.1995,225 (1), 188-190.
    [113]Wuthier, R. E., Relationship between pyrophosphate, amorphous calcium phosphate and other factors in the sequence of calcification in vivo. Calc. Tiss. Res.1972,10 (3),198-206.
    [114]Mansurova, S. E; Deryabina, O. A, A simple calorimetric assay method for pyrophosphate in the presence of a 1000-fold excess of orthophosphate:Application of the method to the study of pyrophosphate metabolism in mitochondria. Anal. Biochem.1989,176 (2), 390-394.
    [115]Siegel, S. A.; Hummel, C. R; Carty, R. P., The role of nucleoside triphosphate pyrophosphohydrolase in in vitro nucleoside triphosphate-dependent matrix vesicle calcification. J. Biol. Chem.1983,255(14),8601-8607.
    [116]Huang, M. S.; Sage, A. P.; Lu, J.; Demer, L. L.; Tintut, Y, Phosphate and pyrophosphate mediate PKA-induced vascular cell calcification. Biochem. Bioph. Res. Co.2008,374 (3), 553-558.
    [117]Xu, S.; He, M.; Yu, H.; Cai, X.; Tan, X.; Lu, B.; Shu, B., A quantitative method to measure telomerase activity by bioluminescence connected with telomeric repeat amplification protocol. Anal. Biochem.2001,299(2),188-193.
    [118]Aldakov, D.; Pavel Anzenbacher, J., Sensing of aqueous phosphates by polymers with dual modes of signal transduction. J. Am. Chem. Soc.2004,726 (15),4752-4753.
    [119]Climent, E.; Casasus, R.; Marcos, M. D.; Martinez-Manez, R.; Sancenon, F.; Soto, J., Colorimetric sensing of pyrophosphate in aqueous media using bis-functionalised silica surfaces. Dalton Trans.2009, (24),4806-4814.
    [120]Margulies, D.; Felder, C. E.; Melman, G.; Shanzer, A., A molecular keypad lock:a photochemical device capable of authorizing password entries. J. Am. Chem. Soc.2007,129 (2),347-354.
    [121]Kou, S.; Lee, H. N.; Noort, D. v.; Swamy, K. M. K.; Kim, S. H.; Son, J. H.; Lee, K.-M.; Nam, S.-W.; Yoon, J.; Park, S., Fluorescent molecular logic gates using microfluidic devices. Angew. Chem. Int. Ed.2008,720(5),886-890.
    [122]Voelcker, N. H.; Guckian, K. M.; Saghatelian, A.; Ghadiri, M. R., Sequence-addressable DNA logic. Small 2008,4 (4),427-431.
    [123]Konry, T.; Walt, D. R., Intelligent medical diagnostics via molecular logic. J. Am. Chem. Soc. 2009,131 (37),13232-13233.
    [124]Miyoshi, D.; Inoue, M.; Sugimoto, N., DNA logic gates based on structural polymorphism of telomere DNA molecules responding to chemical input signals. Angew. Chem. Int. Ed. 2006,45 (46),7716-7719.
    [125]Muramatsu, S.; Kinbara, K.; Taguchi, H.; Ishii, N.; Aida, T., Semibiological molecular machine with an implemented"AND" logic gate for regulation of protein folding. J. Am. Chem. Soc.2006,128(11),3764-3769.
    [126]Estey, E. P.; Brown, K.; Diwu, Z.; Liu, J.; Lown, J. W.; Miller, G. G.; Moore, R. B.; Tulip, J.; McPhee, M. S., Hypocrellins as photosenshizers for photodynamic therapy:a screening evaluation and pharmacokinetic study. Cancer Chemother. Pharmacol.1996,37 (4), 343-350.
    [127]Zhang, J.; Cao, E.-H.; Li, J.-F.; Zhang, T.-C.; Ma, W.-J., Photodynamic effects of hypocrell in A on three human malignant cell lines by inducing apoptotic cell death. J. Photoch. Photobio B 1998,43,106-111.
