中药苦瓜、地骨皮、翻白草提取物干预2型糖尿病胰岛素抵抗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     观察中药苦瓜、地骨皮、翻白草提取物对2型糖尿病胰岛素抵抗动物模型糖脂代谢的影响,并研究肝脏和骨骼肌组织中胰岛素PI3K/Akt信号通路和AMPK信号通路的相关蛋白表达,探讨三种中药提取物干预2型糖尿病胰岛素抵抗的分子机制。
     方法
     1.采用雄性3周龄Wistar大鼠80只,按照随机数字表法随机选取10只作为对照组,予标准饲料喂养,其余70只高脂喂养16周后,腹腔注射小剂量STZ (35mg·kg-1·bw-1)诱发2型糖尿病胰岛素抵抗Wistar大鼠模型,将造模成功的大鼠(共63只),随机选出56只分为8组,即苦瓜提取物高、低剂量组、翻白草翻白草提取物高、低剂量组、地骨皮提取物高、低剂量组、西药对照组,每组各7只,余下造模成功大鼠7只设为模型组。另取从正常饮食组随机取7只作为对照。以噻唑烷二酮类胰岛素增敏剂吡格列酮(4.05mg·kg-1·bw-1)作为西药对照、苦瓜、翻白草、地骨皮提取物高剂量组(400mg·kg-1·bw-1)和低剂量组(200mg·kg-1·bw-1),灌胃给药,正常组及模型组按10ml·kg-1·bw-1灌服无菌水。药物干预4周后,进行高胰岛素—正糖钳夹实验(Hyperinsulinemic-Euglycemic Clamp)评价三种中药对IR的干预效果,检测各组动物空腹血糖(Fasting Blood Glucose, FBG)、口服糖耐量(Oral Glucose Tolerance Test, OGTT)、空腹血清胰岛素(Fasting Serum Insulin, FINS)及胰岛素敏感指数(Insulin Sensitive Index, ISI)、血清甘油三酯(TG)、血清总胆固醇(TC)、血清游离脂肪酸(FFA)、血清低密度脂蛋白(LDL-C)和血清高密度脂蛋白(HDL-C);采用Western Blot检测各组大鼠肝脏组织中AMPK、Akt蛋白及其磷酸化水平;采用RT-PCR检测肝脏组织AMPKα1-mRNA、AMPKα2-mRNA基因转录水平。
     2.采用雄性6周龄BKS.Cg-m +/+ Leprdb/J (db/db)小鼠48只,按照随机数字表法分组,分为苦瓜、翻白草、地骨皮提取物高、低剂量组、西药对照组、每组6只,模型组6只。C57BL/KsJ(+/-)小鼠6只为正常对照组。以噻唑烷二酮类胰岛素增敏剂吡格列酮(1.2g.kg-1.bw-1)作为西药对照、苦瓜、翻白草、地骨皮提取物高剂量组(4g.kg-1.bw-1)和低剂量组(2g.kg-1.bw-1),灌胃给药,正常组及模型组按1ml·kg-1·bw-1灌服无菌水。药物干预4周后,检测各组动物空腹血糖(FBG)、口服糖耐量(OGTT)、空腹血清胰岛素(FINS)及胰岛素敏感指数(ISI)、血清甘油三酯(TG)、血清总胆固醇(TC)、血清游离脂肪酸(FFA)、血清低密度脂蛋白(LDL-C)和血清高密度脂蛋白(HDL-C);采用Western Blot检测各组小鼠骨骼肌组织中AMPK、Akt、AS160蛋白及其磷酸化水平;采用RT-PCR检测骨骼肌组织中GLUT4-mRNA基因转录水平。
     结果
     1苦瓜、地骨皮、翻白草提取物对2型糖尿病IR大鼠的干预作用
     1.1大鼠糖钳实验的结果显示:治疗4周后,与模型组相比,吡格列酮组、苦瓜、翻白草、地骨皮提取物高剂量组的葡萄糖输注率明显升高(P<0.05),低剂量组有升高趋势,说明各组大鼠治疗后胰岛素敏感性增加。
     1.2大鼠血生化指标显示:与模型组比较,中药苦瓜、翻白草、地骨皮提取物干预4周后,显著改善大鼠OGTT、降低FBG、升高FINS,显著降低TC、TG、LDL-C并升高HDL-C水平(P<0.05)。
     1.3大鼠肝脏HE染色结果显示:与正常组相比,模型组可见轻度的肝细胞脂肪变性,光镜下脂肪变性的肝细胞沿中央静脉呈向心性分布,胞浆内周边可见许多小的脂滴空泡,细胞核位置无明显改变,肝小叶结构完整。苦瓜、地骨皮、翻白草提取物干预4周后肝细胞脂肪变形明显减轻,个别可见到局灶性的肝细胞胞浆周边细小的脂滴空泡,细胞核位置无明显改变,肝小叶结构完整。
     1.4大鼠肝脏的Western Blotting结果显示:与模型组相比,中药苦瓜、地骨皮、翻白草提取物高、低剂量组都能上调大鼠的肝脏组织中P-AMPK、P-Akt (Ser 473)、P-AS160蛋白的表达(P<0.05),三种中药的上述功效与噻唑烷二酮类胰岛素增敏剂吡格列酮组相比,无显著差异。
     1.5大鼠肝脏RT-PCR结果显示:与模型组相比,中药苦瓜、地骨皮、翻白草提取物高、低剂量组都能上调肝脏组织中AMPKα1-mRNA和AMPKα2-mRNA的表达含量(P<0.05)。
     2苦瓜、地骨皮、翻白草提取物对BKS.Cg-m +/+ Leprdb/J (db/db)小鼠的干预作用
     2.1小鼠血生化指标显示:与模型组比较,中药苦瓜、翻白草、地骨皮提取物干预4周后,都能显著改善大鼠OGTT、降低FBG、升高FINS,显著降低TC、TG、LDL-C并升高HDL-C水平(P<0.05)。
     2.2小鼠骨骼肌的Western Blotting结果显示:与模型组相比,中药苦瓜、地骨皮、翻白草提取物高、低剂量组都能上调小鼠骨骼肌组织中P-AMPK、P-Akt (Ser 473)、P-AS160蛋白的表达(P<0.05),三种中药的上述功效与噻唑烷二酮类胰岛素增敏剂吡格列酮组相比,无显著差异。
     2.3小鼠骨骼肌RT-PCR结果显示:与模型组相比,中药苦瓜、地骨皮、翻白草提取物高、低剂量组都能上调骨骼肌组织中GLUT 4-mRNA的表达含量(P<0.05)。
     结论
     中药苦瓜、地骨皮、翻白草提取物可以改善长期高脂喂养加小剂量STz诱导的IR大鼠模型以及IR小鼠模型BKS.Cg-m +/+ Leprdb/J(db/db)小鼠的胰岛素抵抗。苦瓜、地骨皮、翻白草提取物改善IR的机制是激活AMPK,活化的AMPK促进GLUT4转位,加快葡萄糖利用。同时,三味中药激活PI3k/Akt途径,活化的Akt进一步激活AS160,加强GLUT4转运,进而改善胰岛素抵抗。
Objective
     To investigate the effects of three Chinese herb-extracts:Ku Gua (Momordica Charantia L., MC) extract, Di Gu Pi (Lycium Chinense Mill.,LCM) extract, and Fan Bai Cao(Potentilla Discolor bunge,PDB) extract on glucose and lipid metabolism in insulin resistance and type 2 diabetic animal models. There are also further studies on liver and skeletal muscle of insulin signaling pathway:the PI3K/Akt signaling pathway and insulin independent signaling pathway:the AMPK signaling pathway by evaluating several related protein expressions to explore the molecular mechanism of the three Chinese herb extracts on the improvement of insulin resistance and type 2 diabetes.
