可见光响应温控光催化剂的制备、表征及其光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,环境净化中采用的TiO2太阳光催化技术因具有无毒、廉价、活性高等优点而引起人们的关注。其中,具有可见光响应的多壁碳纳米管(MWCNTs)/TiO2复合光催化剂体系,可以使宽带隙TiO2光催化材料的光生电子(e-)-空穴(h+)有效分离,有效抑制光生电子-空穴的复合,使其响应光谱向可见光扩展,大大提高了TiO2光催化反应效率。但是此光催化体系中存在超细TiO2/MWCNTs粉体在溶液中易团聚、分离回收困难、有效组分易流失、以及具有极性表面的TiO2与有机相的界面相容性差等问题,很大程度上限制了MWCNTs/TiO2光催化材料在降解有机污染物中的应用。
     聚(NIPAM-co-MAH-β-CD)水凝胶是由可控温敏“开-关”特性的N-异丙基丙烯酰胺(NIPAM)结构单元以及分子包络识别能力的β-环糊精马来酸酐衍生物(MAH-β-CD)结构单元聚合而成,在水中具有良好的溶胀性,温敏性和透明性,且聚合物中含有能与TiO2发生反应形成配位化学键的羟基官能团。本课题制备出了新型的聚(NIPAM-co-MAH-β-CD)负载化的MWCNTs/TiO2复合材料,使此类新型TiO2光催化剂具有温度敏感、分子包络识别、稳定均匀等独特的性质和功能。
     本文在文献报道基础上,首先制备了NIPAM,并采用顺丁烯二酸酐(MAH)对β-CD进行改性制得MAH-β-CD,然后以N,N′-亚甲基双丙烯酰胺(BIS)为交联剂,过硫酸钾(KPS)为引发剂,采用无皂乳液聚合法合成了聚(NIPAM-co-MAH-β-CD)水凝胶颗粒。采用元素分析法确定出水凝胶组成,并讨论了不同单体配比、交联剂用量、引发剂用量、聚合温度对水凝胶温敏性能的影响。
     在此基础上,制备了聚(NIPAM-co-MAH-β-CD)/MWCNTs/TiO2有机-无机复合光催化剂,运用X-射线粉末衍射(XRD)、透射电子显微镜(TEM)、热重(TG)、紫外-可见吸收(UV-vis)光谱等技术对制备的复合光催化剂进行了表征。用溶胀平衡(ESR)测定法考察了其在水中的温敏性能。最后利用甲基橙为探针分子,研究了单体配比、交联剂用量、不同MWCNTs/TiO2负载量对催化剂催化活性的影响。结果显示,复合物中TiO2为锐钛矿型结构且平均粒径为20~25 nm左右的球形粒子。以水凝胶聚合物为载体解决了MWCNTs/TiO2光催化剂在使用中的容易团聚、流失严重、回收困难等问题。
Recently, environmental purification using TiO2 as a photocatalyst under solar irradiation has attracted a great deal of attention due to its non-toxic, inexpensive and highly reactive nature. Among them, with a visible light response, multi-walled carbon nanotubes(MWCNTs) /TiO2 composite photocatalyst can make photoinduced electrons(e-)-hole(h+) of wide band-gap TiO2 photocatalytic materials effective separation, effectively inhibiting the recombination of photo-generated electron-hole and making their responsive spectrum expand to the visible light, greatly enhancing the TiO2 photocatalytic reaction efficiency. However, in practical applications, ultra-fine MWCNTs/TiO2 powder can be aggregated easily in solution, but hardly separated and recovered. In addition, because of the polar surface of the TiO2, its interface compatibility with organic phase is poor, the application of MWCNTs/TiO2 is limited to a large extent in degradation of organic pollutants.