    [128]Das, K.; Ashby, K. D.; Wen, J.; Petrich, J. W., Temperature dependence of the excited-state intramolecular proton transfer reaction in hypericin and hypocrellin A. J. Phys. Chem. B 1999,103(9),1581-1585.
    [129]Zhang, L. Z.; Tang, G.-Q.; Gao, B.-W.; Zhang, G.-L., Spectroscopic studies on the excited-state properties of the light-induced antiviral drug hypocrellin A loaded in the mesoporous solid. Chem. Phys. Lett.2004,396(1-3),102-109.
    [130]Diwu, Z.; Zhang, C.; Lown, J. W., Photosensitization with anticancer agents 13. The production of singlet oxygen by halogenated and metal-ion-chelated perylenequinones. J. Photochem. Photobiol. A:Chem.1992, 66(1),99-112.
    [131]Tian, C.; Xu, S.; Chen, S.; Shen, J.; Zhang, M.; Shen, T., Chelation of hypocrellin B with zinc ions with electron paramagnetic resonance (EPR) evidence of the photodynamic activity of the resulting chelate. Free Radical Res.2001,55 (5),543-554.
    [132]Smith, S. A.; Choi, S. H.; Davis-Harrison, R.; Huyck,1; Boettcher,1; Reinstra, C. M; Morrissey, J. H., Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood2010,116(20),4353-4359.
    [133]Gao, J.; Riis-Johannessen, T.; Scopelliti, R.; Qian, X.; Severin, K., A fluorescent sensor for pyrophosphate based on a Pd(Ⅱ) complex. Dalton Trans.2010,39 (30),7114-7118.
    [134]Zhao, X.; Huang, C. Z., A molecular logic gate for the highly selective recognition of pyrophosphate with a hypocrellin A-Zn(Ⅱ) complex. Analyst 2010,135 (11),2853-2857.
    [135]Addison, A. W.; Burke, P. J., Synthesis of some imidazole-and pyrazole-derived chelating agents. J. Heterocyclic Chem.1981,18 (4),803-805.
    [136]Ceniceros-Gomez, A. E.; Ramos-Organillo, A.; Hernandez-Diaz, J.; Nieto-Martinez, J.; Contreras, R.; Castillo-Blum, S. R, NMR study of the coordinating behavior of 2,6-bis(benzimidazol-2'-yl)pyridine. Heteroatom Chem.2000,77 (6),392-398.
    [137]Dey, S.; Sarkar, S.; Paul, H.; Zangrando, E.; Chattopadhyay, P., Copper(Ⅱ) complex with tridentate N donor ligand:Synthesis, crystal structure, reactivity and DNA binding study. Polyhedron 2010,29(6),1583-1587.
    [138]Garcia-Lozano, J.; Server-Carrio, J.; Coret, E.; Folgado, J.-V; Escriva, E.; Ballesteros, R., Crystal and molecular structure and electronic properties of [Cu(bbimpyXH2O)2(ONO2)] (NO3>H2O (bbimpy= 2,6-bis(2-benzimidazolyl)pyridine). Inorg. Chim. Ada 1996,245, 75-79.
    [139]Liu, S.-G; Zuo, J.-L.; Li, Y.-Z.; You, X.-Z., Syntheses, crystal structures of blue luminescent complexes based on 2,6-bis(benzimidazolyl) pyridine. J. Mol. Struct.2004,705,153-157.
    [140]Piguet, C; Bocquet, B.; Muller, E.; Williams, A. F., Models for copper-dioxygen complexes: the chemistry of copper(Ⅱ) with some planar tridentate nitrogen ligands. Helv. Chim. Acta 1989,72 (2),323-337.