     Methods
     1. Eighty male Wistar rats,3 weeks old, are divided randomly into two groups according to random data table:control group (n=10 with rat standard diet) and high-fat diet group (HFD) (n=70 rats). At the end 16 a week feeding period, in order to induce insulin resistance and type 2 diabetes, the 70 HFD group of Wistar rats are given an intraperitoneal-injection of small doses of STZ (35mg·kg-1·bw-1). Then,56 rats are randomly selected from the successful induced insulin resistance and type 2 diabetic model (the sum of successful induced-model is a total of 63) and are divided into 8 groups which are the three Chinese herb-extract high and low dose groups, respectively, as well as western medicine compared group. There are 7 rats in each group with the remaining 7 successfully induced model rats set as a model group. Another 7 rats are randomly selected from the normal diet group. The Thiazolidine (TZDs) insulin sensitizer Pioglitazone is used as western medicine control group (4.05mg/kg). The three Chinese herb extracts are obtained by high-dose group (400mg·kg-1·bw-1) and low dose group (100mg·kg-1·bw-1) with intragastric administration, respectively. The normal control group and model group fed with distilled water at 10ml·kg-1·bw-1. After 4 weeks of drug intervention, to evaluate the effect of insulin resistance improvement by three Chinese herb extracts, the Hyperinsulinemic-Euglycemic Clamp (HEC) experiments are examined. The fasting blood glucose (FBG), oral glucose tolerance (OGTT), fasting serum insulin (FINS), insulin sensitivity index (ISI), serum triglyceride (TG), serum total cholesterol (TC), serum free fatty acid (FFA), serum low-density lipoprotein (LDL-C) and serum high density lipoprotein (HDL-C) are also examined. The liver AMPK, Akt protein, and phosphorylation levels are detected by Western Blot. The liver AMPKα1-mRNA/AMPKa2-mRNA gene transcription are detected by RT-PCR.
     2. Forty-eight male BKS.Cg-m +/+ Leprdb/J db/db mice,6 weeks old, are divided randomly into 8 groups according to random data table:the three Chinese herb-extract high and low dose group, respectively, as well as western medicine compared group. There are 6 mice in each group, and the remaining 6 mice are set as model group. Another 6 mice were randomly selected from the normal C57BL/KsJ (+/-) group. The Thiazolidine (TZDs) insulin sensitizer Pioglitazone is used as western medicine control group (1.2g·kg-1·bw-1), three Chinese herb-extracts are obtained by high-dose group (4g·kg-1·bw-1) and low dose group (1g·kg-1·bw-1) with intragastric administration, respectively. The normal control group and model group are fed with distilled water at 1ml·kg-1·bw-1. After 4 weeks of drug intervention; fasting blood glucose (FBG), fasting serum insulin (FINS), insulin sensitivity index (ISI), serum triglyceride (TG), serum total cholesterol (TC), serum free fatty acid (FFA), serum low-density lipoprotein (LDL-C) and serum high density lipoprotein (HDL-C) are examined. The skeletal muscle AMPK, Akt, AS 160 protein, and phosphorylation levels are detected by Western Blot. The skeletal muscle GLUT4-mRNA gene transcription is detected by RT-PCR.
     Results
     1 The effects on IR by the three Chinese herb-extracts in type 2 diabetic IR rats
     1.1 Hyperinsulinemic-Euglycemic Clamp (HEC) experiment shows that:after 4 week treatments (compared with the MO group, the KG group, the DGP group, and the FBC group with high dose significantly increase the glucose infusion rate [GIR] (P<0.05) the low-dose group with the three Chinese herb extracts have an increased GIR intendancy which indicates that the insulin sensitivity is improved after treatment.
     1.2 Blood biochemical results show that after 4 week treatments (compared with the model group) the three Chinese herb extracts significantly improve OGTT, increased serum FINS and HDL-C levels level, and decreased serum FBG, TC, TG, LDL -C level (P<0.05).
     1.3 HE staining shows under a light microscope that (compared with the NO group) the MO group shows mild fatty degeneration of liver cells, fatty degeneration of liver cells along the central vein showed concentric distribution, many small visible lipid droplet vacuoles around the cytoplasm, no significant change in nuclear location, and the structure of hepatic lobule is integrated. After 4 week treatments, the three Chinese herb extracts significantly reduce fat distortion of the rat liver cells with occasional small lipid droplets cavity around the cytoplasm in focal liver cell, no significant change in nuclear location, and the structure of hepatic lobule is integrated.
     1.4 Western Blotting results of rat liver shows that (compared with the Model group) all of the three Chinese herb-extracts increase P-AMPK, P-Akt (Ser 473) protein expression (P<0.05) in liver. There is no significant difference among Chinese herb extracts and Pioglitazone group.
     1.5 RT-PCR results of liver and skeletal muscle shows that (compared with the MO group) all of the three Chinese herb extracts increase liver AMPKα1-mRNA and AMPKa2-mRNA's expression level (P<0.05).
     2. The effects on insulin resistance by the three Chinese herb-extracts in BKS.Cg-m +/+ Leprdb/J db/db mice
     2.1 Blood biochemical results show that after 4 week treatments (compared to with the model group), the Chinese herb extracts significantly increase serum FINS and HDL-C levels, and decrease serum FBG,TC,TG, LDL -C level (P<0.05).