     Poly(NIPAM-co-MAH-β-CD) hydrogel consists of N-isopropyl acrylamide(NIPAM) unit with temperature sensitive "on-off" property and P-cyclodextrin derivatives of maleic anhydride(MAH-β-CD) unit with molecular identification ability, and in water it has good swelling, thermo-sensitive and transparent features. Besides, the polymer contains hydroxyl functional groups which can react with TiO2 to form coordination bond. This subject prepared a new type photocatalyst material of poly(NIPAM-co-MAH-β-CD) load-oriented MWCNTs/TiO2 with temperature-sensition, molecular identification, stability, uniformity properties and functions.
     In this paper, based on the reported literatures, NIPAM, MAH-β-CD, MWCNTs/TiO2 composite material unites first were prepared, and then, temperature responsive microspherical gels of NIPAM and P-cyclodextrin carrying vinyl carboxylic acid functional groups were synthesized by a surfactant-free emulsion polymerization method with N, N'-methylene bisacrylamide(BIS) as crosslinker, potassium peroxydisulfate(KPS) as initiator. The hydrogel's composition was determined by element analysis. Equilibrium swelling ratio(ESR) of hydrogels were tested under different temperature in water, and the effects of ratios of reactants, the amount of cross linker, the amount of initiator and reaction temperature on thermosensitivity of hydrogels were investigated thoroughly.
     Then, organic-inorganic composites were prepared with multi-walled carbon nanotubes (MWCNTs)/TiO2 photocatalysts embedded within colloidal particles of a cross-linked, thermally responsive poly(NIPAM-co-MAH-P-CD). The composites were characterized by X-ray diffraction(XRD), transmission electron microscope(TEM), thermo gravimetric analysis (TG) and ultraviolet-visible absorption spectra(UV-vis). Equilibrium swelling ratio(ESR) of composites were tested to show their temperature-sensitive property in water, and the effects of ratios of reactants, the amount of cross linker, the amount of MWCNTs/TiO2 on photocatalytic activity were studied. The results indicate that the prepared samples were sphericity, anatase phase with mean size of 20~25 nm, and the introduction of the hydrogels could make MWCNTs/TiO2 recovered easily, as well as inhibiting it to aggregate and lose seriously in practical process.
引文
[1]陈崧哲,张彭义,祝万鹏,刘福东.可见光响应光催化剂研究进展.化学进展,2004,16(4):613-619.
    [2]Li S.-X., Zheng F.-Y., Liu X.-L., Wu F., Deng N.-S., Yang J.-H. Photocatalytic degradation of p-nitrophenol on nanometer size titanium dioxide surface modified with 5-sulfosalicylic acid. Chemosphere,2005,61(4):589-594.
    [3]王京城.改性纳米二氧化钛的制备及其光催化降解性能的研究[D].安徽:合肥工业大学资源与环境工程学院,2007.
    [4]WANG G H, WU F, ZHANG X, et al. Enhanced photocatalytic degradation of bisphenol F by beta-cyclodextrin in aqueous TiO2 dispersion [J]. Fresenius Environmental Bulletin, 2006,15(1):61-67.
    [5]FABBRI D, PREVOT A B, PRAMAURO E. Effect of surfactant microstructures on photocatalytic degradation of phenol and chlorophenols [J]. Appl. Catal., B:Environ,2006, 62(1-2):21-27.
    [6]ZAYANI G, BOUSSELMI L, PICHAT P, et al. Photocatalytic degradation of four textile azo dyes in aqueous TiO2 suspensions:Practical outcomes and revisited pathways [J]. Journal of Advanced Oxidation Technologies,2006,9(1):65-78.
    [7]LIU C C, HSIEH Y H, LAI P F, et al. Photodegradation treatment of azo dye wastewater by UV/TiO2 process [J]. Dyes and Pigments,2006,68(2-3):191-195.
    [8]LIZAMA C, BRAVO C, CANEO C, et al. Photocatalytic degradation of surfactants with immobilized TiO2:comparing two reaction systems [J]. Environmental Technology,2005, 26(8):909-914.
    [9]MROWETZ M, PIROLA C, SELLI E. Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2 [J]. Ultrasonics Sonochemistry,2003, 10(4-5):247-254.