    [141]Sanni, S. B.; Behm, H. J.; Beurskens, P. T., Copper(Ⅱ) and zinc(Ⅱ) co-ordination compounds of tridentate bis(benzimidazole)pyridine ligands. crystal and molecular structures of bis[2,6-bis(1'-methylbenzimidazol-2'-yl)pyridine]copper(Ⅱ) diperchlorate monohydrate and (acetonitrile) [2,6-bis(benzimidazol-2'-yl)pyridine](perchlorato)copper(Ⅱ) perchlorate. J. Chem. Soc, Dalton. Trans.1988, (6),1429-1435.
    [142]Shrivastava, H. Y.; Kanthimathi, M; Nair, B. U., Copper(Ⅱ) complex of a tridentate ligand: an artificial metalloprotease for bovine serum albumin. BBA-Gen. Subjects 2002,1573 (2), 149-155.
    [143]Wang, S.; Cui, Y, Synthesis, structure and 'HNMR spectra of cadmium complexes with 2,6-bis(benzimidazol-2'-yl)pyridme.Polyhedron 1994,73(11),1661-1668.
    [144]Wang, S.; Zhu, Y; Cui, Y.; Wang, L.; Lu, Q., Crystal structures and luminescence spectra of ten-co-ordinate lanthanide(Ⅲ) complexes (Ln= Ce, Sm, Eu or Tb) with 2,6-bis(benzimidazol-2-y1)pyridine.J. Chem. Soc, Dalton. Trans.1994,2523-2530.
    [145]Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Perotti, A.; Taglietti, A.; Sacchi, D., Fluorescent sensors for transition metals based on electron-transfer and energy-transfer mechanisms. Chem. Eur. J.1996,2(1),75-82.
    [146]Valeur, B., ed., Molecular Fluorescence Principles and Applications,1 edn., Wiley VCH, Weinheim,2001.
    [147]Kim, S. Y.; Hong, J.-I., Dual signal (color change and fluorescence ON-OFF) ensemble system based on bis(Dpa-CuII) complex for detection of PPi in water. Tetrahedron Lett. 2009,50(17),1951-1953.
    [148]Martinez-Manez, R.; Sancenon, F., Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev.2003,103 (11),4419-4476.
    [149]M.Ashcroft, F.; M.Gribble, F, ATP-sensitive K+channels and insulin secretion:their role in health and disease. Diabetologia 1999,42 (8),903-919.
    [150]Dennis, P. B.; Jaeschke, A.; Saitoh, M.; Fowler, B.; Kozma, S. C; Thomas, G, Mammalian TOR:Ahomeostatic ATP sensor. Science 2001,294 (5544),1102-1105.
    [151]Lu, Y.; Li, X.; Zhang, L.; Yu, P.; Su, L.; Mao, L., Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Anal. Chem.2008,80 (6), 1883-1890.
    [152]Bazzicalupi, C; Biagini, S.; Bencini, A.; Faggi, E.; Giorgi, C; Matera, I.; Valtancoli, B., ATP Recognition and sensing with a phenanthroline-containing polyammonium receptor. Chem. Commun.2006, (39),4087-4089.
    [153]Bazzicalupi, C; Bencini, A; Berni, E.; Bianchi, A.; Fornasari, P.; Giorgi, C; Marinelli, C; Valtancoli, B., Protonated macrocyclic Zn(II) complexes as polyfunctional receptors for ATP. Dalton Trans.2003, (12),2564-2572.
    [154]Jose, D. A.; Mishra, S.; Ghosh, A.; Shrivastav, A.; Mishra, S. K.; Das, A., Colorimetric sensor for ATP in aqueous solution. Org. Lett.2007,9 (10),1979-1982.
    [155]Rocca, J. D.; Liu, D.; Lin, W., Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Ace. Chem. Res.2011,44 (10),957-968.
    [156]Cavenati, S.; Grande, C. A.; Rodrigues, A. r. E., Metal organic framework adsorbent for biogas upgrading. Ind. Eng. Chem. Res.2008,47(16),6333-6335.