     2.2 Western Blotting results of skeletal muscle shows that (compared with the model group) all of the three Chinese herb-extracts increase P-AMPK, P-Akt (Ser 473), P-AS160 protein expression (P<0.05) in skeletal muscle tissue. There is no significant difference among Chinese herb extracts and Pioglitazone group.
     2.3 RT-PCR results of skeletal muscle shows that (compared with the model group) all of the three Chinese herb extracts increase skeletal muscle GLUT 4-mRNA expression levels (P<0.05).
     Conclusion
     The three Chinese herb-extracts:Ku Gua (Momordica Charantia L.,MC) extract, Di Gu Pi (Lycium Chinense Mill.,LCM) extract, and Fan Bai Cao (Potentilla Discolor Bunge,PDB) extract can improve insulin resistance in both long-term high-fat-diet with the low-dose STZ-induced Wistar IR rat model, and the leptin-receptor-deficient BKS.Cg-m+/+Leprdb/J db/db IR mice model. The improvement mechanism of insulin resistance by the three Chinese herb extracts is through the activation of AMPK which can increase GLUT4 translocation, so that glucose utilization is accelerated. Meanwhile, the three Chinese herb-extracts also active PI3k/Akt signaling pathway by the activation of Akt which leads to further activation of AS 160, so as to strengthen GLUT4 translocation. The three Chinese herb extracts regulate the AMPK signaling pathway through increasing the genetic transcription of AMPKal-mRNA and AMPKa2-mRNA levels in the liver and promoting the GLUT4-mRNA level in the skeletal muscle tissue, thereby the overall insulin resistance can be ameliorated.
引文
[1]郭大龙,吴正景,郑玉萍,等.苦瓜SRAP反应体系的建立与优化[J].安徽农业科学,2008,36(18):7583-7585.
    [2]袁杰,杜琪珍.苦瓜化学成分的研究进展[J].食品与机械,2004,20(3):62-63.
    [3]王威.苦瓜及大豆异黄酮对大鼠脂质代谢影响的研究[D].第三军医大学营养学与食品卫生学专业硕士学位论文:2006.
    [4]江苏新医学院.中药大辞典(上册)[M].上海:上海科技出版社,1986:1281.
    [5]李时珍.本草纲目(校点本第三册)[M].人民卫生出版社,1978:1705-1706.
    [6]兰茂.滇南本草(第二卷)[M].云南:云南人民出版社,1977:149.
    [4]施星云,杨延莉,吴玲.苦瓜降糖胶囊对Ⅱ型糖尿病的疗效观察[J].海军医学杂志,2002,23(1):46-48.
    [5]冯桂芹,曲才绪,穆守刚.复方苦瓜胶囊对非胰岛素依赖型(2型)糖尿病的降糖作用[J].中国新药与临床杂志,2000,19(1):70.
    [6]王峰,张萍萍,于秀芳,等.苦瓜皂甙治疗Ⅱ型糖尿病的初步临床观察[J].实用中西医结合,1991,4(12):21.
    [7]Welihinda J, Karunanayake EH, Sheriff MH, et al. Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes[J]. J Ethnopharmacol,1986,17:277-282.
    [8]Ahmed I, Hassan MR, Halder H, et al. Effect of Momordica charantia extracts on fastin and postprandial serum glucose levels in NIDDM patients[J]. Bangladesh Med Res Counc Bull,1999,25:11-13.
    [9]Tongia A, Tongia SK, Dave M. Phytochemical determination and extraction of Momordica charantia fruit and its hypoglycemic potentiation of oral hypoglycemic drugs in diabetes mellitus (NIDDM)[J]. Indian J Physiol Pharmacol,2004,48(2):241.
    [10]Baldwa VS, Bhandari CM, Pangaria A, et al. Clinical trial in patients with diabetes mellitus of an insulin- like compound obtained from plant source[J]. Ups J Med Sci,1977, 82:39-41.
    [11]广州部队第一九七医院,中国科学院动物研究所.苦瓜制剂治疗糖尿病的初步探讨[J].新中医,1997,6:28-31.
    [12]Dans AM, Villarruz MV, Jimeno CA, et al. The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies [J]. J Clin Epidemiol,2007,60:554-559.
    [13]Jun Yin, Hanjie Zhang, Jianping Ye. Traditional Chinese Medicine in Treatment of Metabolic Syndrome [J]. Endocr Metab Immune Disord Drug Targets,2008,8(2):99-111.
    [14]杭悦宇,王梦.苦瓜冻干粉对动物的降血糖作用及急性毒性[J].植物资源与环境学报,2000,9(3):19.
    [15]Shubhashish sarkar, Muddali Pranava, Posalind Marita A. Demonstration of the hypoglycemic action of momordica charantia in a validated animal made of diabetes[J]. Pharmacological Research,1996,33(1):1-4.
    [16]Yibchok-Anun S, Adisakwattana S, Yao CY, et al. Slow Acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities[J]. Biol Pharm Bull,2006,29(6):1126-1131.
    [17]Zheng Pu, Bao-yuan Lu, Wang-yi Liu, et al. Characterization of the Enzymatic Mechanism of 7-Momorcharin, a Novel Ribosome-Inactivating Protein with Lower Molecular Weight of 11,500 Purified from the Seeds of Bitter Gourd (Momordica charantia)[J]. Biochemical and Biophysical Research Communications,1996,1(229): 287-294.
    [18]Toshihiro Miura, Takanori Kawata, Satoshi Takagi, et al. Effect of Momordica charantia on Adenosine Monophosphate-activated Protein Kinase in Genetically Type 2 Diabetic Mice Muscle[J]. J Health Sci,2009,55(5):805-808.
    [19]Sarkar S, Pranava M, Marita R. Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes[J].Pharmacol Res,1996, 33(1):1-4.
    [20]Roffey BW, Atwal AS, Johns T, et al.Water extracts from Momordica charantia increase glucose uptake and adiponectin secretion in 3T3-L1 adipose cells[J]. J Ethnopharmacol, 2007,112(1):77-84.
    [21]Kumar Shetty A, Suresh Kumar G, Veerayya Salimath P. Bitter gourd (Momordica charantia) modulates activities of intestinal and renal disaccharidases in streptozotocin-induced diabetic rats[J]. Mol Nutr Food Res,2005,49(8):791-796.
    [22]Jane Dyer, Miran Al-Rammahi, Louise Waterfall, et al. Adaptive response of equine intestinal Na+/glucose co-transporter (SGLT1) to an increase in dietary soluble carbohydrate[J]. Pflugers Archiv European Journal of Physiology,2009,458(2):419-430.
    [23]Ahmed I. Effects of M. Charantia fruit juice on experimental diabetes and its complications[D]. University of Central Lancashire:2001.