    [10]Frank S N, Bard A J. J Am Chem Soc,1977,99(14):4467.
    [11]Vogel R, Hoyer P,Weller H. J Phys Chem,1994,98(12):3183.
    [12]Do Y R, Lee W, Dwight K, et al. J Solid State Chem,1994,108(1):198.
    [13]Bedja I, Kamat P V. J Phys Chem.1995,99(22):9182.
    [14]Mabakazu A, Kawamura T, Kodamo S. et al. J Phys Chem.1988,92.(2):438.
    [15]Fu X, Clark L A, Yang Q. Enviro Sci Technol,1996,30(2):647.
    [16]Choi W, Termin A, Hoffmann M R. J Phys Chem,1994,98(51):13669.
    [17]罗洁,陈建山,周钢.TiO2光催化剂的改性研究进展[A].第2届全国工业催化技术及应用年会论文集[C],2005
    [18]YANG H M, SHI R R, ZHANG K, et al. Synthesis of W03/TiO2 nanocomposites via sol-gel method [J]. Journal of Alloys and Compounds,2005,398(1-2):200-202.
    [19]BESSEKHOUAD Y, CHAOUI N, TRZPIT M, et al. UV-vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension [J]. J. photochem. Photobiol. A:Chem.,2006,183(1-2):218-224.
    [20]LI X Z, LI F B, YANG C L, et al. Photocatalytic activity of WOx-Ti02 under visible light irradiation [J]. J. photochem. Photobiol. A:Chem.,2001,141:209-217.
    [21]JEON M S, YOON W S, et al. Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst [J]. Appl. surface sci.,2000,165:209-216.
    [22]YAMASHITA H, HARADA M, MISAKA J, et al. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts [J]. J. photochem. Photobiol. A:Chem.,2002,148:257-261.
    [23]岳林海,等.浙江大学学报,2000,(1):1.
    [24]SASAKI T, KOSHIZAKI N, YOON J W, et al. Preparation of Pt/TiO2 nanocomposite thin films by pulsed laser deposition and their photoelectrochemical behaviors [J]. J. photochem. Photobiol. A:Chem.,2001,145(1-2):11-16.
    [25]KAMISAKA H, ADACHI T, YAMASHITA K. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides [J]. J. Chem. Phys. 2005,123:084704-1-084704-9.
    [26]SAKTHIVEL S, KISCH H. Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angew. Chem. Int. Ed.,2003,42:4908-4911.
    [27]IRIE H, WATANAKE Y, HASHIMOTO K. Carbon-doped anatase Ti02 powders as a visible-light sensitive photocatalyst [J].Chem. Lett.,2003,32(8):772-773.
    [28]NAGAVENI K, HEGDE M S, RAVISHANKER N, et al. Synthesis and structure of nanocrystallite TiO2 with lower band gap showing high photocatalytic activity [J]. Langmuir,2004, 20:2900-2907.
    [29]赵秀峰,张志红,孟宪锋,等.B掺杂TiO2/AC光催化剂的制备及活性[J].分子催化,2003,17(4):292-296.
    [30]YAMAKI T, SUMITA T, YAMAMOTO S. Formation of TiO2-xFx compounds in fluorine-implanted TiO2 [J]. J. Mater. Sci. Lett.,2002,21:33-35.
    [31]UMEBAYASHI T, YAMAKI T, TANAKA S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2 [J]. Chem. Lett.,2003,32(4):330-331.
    [32]ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269-271.
    [33]IRIE H, WATANABE Y, HASHIMOTO K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders [J]. J. Phys. Chem. B,2003,107:5483-5486.
    [34]KHAN S U M, AL-SHAHRY M, INGLER JR W B, Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science,2002,297(5590):2243-2245.
    [35]WU T, LIU G, ZHAO J, et al. Photoassisted degradation of dye pollutants V: self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions [J]. J. Phys. Chem. B,1998,102:5845-5851.