    [157]Gong, Y; Wu, T.; Jiang, P. G.; Lin, J. H.; Yang, Y. X., Octamolybdate-based metal-organic framework with unsaturated coordinated metal center as electrocatalyst for generating hydrogen from water. Inorg. Chem.2013,52 (2),777-784.
    [158]Liu, Y.-Y; Couck, S.; Vandichel, M.; Grzywa, M.; Leus, K.; Biswas, S.; Volkmer, D.; Gascon, J.; Kapteijn, F.; Denayer, J. F. M.; Waroquier, M.; Speybroeck, V V; Voort, P. V. D., New VIV-based metal-organic framework having framework fexibility and high CCb adsorption capacity. Inorg. Chem.2013,52(1),113-120.
    [159]Ferrando-Soria, J.; Serra-Crespo, P.; Lange, M. d.; Gascon, J.; Kapteijn, F.; Julve, M.; Cano, J.; Lloret, F.; Pasan, J.; Ruiz-Perez, C.; Journaux, Y.; Pardo, E., Selective gas and vapor sorption and magnetic sensing by an isoreticular mixed-metal-organic framework. J. Am. Chem. Soc.2012,134(31),15301-15304.
    [160]Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F. R.; Xue, M.; Cui, Y.; Qian, G, A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed.2009,48(3),500-503.
    [161]Liu, S.; Xiang, Z.; Hu, Z.; Zheng, X.; Cao, D., Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. J. Mater. Chem. 2011,27 (18),6649-6653.
    [162]Jayaramulu, K.; Narayanan, R. P.; George, S. J.; Maji, T. K., Luminescent microporous metal-organic framework with functional Lewis basic sites on the pore surface:specific sensing and removal of metal ions. Inorg. Chem.2012,57(19),10089-10091.
    [163]Qiu, L.-G; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun.2008,(31),3642-3644.
    [164]Gole, B.; Bar, A. K.; Mukherjee, P. S., Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives. Chem. Commun.2011,47(44),12137-12139.
    [165]Lu, Z.-Z.; Zhang, R; Li, Y.-Z.; Guo, Z.-J.; Zheng, H.-G, Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules. J. Am. Chem. Soc.2011, 133 (12),4172-4174.
    [166]Kim, T. K.; Lee, J. H.; Moon, D.; Moon, H. R., Luminescent Li-based metal-organic framework tailored for the selective detection of explosive nitroaromatic compounds:direct observation of interaction. Inorg. Chem.2013,52 (2),589-595.
    [167]Chow, C.-F.; Lam, M. H. W.; Wong, W.-Y, A heterobimetallic ruthenium(Ⅱ)-copper(Ⅱ) donor-acceptor complex as a chemodosimetric ensemble for selective cyanide detection. Inorg. Chem.2004,43 (26),8387-8393.
    [168]Wong, K.-L; Law, G-L.; Yang, Y.-Y; Wong, W.-T., A highly porous luminescent terbium-organic framework for reversible anion sensing. Adv. Mater.2006,18 (8), 1051-1054.
    [169]Chen, B.; Wang, L.; Zapata, F.; Qian, G; Lobkovsky, E. B., A luminescent microporous metal-organic framework for the recognition and sensing of anions. J. Am Chem. Soc.2008, 130 (21),6718-6719.
    [170]Edgar, M.; Mitchell, R.; Slawin, A M. Z.; Lightfoot, P.; Wright, P. A., Solid-state transformations of zinc 1,4-benzenedicarboxylates mediated by hydrogen-bond-forming molecules. Chem. Eur. J.2001,7(23),5168-5175.
    [171]Zhu, L.-N.; Zhang, L. Z.; Wang, W.-Z.; Liao, D.-Z.; Cheng, P.; Jiang, Z.-H.; Yan, S.-P., [Zn(BDC)(H2O)2]n:a novel blue luminescent coordination polymer constructed from BDC-bridged 1-D chains via interchain hydrogen bonds (BDC=1,4-benzenedicarboxylate). Inorg. Chem. Commun.2002,5(12),1017-1021.