    [24]Cummings E, Hundal HS. Momordica charantia fruit juice stimulates glucose and amino acid uptakes in L6 myotubes[J]. Molecular and Cellular Biochemistry,2006,261:99-104.
    [25]Ahmed I, Adeghate E, Cummings E, et al. Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat[J]. Mol Cell Biochem,2004,261(1-2):63-70.
    [26]Oishi Y, Sakamoto T, Udagawa H, et al. Inhibition of Increases in Blood Glucose and Serum Neutral Fat by Momordica charantia Saponin Fraction[J]. Biosci Biotechnol Biochem,2007,71(3):735-740.
    [27]Matsuda H, Li Y, Murakami T, et al. Structure-related inhibitory activity of oleanolic acid glycosides on gastric emptying in mice[J]. Bioorg Med Chem,1999,7:323-327.
    [28]Mark F. McCarty. Nutraceutical resources for diabetes prevention-an update[J]. Medical Hypotheses,2005,64(1):151-158.
    [29]Miura T, Itoh Y, Iwamoto N, et al. Suppressive activity of the fruit of Momordica charantia with exercise on blood glucose in type 2 diabetic mice[J]. Biol Pharm Bull,2004, 27(2):248-250.
    [30]Strivastava Y, Venkatakrishna-hatt H, Verma Y, et al. Antidiabetic and adaptogenic properties of momordica charantia extract:all experimental and clinical evaluation[J]. Phytother Res,1993,7(4):285-289.
    [31]骆静,王玉坤,王棘,等.苦瓜醇提物的降血糖作用[J].中药药理与临床,1999,15(5):31-33.
    [32]Sekar DS, Sivagnanam K, Subramania S. Antidiabetic activity of Momordica charantia seeds on streptozotocin induced diabetic rats[J]. Pharmazie,2005,60(5):383-387.
    [33]Shibib BA, Khan LA, Rahman R. Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats:depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase[J]. Biochem J,1993,292(1): 267-270.
    [34]石雪萍,姚惠源.苦瓜皂苷降糖机理研究[J].食品科学,2008,29(5):366-368.
    [35]Higashino H, Suzuki A, Tanaka Y. Hypoglycemic effects of Siamese Mormodica charantia and Phyllanthus urinasia extracts in streptozotocin induced diabetic rats[J]. Folia Pharmacol Jap,1992,100:415-421.
    [36]苗明三,孙艳红,纪晓宇,等.苦瓜总皂苷对实验动物糖尿病模型的影响[J].中国中药杂志,2008,33 (7):845-847.
    [37]Ahmed I, Adeghate E, Sharma AK, et al. Effects of Momordica charantia fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat[J]. Diabetes Res Clin Pract,1998,40(3):145-151.
    [38]Nerurkar PV, Lee YK, Motosue M, et al. Momordica charantia (bitter melon) reduces plasma apolipoprotein B-100 and increases hepatic insulin receptor substrate and phosphoinositide-3 kinase interactions[J]. Br Nutr,2008,100(4):751-759.
    [39]王芬,万金兰,涂亮,等.苦瓜对胰岛素抵抗鼠肾组织中一氧化氮合酶的影响[J].湖北预防医学杂志,2003,14(6):19.
    [40]Cheng HL, Huang HK, Chang CI, et al. A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase[J]. Agric Food Chem,2008,56(16):6835-6843.
    [41]Min-Jia Tan, Ji-Ming Ye, Nigel Turuer, et al. Antidiabetic Activities of Triterpenoids Isolated from Bitter Melon Associated with Activation of the AMPK Pathway[J]. Chem Biol,2008,15:263-273.
    [42]Raza H, Ahmed I, John A. Tissue specific expression and immunohisto-chemical localization of glutathione S-transferase in streptozotocin induced diabetic rats: modulation by Momordica charantia (karela) extract[J]. Life Sci,2004,74(12): 1503-1511.
    [43]Sitasawad SL, Shewade Y, Bhonde R. Role of bitter gourd fruit juice in STZ-induced diabetic state in vivo and in vitro[J]. J Ethnopharmacol,2000,73(1-2):71-79.
    [44]庞宗然,刘宝山,胡连军,等.苦瓜降糖作用的研究与临床[J].承德医学院学报,2001,18(2):155-156.
    [45]赵文,素淑贞,王庭欣,等.苦瓜茶对动物血糖和血脂的调节作用[J].环境与职业医学,2002,19(3):200.
    [46]Jayasooriya AP. Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets[J]. Journal of Ethnopharmacol,2001,72(1-2):331-336.
    [47]冯桂芹,曲才绪,穆守刚,等.复方苦瓜胶囊治疗非胰岛素依赖型糖尿病[J].中国新药与临床杂志,2000,19(1):70-71.
    [48]杭悦宇,周义锋,陈重明,等.苦瓜冻干粉对动物的降血糖作用及急性毒性[J].植物资源与环境学报,2000,9(3):19-21.
    [49]刘秀英,胡怡秀,马征,等.苦瓜醇提取物亚急性经口毒性研究[J].中国热带医学,2010,10(5):573-574.
    [50]吴春霞,张明辉.苦瓜提取物大鼠长期毒性试验[J].现代中医药,2005,25(5):71-72.
    [51]Harinantenaina L, Tanaka M, Takaoka S, et al. Momordica charantia constituents and antidiabetic screening of the isolated major compounds[J]. Chem Pharm Bull (Tokyo), 2006,54(7):1017-1021.
    [52]刘红雨,付中平,周吉燕.苦瓜降糖多肽研究进展[J].上海中医药杂志,2008,42
    (7):89-91.
    [53]国家药典委员会.中华人民共和国药典(2005版)[M].北京:化学工业出版社,2005:82.
    [54]王焘.外台秘要[M].北京:人民卫生出版社,1955:328.
    [55]神农本草经[M].北京:学苑出版社,2002:88-89.
    [56]陶弘景.名医别录(辑校本)[M].北京:人民卫生出版社,1986:44-45.
    [57]唐慎微.重修政和经史证类备用本草[M].北京:人民卫生出版社,1957:293-294.
    [58]刘若金.本草述校注[M].北京:中医古籍出版社,2005:574-578.
    [59]孟协中,席金萍,雷擎宇,等.中药地骨皮有效成分研究的新进展[J].宁夏医学院学报,1999,21(5):387-389.
    [60]殷养国.地骨皮治疗糖尿病经验浅谈[J].青海医药杂志,1990,132:4.
    [61]王德修.以地骨皮为主治疗糖尿病16例[J].上海中医药杂志,1984,(9):11.