    [36]LIU G, ZHAO J. Photocatalytical degradation of dye sulforhodamine B:A comparative study of photocatalysis with photosensitization [J]. New J. Chem.,2000,24:411-417.
    [37]STYLIDI M, KONDARIDES D I, VERYKIOS X E. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions [J]. Appl. Catal., B:Environ. 2004,47 (3):189-201.
    [38]付贤智,丁正新,苏文悦,等.二氧化钛基固体超强酸的结构及其光催化氧化性能[J].北学通报,1999,20(3):321-324.
    [39]蒋伟川,王琪全,俞传明.半导体光催化降解分散染料的研究[J].山海环境科学,1995,514(5):8210.
    [40]颜秀茹,李晓红,宋宽秀,等.TiO2/SiO2的制备及其对DDVP的光催化性能的研究[J].水处理技术,2000,26(1):42-46.
    [41]赫文秀,张永强.智能型水凝胶材料及其应用[J].内蒙古石油化工,2001,27:106-108.
    [42]刘郁杨,范晓东.β-环糊精环氧氯丙烷水凝胶中水的存在状态及其溶胀特性[J].功能高分子学报,2001,14(23):169—173.
    [43]郭锦棠,李雄勇,李伶.水凝胶及其在药物控释体系上的应用[J].化学通报,2004,(3):198-203.
    [44]姚康德,彭涛,高伟.智能性水凝胶.高分子通报,1994,(2):103-111.
    [45]谭佩毅.温敏凝胶的合成和应用[J].化工时刊,2003,17(7):16—18.
    [46]王斌,张玉翠,张伏龙.智能型水凝胶改性研究进展[J].甘肃联合大学学报(自然科学版),2006,20(1):47—51.
    [47]王昌华,曹维孝.温敏水凝胶[J].化学通报,1996,(1):34—35.
    [48]Tanaka T,Scientific American,1981,244:103-111.
    [49]Wang G,Pelton R H, Zhang J, Colloids Surf A:Physicochem Eng Asp,1999,153:335-340.
    [50]Neradovic D, Soga O, Nostroum Van C F et al. Biomaterials,2004,25:2409-2418.
    [51]曾钫,刘新星,童真.NIPA/DMAA共聚物及其水溶液相转变温度的研究[J].高分子材料科学与工程,1997,5:100-103.
    [52]翟茂林,哈鸿飞.功能性PolyNIPAAm系高聚物[J].高分子通报,1999,2:37-44.
    [53]浦鸿汀,丁中立,马瑞德.EVA-g-NIPAM中接枝链亲水性对温敏性的影响[J].高分子材料科学与工程,1997,5:79-84.
    [54]何庆,盛京.响应性凝胶及其在药物控释上的应用[J].功能高分子学报,1997,1:118-127.
    [55]姚康德,彭涛,高伟.智能性水凝胶[J].高分子通报,1994,2:103-111.
    [56]Chan K, Pelton R, Zhang J, Langmuir,1999,15:4018-4020.
    [57]Pelton R H, Pelton H M, Morphesis A, Langmuir,1989,816-818.
    [58]Wu X, Pelton R H,Hamielec A E, Colloid Polym Sci,1994,272:467-477.
    [59]Mcphee W, Tan K C, Pelton R H, J Colloid Interface Sci,1993,156:24-30.
    [60]Snowden M J, Marston N J, Vincent B, Colloid Polym Sci,1994,272:1273-1280.
    [61]Napper D H,J Colloid Inter Sci,1976,58:390-407.
    [62]Weiss A, Hartenstein M, Dingenouts N et al. Colloid Polym Sci,1998,276:794-799.
    [63]Pelton R H, Pelton H M,Morphesis A, Langmuir,1989,816-818.
    [64]Wu X, Pelton R H,Hamielec A E, Colloid Polym Sci,1994,272:467-477.
    [65]Ma X, Xi J, Huang X, Zhao X, Tang X. Novel hydrophobically modified temperature-sensitive microgels with tunable volume-phase transition temperature. Materials Letters 2004;58:3400-3404.