    [172]Dybtsev, D. N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K., Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. J. Am. Chem. Soc.2004,725(1),32-33.
    [173]Li, J.-R.; Tao, Y.; Yu, Q.; Bu, X.-H.; Sakamoto, H; Kitagawa, S., Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels. Chem. Eur. J.2008,14(9),2771-2776.
    [174]Lama, P.; Aijaz, A.; Neogj, S.; Barbour, L. J.; Bharadwaj, P. K., Microporous La(Ⅲ) metal-organic framework using a semirigid tricarboxylic ligand:synthesis, single-crystal to single-crystal sorption properties, and gas adsorption studies. Ciyst. Growth Des.2010,10 (8),3410-3417.
    [175]Becke, A. D., Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys.1993,98(7),5648-5652.
    [176]Hosseini, M. W.; Blacker, A. J.; Lehn, J.-M., Multiple molecular recognition and catalysis. A multifunctional anion receptor bearing an anion binding site, an intercalating group, and a catalytic site for nucleotide binding and hydrolysis. J. Am. Chem. Soc.1990,112 (10), 3896-3904.
    [177]Happe, J. A.; Morales, M., Nitrogen-15 nuclear magnetic resonance evidence that Mg2+ does not complex with nitrogen atoms of adenosine triphosphate. J. Am. Chem. Soc.1966, 88 (9),2077-2078.
    [178]Du, F.; Mao, X.-A., Binding site of Zn2+in ATP:N1 at low pH and N7 at high pH as evidenced by1H-15N NMR HMBC experiments. Spectrochim. Acta A 2000,56 (12), 2391-2395.
    [179]Charles M. Allen, J.; Kalin, J. R.; Sack, J.; Verizzo, D., CTP-dependent dolichol phosphorylation by mammalian cell homogenates. Biochemistry 1978,77(23),5020-5026.
    [180]Mallikarachchi, D.; Burz, D. S.; Allewell, N. M., Effects of ATP and CTP on the conformation of the regulatory subunit of Escherichia coli aspartate transcarbamylase in solution:a medium-resolution hydrogen exchange study. Biochemistry 1989,28 (13), 5386-5391.
    [181]Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S., Imidazolium receptors for the recognition of anions. Chem. Soc. Rev.2006,35 (4),355-360.
    [182]Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R J. T., Luminescent metal-organic frameworks. Chem. Soc. Rev.2009,38(5),1330-1352.
    [183]Jiang, H.-L.; Xu, Q., Porous metal-organic frameworks as platforms for functional applications. Chem. Commun.2011, 47(12),3351-3370.
    [184]Paz, F. A. A.; Klinowski,J.; Vilela, S. M. F.; Tome, J. P. C.; Cavaleiro, J. A. S.; Rocha, J., Ligand design for functional metal-organic frameworks. Chem. Soc. Rev.2012,41 (3), 1088-1110.
    [185]Stock, N.; Biswas, S., Synthesis of metal-organic frameworks (MOFs):routes to various MOF topologies, morphologies, and composites. Chem. Rev.2012,112 (2),933-969.
    [186]Gagnon, K. J.; Perry, H. P.; Clearfield, A., Conventional and unconventional metal-organic frameworks based on phosphonate ligands:MOFs and UMOFs. Chem. Rev.2012,112 (2), 1034-1054.
    [187]Cui, X.-Y; Gu, Z.-Y.; Jiang, D.-Q.; Li, Y; Wang, H.-F.; Yan, X.-P., In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal. Chem.2009,81 (23),9771-9777.
    [188]Gu, Z.-Y.; Wang, G.; Yan, X.-P., MOF-5 metal-organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde. Anal. Chem.2010,52(4),1365-1370.