    [62]罗厚蔚,王文华,刘荣.几种主治消渴病的中药对家兔血糖的影响[J].南京药学院学报,1957,(2):61-72.
    [63]周晶,孟林,黄建安,等.地骨皮对四氧嘧啶糖尿病小鼠的降糖作用[J].中成药,2001,23(6):424-425.
    [64]柏萍,包翠屏,齐赤虹.地骨皮降血糖作用实验研究[J].中国中药杂志,1993,18(2):116.
    [65]方志伟,刘非,付井成.地骨皮降血糖作用的实验研究[J].中医药学报,2004,32(4):47.
    [66]黄小红,周兴旺,王强,等.3种地骨皮类生药对白鼠的解热和降血糖作用[J].福建农业大学学报,2000,29(2):229-232.
    [67]张慧芳,黄燕,杨红霞,等.宁夏枸杞叶、果柄及根皮降血糖作用的初步研究[J].农业科学研究,2008,29(4):23-26.
    [68]沈桂月.地骨皮对实验性糖尿病小鼠胰岛免疫组织化学的影响[J].延边医学院学报,1990,13(3):179-180.
    [69]卫琮玲,石渊渊,任艳彩,等.地骨皮的降血糖机制研究[J].中草药,2005,36(7):1050-1052.
    [70]张静,李宛青,吴爱群.地骨皮、黄芪对胰岛素释放的作用[J].河南医学研究,2000,9(3):221-222.
    [71]Reddy SV, Tiwari AK, Kumar US, et al. Free radical scavenging enzyme inhibitory constituents from antidiabetic Ayurvedic medicinal plant Hydnocarpus wightiana Blume [J]. Phytotherpy Research,2005,19:277-281.
    [72]杨莉,叶真.地骨皮对2型糖尿病大鼠肾病的防治作用与机制研究[J].中华中医药 学刊,2008,26(10):2172-2175.
    [73]魏智清,于洪川,樊瑞军.地骨皮降血糖有效成分的初步研究[J].时珍国医国药,2009,20(4):848-850.
    [74]林峰,张燕.Y-亚麻酸及其研究和应用[J].中国药学杂志,1994,29(5):263-266.
    [75]高大威,刘志伟,刘智华,等.地骨皮降血糖效果研究及成分分析[J].燕山大学学报,2007,31(3):269-272.
    [76]李康,毕开顺,司保国.地骨皮中不同组分对四氧嘧啶糖尿病小鼠的降血糖作用[J].中医药学刊,2005,23(7):1298-1299.
    [77]杨晓峰,李升刚,于德志,等.复方地骨皮冲剂对小鼠血糖、血脂及免疫功能的影响[J].齐鲁医学杂志,2000,15(2):84-86.
    [78]国家中医药管理局《中华本草》编辑委员会.中华本草(第七册)[M].上海:上海科技出版社,1999.
    [79]郑军义,赵万州.地骨皮的化学与药理研究进展[J].海峡药学,2008,20(5)62-65.
    [80]王东,叶真,倪海祥,等.地骨皮提取液对2型糖尿病肥胖大鼠糖脂代谢影响的实验研究[J].中华中医药学刊,2010,28(1):210-213.
    [81]Funayama S, Kozue Y, Chohachi K, et al. Structure of Kukoamne A, a hypotensive principle of Lycium chinese root barks[J]. Tetrahedron Lett,1980,21(14):1335-1356.
    [82]Yahara S, Shigeyama C, Nohara T. Structures of anti-ACE and rennin peptides from Lycium radicis cortex [J]. Tetrahedron Lett,1980,30(44):6041-6042.
    [83]卫琮玲,阎杏莲,柏李.地骨皮的镇痛作用[J].中草药,2000,31(9):688.
    [84]曹静,王淑华.不同剂量地骨皮的药理作用及应用[J].临床和实验医学杂志,2002,1(4):262-263.
    [85]熊晓玲,李文.部分扶正固本中药对小鼠脾细胞IL-2产生的双向调节作用[J].中国实验临床免疫学杂志,1991,3(4):37-40.
    [86]陈忻,周建平,李玉红.大黄等中药抗自由基损伤研究[J].北京中医,1995,(5)48-49.
    [87]杨凤琴,陈少平,马学琴.地骨皮的醇提取物及其体外抑菌活性研究[J].宁夏医学杂志,2007,29(9):787-789.
    [88]Watanabe H, Kobavashi T, Tomii M. Effects of Kampo herbal medicine on plasma melatonin concentration in patients [J]. Am J Chin Med,2002,30(1):65.
    [89]Zhu YP. Chinese Materia Medica-chemistry, pharmacology and applications[M]. Amsterdam:Harwood Academic Publishers,1998.
    [90]Huang KC. The pharmacognosy of Chinese herbs [M]. Boca Raton:CRC Press,1999: 333-334.
    [91]Yang HS, Chen CF. Subacute toxicity of 15 commonly used Chinese drugs (II) [J]. J Food Drug Anal,1997,5:355-380.
    [92]Bensky D, Clavey S, Stoger E. Chinese herbal medicine,3rd edition. Materia Medica [M]. Seattle:Eastland Press Inc.,2004.
    [93]Lam AY, Elmer GW, Mohutsky MA. Possible interaction between warfarin and Lycium barbarum L [J]. Ann Pharmacother 2001,35:1199-1201.
    [94]Leung H, Hung A, Hui ACF, et al. Warfarin overdose due to the possible effects of
    Lycium barbarum L [J]. Food Chem Toxicol 2008,46:1860-1862.
    [95]国家中医药管理局《中华本草》编委会.中华本草(上册)[M].上海:上海科学技术出版社,1998:779.
    [96]邵长平,尹旭斌,武德会,等.翻白草合剂治疗Ⅱ型糖尿病临床研究[J].山东中医杂志.2001.20(10):588-589.
    [97]马瑛,温少珍.翻白草治疗Ⅱ型糖尿病50例疗效观察[J].中草药,2002,33(7):644
    [98]刘仲慧,阎树河,徐敏,等.翻白草治疗Ⅱ型糖尿病[J].新中医,2003,35(1):30.
    [99]王玲芝.浅谈治疗糖尿病的体会[J].现代中西医结合杂志,2001,10(4):323-324.
    [100]马桂萍,李翠华.六味地黄丸加翻白草治疗2型糖尿病30例[J].青岛医学杂志,2003,35(5):386-387.
    [101]张磊.36例Ⅱ型糖尿病复方翻白草合剂治疗疗效观察[J].中国现代药物应用.2007,1(1):50-51.