    [66]Zhou G, Elassari A, Delair T, et al. Colloid Polym Sci,1998,276:1131-1139.
    [67]Prazeres TJV, Fedorov A, Martinho JMG. J Phys Chem B 2004;108:9032-41.
    [68]Xiao XC, Chu LY, Chen WM, Wang S, Li Y. Adv Funct Mater 2003:13:847-852.,
    [69]Zha L,Hu J, Wang C, Colloid Polym Sci,2002,280:1-6.
    [70]Pelton R H, Pelton H M, Morphesis A, Langmuir,1989,816-818.
    [71]Wu X, Pelton R H,Hamielec A E, Colloid Polym Sci,1994,272:467-477.
    [72]Mcphee W, Tan K C, Pelton R H, J Colloid Interface Sci,1993,156:24-30.
    [73]刘郁杨,范晓东,张双存.温度及pH敏感N-异丙基丙烯酰胺/β-环糊精水凝胶的合成与性能研究[J].高分子学报,2002,(05):256-260.
    [74]卓仁禧,张先正.温度及pH敏感聚(丙烯酸)/聚(N-异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研究[J].高分子学报,1998,(01):39-42.
    [75]Kratz K, Hellweg T, Eimer W, Colloids Surf A:Physicochem Eng Asp,2000,170:137-149.
    [76]Dowding D J, Vincent B, Williams E, J Colloid Interface Sci,2000,221:268-272.
    [77]Chan K, Pelton R H, Zhang J, Langmuir,1999,15:4018-4020.
    [78]Zhu P W, Napper D H, J Colloid Interface Sci,1994,168:380-385.
    [79]Chen G H, Hoffman A S. Nature,1995,373 (5):49-52.
    [80]Pizarro C, Fernandez Torroba M A, Benito C, et al. Optimization by experimental design of polyacrylamide gel composition as support for enzyme immobilization by entrapment [J]. Biotechnology and Bioengineering,1997,53(5):497-506.
    [81]Wang G, Pelton RH, Zhang J [J]. Colloids Surf A:Physicochem Eng Asp,1999,153:335-340.
    [82]Holtzscherer C, Candau F, J Colloid Interface Sci,1988,125:97-110.
    [83]Coutinho CA, Gupta VK, Formation and properties of composites based on microgels of a responsive polymer and TiO2 nanoparticles, J Colloid Interface Sci 2007; 315:116-122.
    [84]A. Afrassiabi, S.A.Hoffman, A. L. Cadwell. Effeet of temperature on the release rate of biomoleeules from thermally reversible hdrogels [J]. J. Membrane Sei.1987,33:191-20.
    [85]K. Komori, H. Matsui, T. Tatsuma. Control of heme peptide activity by using Phase transition Polylmers modified with inhibitors [J]. Bioelectrochemstry.2005, 65:129-13.
    [86]Szejitli J. Cyclodextrin technology,1st ed. Dordrecht:Kluwer Academic Press 1988;1:79-81.
    [87]Harada A, Furue M, Nozakura SI. Macromolecules 1976;9(5):701-704.
    [88]Harada A, Furue M, Nozakura SI. Macromolecules 1977;10(3):676-681.
    [89]Crini G, Janus L, Morcellet M, Torri G, Naggi A, Bertini S, Vecchi C. J Appl Polym Sci 1998;69:1419-1427.
    [90]Sreenivasan K. J Appl Polym Sci 1997;65:1829-1832.
    [91]J. J. Ritter and P.Paul Minieri.A new Reaction of Nitriles and Unsaturated Amides [J]. J. Am. Chem. Soc,70(1948):4045.
    [92]Wang H, Wang HL, Jiang WF, Li ZQ, Water Research 2009;43(1):204-210.
    [93]Zhang Lin-Na. Preparation and Characterization of Thermo-Responsive Nano-composites of Titanium Dioxide, Silver and Iron oxide [D]. Henan University 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700