    [189]Gu, Z.-Y; Yang, C.-X.; Chang, N.; Yan, X.-P., Metal-organic frameworks for analytical chemistry:from sample collection to chromatographic separation. Ace. Chem. Res.2012,45 (5),734-745.
    [190]Fu, Y.-Y; Yang, C.-X.; Yan, X.-P., Control of the coordination status of the open metal sites in metal-organic frameworks for high performance separation of polar compounds. Langmuir 2012,28 (17),6794-6802.
    [191]Yang, C.-X.; Liu, S.-S.; Wang, H.-F.; Wang, S.-W.; Yan, X.-P., High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(A1) as the stationary phase. Analyst 2012,137(1),133-139.
    [192]Liu, S.-S.; Yang, C.-X.; Wang, S.-W; Yan, X.-P., Metal-organic frameworks for reverse-phase high-performance liquid chromatography.Analyst 2012,137(4),816-818.
    [193]Huo, S.-H.; Yan, X.-P., Metal-organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem.2012,22 (15),7449-7455.
    [194]Pramanik, S.; Zheng, C; Zhang, X.; Emge, T. J.; Li, X, New microporous metal-organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. J.Am. Chem. Soc.2011,133 (12),4153-4155.
    [195]Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D., Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev.2011,40(2),926-940.
    [196]Kitaura, R.; Fujimoto, K.; Noro, S.-i.; Kondo, M.; Kitagawa, S., A pillared-layer coordination polymer network displaying hysteretic sorption:[Cu2(pzdc)2(dpyg)]n (pzdc= pyrazine-2,3-dicarboxylate; dpyg=1,2-di(4-pyridyl)-glycol). Angew. Chem. Int. Ed.2002,41 (1),133-135.
    [197]Beobide, G.; Castillo, O.; Luque, A.; Garcia-Couceiro, U.; Garcia-Teran, J. P.; Roma'n, P., Supramolecular architectures and magnetic properties of coordination polymers based on pyrazinedicarboxylato ligands showing embedded water clusters. Inorg. Chem.2006,45 (14),5367-5382.
    [198]Soares-Santos, P. C. R.; Cunha-Silva, L.; Paz, F. A. A.; Ferreira, R. A. S.; Rocha, J.; Carlos, L. D.; Nogueira, H. I. S., Photoluminescent lanthanide-organic bilayer networks with 2,3-pyrazinedicarboxylateandoxalate. Inorg. Chem.2010,49(1),3428-3440.
    [199]Nishiyabu, R.; Hashimoto, N.; Cho, T.; Watanabe, K.; Yasunaga, T.; Endo, A.; Kaneko, K..; Niidome, T.; Murata, M.; Adachi, G; Katayama, Y; Hashizume, M.; Kimizuka, N., Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions. J. Am. Chem. Soc.2009,757 (6),2151-2158.
    [200]Diez, I.;Ras, R. H. A., Fluorescent silver nanoclusters. Nanoscale2011,5(5),1963-1970.
    [201]Shang, L.; Dong, S.; Nienhaus, G U., Ultra-small fluorescent metal nanoclusters:Synthesis and biological applications. Nano Today 2011,6 (4),401-418.
    [202]Qian, H.; Zhu, M.; Wu, Z.; Jin, R., Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res.2012,45(9),1470-1479.
    [203]Vazquez-Vazquez, C; Banobre-Lopez, M; Mitra, A.; Lopez-Quintela, M. A.; Rivas, J., Synthesis of small atomic copper clusters in microemulsions. Langmuir 2009,25 (14), 8208-8216.
    [204]Vilar-Vidal, N.; Blanco, M. C; Lopez-Quintela, M. A.; Rivas, J.; Serra, C, Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 2010,114 (38), 15924-15930.
    [205]Kawasaki, H.; Kosaka, Y.; Myoujin, Y.; Narushima, T.; Yonezawab, T.; Arakawa, R., Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem. Commun.2011, 47(27),7740-7742.