    [102]金映珊,张照庆,梅向华,等.九龙降糖汤结合针刺对2型糖尿病患者血脂的影响[J].湖北中医杂志,2006,26(6):36.
    [103]徐灿坤,曲竹秋.翻地还五汤治疗糖尿病肢体动脉闭塞症疗效观察[J].辽宁中医杂志,2006,33(7):835-836.
    [104]王晓敏,王建红,徐东平,等.翻白草水提液对糖尿病小鼠降血糖作用[J].江西中医学院学报,2005,17(2):53-54.
    [105]崔荣军,李怀慧,郭新民.翻白草对Ⅱ型糖尿病血糖的影响[J].中国临床康复,2005,9(11):84-85.
    [106]朴丽花,洪花,金政,等.翻白草对四氧嘧啶性糖尿病大鼠的降糖作用及对胰岛的病理学影响[J].时珍国医国药,2007,18(7):163-164.
    [107]孟令云,朱黎霞,郑海洪,等.翻白草高血糖动物模型的作用研究[J].中国药理学通报,2001,29(4):35.
    [108]孟令云,朱黎霞,杜慧.翻白草对家兔血糖影响的研究[J].中医药学报,2004,20(5):588-590.
    [109]韩永明,张业辉,熊迎春,等.中药翻白草对糖尿病大鼠血糖的影响[J].湖北中医学院学报,2002,4(1):23-24.
    [110]袁芳,严飞,韩永明.翻白草对2型糖尿病大鼠糖代谢的影响[J].湖北中医学院学报,2010,12(1):20-22.
    [111]韩永明,段妍君,袁芳,等.翻白草对糖尿病大鼠胰岛形态结构的影响[J].湖北中医学院学报,2005,7(3):28-29.
    [112]洪花.翻白草的降血糖作用及其机制的实验研究[D].延边大学医学部,人体解剖与组织胚胎学专业,硕士学位论文.2006:1-16.
    [113]第17届国际糖尿病大会简介[J].中国糖尿病杂志,2001,9(1):60.
    [114]马山,李怀慧,崔荣军.翻白草对2型糖尿病大鼠胰岛素敏感性的影响[J].牡丹江
    医学院学报,2010,31(4):13-14.
    [115]郭新民,崔荣军.翻白草对2型糖尿病大鼠血清胰岛素和胸腺指数的影响[J].牡丹江医学院学报,2004,25(4):1-3.
    [116]崔荣军,李怀慧,于宏伟.翻白草对2型糖尿病大鼠胰岛素抵抗的影响[J].中外医疗,2007,22:43.
    [117]Authier F, Ponsner BF, Bergeron JJ. Insulin-degrading enzyme[J]. Clin Invest Med, 1996(19):149-160.
    [118]郭新民,崔荣军,董琦.翻白草对2型糖尿病大鼠胰岛素降解酶基因表达的影响[J].微量元素与健康研究,2005,12(2):40-42.
    [119]宗灿华,郭新民,董崎.翻白草对2型糖尿病胰岛素抵抗大鼠抵抗素基因表达的调节作用[J].中国优生与遗传杂志,2007,15(8):25-26;31.
    [120]许曼音主编.糖尿病学[M].上海:上海科学技术出版社,2003:10.
    [121]包海花,崔荣军.翻白草对2型糖尿病大鼠肾脏细胞凋亡的影响[J].牡丹江医学院学报,2006,27(2):13-15.
    [122]姜长玲,胡晓晨,赵晓刚.翻白草对Ⅱ型糖尿病脂代谢和血液流变学的影响[J].中国中医药信息杂志,2002,9(8):41.
    [123]张淑芹,申梅淑.2型糖尿病大鼠心肌一氧化氮合酶的改变及翻白草的影响作用研究[J].中医药信息,2005,22(3):59-60.
    [124]朱雁飞,李怀慧,崔荣军.翻白草对2型糖尿病大鼠免疫功能的影响[J].牡丹江医学院学报,2010,31(1):5-6.
    [125]广西医学院糖尿病科研组.番石榴叶治疗成年型糖尿病的临床观察[J].广西医学,19804:1.
    [126]陈可冀,钱自奋,袁钟,等,实用中西医结合内科学[M].北京:北京医科大学、中国协和医科大学联合出版社,1988:1256.
    [127]徐向进,张家庆,黄庆玲.槲皮素对糖尿病大鼠肾脏非酶糖化及氧化的抑制作用[J].中华内分泌代谢杂志,1998,14(1):34.
    [128]孙海峰,常虹,杨婷,等.翻白草总黄酮降血糖作用的药效学研究[J].中医药信息,2010,27(3):20-14.
    [129]王晓敏,邹志坚,陈月梅,等.翻白草黄酮对糖尿病小鼠血清胰岛素和胰岛素抗体的作用[J].时珍国医国药,2008,19(2):338-339.
    [130]王琦,周玲仙,罗晓东,等.翻白草不同方法提取物对小鼠降血糖作用[J].中国公共卫生,2007,23(2):225.
    [131]邹志坚,王晓敏,冯劲松,等.翻白草黄酮对糖尿病大鼠抗氧化的作用[J].江西中医学院学报,2007,19(3):64-65.
    [132]孟令云,孔一杰,徐文弟,等.翻白草微量元素的含量分析[J].微量元素与健康研究,2001,18(2):41-42.
    [133]苏力,孟令云,葛艳梅,等.翻白草14种微量元素的测定与分析[J].微量元素与健康研究,2004,21(1):27-28,36.
    [134]孟令云,闫晓辉,张冬冬,等.翻白草对高血脂模型动物的影响[J].中医药学报,2009,37(5):41-42.
    [135]郑海洪,苏健华,杜慧,等.翻白草对大鼠和家兔高血脂模型的降血脂作用[J].中国比较医学杂志,2009,19(10):36-40.
    [136]朱黎霞,杜慧,才秀颖,等.翻白草的急性毒性实验[J].中医药学报,2003,31(5): 35.
    [137]苏建华,周明瑶,李颖,等.翻白草对大鼠的长期毒性实验[J].中医药学报,2010,38(3): 41-43.
    [138]马国海.2型糖尿病胰岛素抵抗的中医研究进展[J].辽宁中医杂志,2008,35(6):955-957.
    [139]江南,刘铜华.胰岛素抵抗的中医病机探讨[J].中国中医基础医学杂志,2006,12(9):691.
    [140]林兰,倪青.对糖尿病中西医结合研究的几点看法[J].中国中西医结合杂志,2003,11(23):855-857.
    [141]史文丽,赵军.李炳文从肝论治糖尿病经验[J].北京中医药大学学报,2004,11:3.
    [142]李道本,王智明.从肝论治防治胰岛素抵抗治疗2型糖尿病的理论探讨[J].中国中西医结合消化杂志,2001,9(3):153-154.
    [143]周则卫.Ⅱ型糖尿病发生胰岛素抵抗机理的中医探讨[J].天津中医,2002,19(4):38-39.
    [144]徐丽君,曾凡鹏,陆付耳,等.补肾通脉方对2型糖尿病大鼠骨骼肌胰岛素受体表达的影响[J].中国医院药学杂志,2003,23(4):201.
    [145]刘承琴,赵建群.2型糖尿病胰岛素抵抗重视从脾论治的思路[J].新中医,2003,35(9):28-29.
    [146]胥改珍.从痰瘀论治代谢综合征[J].山西中医,2003,19(4):61-62.
    [147]柴可夫,王亚丽.从痰瘀论治胰岛素抵抗[J].中华中医药杂志,2005,20(9)542-543.
    [148]张永涛.论脾与2型糖尿病胰岛素抵抗的关系[J].河南中医,2001,40(4):233.
    [149]孙刚,李晓玲.痰浊证型患者糖、脂等代谢指标检测及其临床意义[J].贵阳中医学院学报,1997,19(3):60.
    [150]俞亚琴,王彬.从血瘀角度探讨2型糖尿病胰岛素抵抗[J].浙江中医杂志,2002,37(4): 175.
    [151]姜兆顺,张胜兰,寇天芹,等.2型糖尿病血瘀证患者血小板CD62p、CD63测定意义探讨[J].中国中西医结合杂志,1999,19(9):527.
    []52]冼慧.糖尿病从瘀论治初探[J].中国医药学报,2000,15(2):52.
    [153]牛洁,刘铜华,王志程,等.刘铜华治疗糖尿病经验浅谈[J].辽宁中医杂志,2008,35(4):499-500.
    [154]玉山江.魏子孝辨治糖尿病经验浅述[J].山东中医杂志,2009,28(7):502-503.
    [155]袁敏.魏子孝治疗糖尿病用药特点分析[J].北京中医药,2011,30(2):96-98.
    [156]董延芬.魏子孝对糖尿病血糖难控因素的中医治疗[J].中国中医药信息杂志,2008,15(1):85-86.
    [157]张广德.魏子孝治疗无症状糖尿病经验[J].世界中医药,2010,5(4):252-253.
    [158]翁苓,周国英,孙敏.2型糖尿病胰岛素抵抗的中医辨证论治临床观察[J].吉林中医药,2003,23(6):16-17.
    [159]玉山江.林兰辨治糖尿病经验浅述[J].辽宁中医杂志,2009,36(7):1076-1077.
    [160]王玉芳.中医辨证论治早期干预胰岛素抵抗50例疗效观察[J].内蒙古中医药,2006,4:48.
    [161]陈易,丁学屏.2型糖尿病的中医辨证分型和胰岛素抵抗以及血清游离脂肪酸浓度的相关性.第七次全国中医糖尿病学术大会论文汇编[C],2003,广西南宁.
    [162]赵泉霖.程益春辨治2型糖尿病胰岛素抵抗经验[J].山东中医杂志,2003,22(6):370-371.
    [163]张金梅,王素凤,田秀花,等.芪黄胶囊治疗2型糖尿病胰岛素抵抗患者35例[J]. 中医杂志,2010,51(1):59.
    [164]冯世良,高斌,白淑英,等.应用胰岛素敏感性指数研究中药对2型糖尿病胰岛素抵抗的作用[J].中医杂志,1997,38(2):100-102.
    [165]周劲勇,沈伟.参芪宁消汤治疗2型糖尿病临床观察[J].中医药临床杂志,2009,21(3):204-205.
    [166]武明东,高天舒,郑曙琴,等.化痰解瘀汤联合胰岛素治疗2型糖尿病疗效观察[J].中医药学刊,2005,23(4):729.
    [167]熊曼琪,林安忠,朱章志,等.加味桃仁承气汤对实验性糖尿病大鼠胰岛素受体的影响[J].中国中西医结合杂志,1997,17(3):165-167.
    [168]李莉芬,吴玉红.健脾化痰活血法改善2型糖尿病胰岛素抵抗的临床观察[J].北京中医,2006,25(7):395-396.
    [169]梁治学,胡燕,周语平,等.参芪平糖宁对实验性2型糖尿病大鼠胰岛素抵抗的影响[J].中医药学报,2010,38(1):35-36.
    [170]杨月花,黄祥武.益气养阴活血汤对改善胰岛素抵抗的疗效观察[J].湖北中医杂志,2005,27(2):45.
    [171]肖燕倩.糖络饮治疗气阴两虚脉络瘀阻型糖尿病46例[J].辽宁中医学院学报,2004,6(1):35-36.
    [172]林马保,张优蕊.化浊解毒活血法治疗胰岛素抵抗36例[J].天津中医药,2007,24(6): 461.
    [173]王智明,陈淑玉,周水平.消渴安胶囊对2型糖尿病胰岛素敏感性指数血脂的影响[J].中医药学刊,2004,22(1):167-168.
    [174]肖燕倩,杨志新,郭美珠.2型糖尿病胰岛素抵抗(IR)与中医辨证分型的相关性研究[J].中医药学刊,2007,25(4):743-745.
    [175]姜淼,黄安.三消胶囊治疗2型糖尿病及改善胰岛素抵抗作用的临床研究[J].新中医,2006,14(1):21.
    [176]陈俊.白虎人参汤对改善2型糖尿病IR的疗效观察[J].辽宁中医学院学报,2005,7(2): 138.
    [177]王树海,王文健,汪雪峰,等.黄芪多糖和小檗碱对3T3-L1脂肪细胞代谢和细胞分化影响的比较[J].中国中西医结合杂志,2004,24(10):926-928.
    [178]彭丽娟.健脾祛湿化痰方对2型糖尿病胰岛素抵抗的影响[J].湖北中医杂志,2006,28(8):29.
    [179]欧阳阿娟.胰敏汤治疗痰湿壅盛型2型糖尿病胰岛素抵抗的临床研究[J].湖南中医学院学报,2003,23(5):52.
    [180]湛剑飞,马雅玲,蔡绍华,等.针刺对搪尿病的抗凝与逆转胰岛素抵抗作用[J].上 海针灸杂志,2001,20(4):5-7.
    [181]曲齐生,杨善军.针刺夹脊穴对2型糖尿病患者胰岛素抵抗疗效观察[J].中医药信息,2007,24(1):50.