    [206]Balogh, L.; Tomalia, D. A., Poly(amidoamine) dendrimer-templated nanocomposites.1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc.1998,120 (29),7355-7356.
    [207]Zhao, M.; Sun, L.; Crooks, R. M., Preparation of Cu nanoclusters within dendrimer templates.J. Am. Chem. Soc.1998,720(19),4877-4878.
    [208]Zhang, H.; Huang, X.; Li, L; Zhang, G; Hussain, I.; Li, Z.; Tan, B., Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chem. Commun.2012,48 (4), 567-569.
    [209]Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A., Selective dsDNA-templated formation of copper nanoparticles in solution. Angew. Chem. Int. Ed 2010,49 (33),5665-5667.
    [210]Jia, X.; Li, J.; Han, L; Ren, J.; Yang, X.; Wang, E., DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS nano 2012,6 (4), 3311-3317.
    [211]Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L; Pradeep, T.; Pal. S. K., Copper quantum clusters in protein matrix:potential sensor of Pb2+ion. Anal. Chem.2012,83 (24), 9676-9680.
    [212]Wei, W.; Lu, Y; Chen, W.; Chen, S., One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc.2011, 133 (7),2060-2063.
    [213]Kim, S. K.; Moon, B.-S.; Park, J. H.; Seo, Y.1.; Koh, H. S.; Yoon, Y. J.; Leeb, K. D.; Yoon, J., A fluorescent cavitand for the recognition of GTP. Tetrahedron Lett.2005,46 (39), 6617-6620.
    [214]Kwon, J. Y; Singh, N. J.; Kim, H. N.; Kim, S. K.; Kim, K. S.; Yoon,J., Fluorescent GTP-sensing in aqueous solution of physiological pH. J. Am. Chem. Soc.2004,126 (29), 8892-8893.
    [215]Zhou, J.; Booker, C; Li, R.; Zhou, X.; Sham, T.-K.; Sun, X.; Ding, Z., An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). J. Am. Chem. Soc.2007,129(4),744-745.
    [216]Pan, D.; Zhang, J.; Li, Z.; Wu, C; Yan, X.; Wu, M., Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 2010,46 (21),3681-3683.
    [217]Sigel, H.; McCormick, D. B., The structure of the copper (Ⅱ)-L-Histidine 1:2 complex in solution. J. Am. Chem. Soc.1971,93 (8),2041-2044.
    [218]Qi, W. J.; Huang, C. Z.; Chen, L. Q., Cuprous oxide nanospheres as probes for light scattering imaging analysis of live cells and for conformation identification of proteins. Talanta2010,80 (3),1400-1405.
    [219]Ng, C. H. B.; Fan, W. Y., Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth. J. Phys. Chem. B 2006,110 (42),20801-20807.
    [220]Salzemann, C; Lisiecki, I.; Brioude, A.; Urban, J.; Pileni, M.-P., Collections of copper nanocrystals characterized by different sizes and shapes:optical response of these nanoobjects. J. Phys. Chem.B2004,108(35),13242-13248.
    [221]Yang, X.; Shi, M; Zhou, R.; Chen, X.; Chen, H., Blending of HAuCl4 and histidine in aqueous solution:a simple approach to the Auio cluster. Nanoscale 2011,3 (6),2596-2601.
    [222]Saito, I.; Takayama, M.; Sugryama, H.; Nakatani, K., Photoinduced DNA cleavage via electron transfer:demonstration that guanine residues located 5'to guanine are 1he most electron-donating sites. J. Am. Chem. Soc.1995,117(23),6406-6407.
    [223]Jasuja, R.; Jameson, D. M.; Nishijo, C. K-; Larsen, R. W., Singlet excited state dynamics of tetrakis(4-N-methylpyridyl)porphine associated with DNA nucleotides. J. Phys. Chem. B 1997,101 (8),1444-1450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700