    [182]柯斌,秦鉴,孟君,等.禁食疗法及其研究进展[J].深圳中西医结合杂志,2009,19(1):50-53.
    [183]熊曼琪,朱章志.中医中药治疗非胰岛素依赖型糖尿病必须研究胰岛素抵抗[J].中医杂志,1995,36(1):47.
    [184]万生芳,闻润花.掌叶大黄提取物对实验性2型糖尿病大鼠胰岛素抵抗的实验研究[J].现代中西医结合杂志,2007,16(12):1606.
    [185]鲁瑾.黄芪预防肿瘤坏死因子-α所致胰岛素抵抗[J].中国中西医结合杂志,1999,19(7):420.
    [186]钱东生.山茱萸乙醇提取物对NIDDM大鼠骨骼肌GLUT4表达影响的实验研究[J].中国中药杂志,2001,26(12):859.
    [187]王开成,方朝晖.丹蛭降糖胶囊对胰岛素抵抗大鼠脂联素的影响[J].江西中医学院学报,2006,180(2):61.
    [188]熊曼琪.加味桃核承气汤对2型糖尿病大鼠胰岛素抵抗的影响[J].中国中西医结合杂志,1997,17(3):165.
    [189]王东,李敬林,姜良铎.糖克煎剂对2型糖尿病模型大鼠胰岛素抵抗的影响[J].中华中医药学刊,2008,26(6):1243-1245.
    [190]金少举,蒋袁絮,胡旭珍,等.糖维康对胰岛素抵抗大鼠血糖、胰岛素及血脂水平的影响[J].华西药学杂志,2006,21(2):126-128.
    [191]金智生,潘宇清.金匮肾气丸对实验性2型糖尿病胰岛素抵抗大鼠血清TNF-α、 Leptin的影响[J].现代中医药,2008,28(3):66-68.
    [192]王立琴,张洁,于建华,等.芪黄胶囊合黄连素改善糖尿病小鼠血胰岛素抵抗实验研究[J].山东中医杂志,2005,24(9):560-561.
    [193]胡爱民,郑云,肖凤英,等.糖肝煎治疗2型糖尿病并脂肪肝的实验研究[J].中西医结合肝病杂志,2006,16(2):90-92.
    [194]丁来标,陆付耳,叶爱丽,等.黄连解毒汤对胰岛素抵抗大鼠瘦素和抵抗素的影响[J].中国中西医结合杂志,2006,26(3):232-235.
    [195]申竹芳,谢明智,刘海帆.金芪降糖片对实验动物血脂、胰岛素抗性及免疫功能的影响[J].中药新药与临床药理,1997,8(1):23-26.
    [196]章小平,方朝晖.参丹健胰丸改善2型糖尿病胰岛素抵抗的机理研究[J].中医药临床杂志,2004,16(6):543-545.
    [197]钱俊文,柴可夫.加减抵当汤对胰岛素抵抗大鼠肝脏胰岛素受体基因表达的影响 [J].浙江中医药大学学报,2007,31(3):295-298.
    [198]Wild S, Roglic G, Green A, et al. Global prevalence of diabetes:estimates for the year 2000 and projections for 2030[J]. Diabetes Care,2004,27:1047-1053.
    [199]DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique:a method for quatifying insulin secretion and resistance[J]. Am J Physiol,1979,237:214-223.
    [200]李光伟,潘孝仁,Lillioja,等.检测人群胰岛素敏感性的一项新指标[J].中华内科杂志,1993,32(10):656-659.
    [201]Randle PJ, Garland PB, Hales Cn, et al. The glucose fattyacid cycle:its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus[J]. Lancet,1963, 1(7285):785-789.
    [202]Reaven GM. Insulin resistance, hyperinsulinemia, hypertriglyceridemia and hypertension:parallels between human disease and rodent models[J]. Diabetes Care,1991, 14:195-202.
    [203]Zhang F, Ye C, Li G, et al. The rat model of type 2 diabetes mellitus and its glycometabolism characters [J]. Experiment Animals,2003,52:401-407.
    [204]Man ZW, Hirashima T, Mori S, et al. Decrease in triglyceride accumulation in tissues by restricted diet and improvement of diabetes in Otsuka Long-Evans Tokushima fatty rats, a non-insulin-dependent diabetes model [J]. Metabolism,2000,49:108-114.
    [205]Oakes ND, Cooney GJ, Camilleri S. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding[J]. Diabets,1997,46:1768-1774.
    [206]Gao Z, Zhang X, Zuberi A, et al. Inhibition of insulin sensitivity by free acids requires activation of multiple serine kinases in 3T3-L1 adipocytes[J]. Mol endocrinol,2004,18: 2024-2034.
    [207]Nguyen MT, Satoh H, favelyukis S, et al. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes[J]. J Biol Chem,2005,280: 35361-35371.
    [208]Unger RH. Lipotoxic diseases[J]. Annu Rev med,2002,53:319-336.
    [209]Youngren JF, Paik J, Bamard RJ. Impaired insulin-receptor autophosphorylation is an early defect in fat-fed, insulin-resistant rats[J]. J Appl Physiol,2001,91:2240-2247.
    [210]Hansen PA, Han DH, Marshall BA, et al. A high-fat diet impairs insulin stimulation of glucose transport in muscle[J]. J Biol Chem,1998,273:26157-26163.
    [211]Saini KS, Thomson C, Winterford CM, et al. Streptozotocin at low doses induces apoptosis and at high doses causes necrosis in a murine pancreatic beta cell line, Ins-1[J]. Biochem Mol Biol Int,1996,39(6):1229-1236.
    [212]Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes, the fat-fed, streptozotocin-treated rat[J]. Metabolism,2000,49:1390-1394.
    [213]Aragno M, Mastrocola R, Catalano MG, et al. Oxidative stress impairs skeletal muscle repair in diabetic rats[J]. Diabetes,2004,53:1082-1088.
    [214]Pushparaj PN, Low HK, Manikandan J, et al. Anti-diabetic effects of Cichorium intybus instreptozotocin-induced diabetic rats[J]. J Ethnophamacology,2007,111:430-434.
    [215]Sakatani T, Shirayama T, Suzaki Y, et al. The association between patients with and without coronary artery disease[J]. International Heart Journal,2005,46:619-629.
    [216]Sharma SB, Nasir A, Prabhu KM, et al. Hypoglycaemic and hypolipidemic effect of ethanolic extract of seeds of Eugenia jambolana in alloxan-induced diabetic rabbits[J]. J Ethnopharmacology,2003,85:201-206.
    [217]Angulo P. Nonalcoholic fat liver disease[J]. N Engl J Med,2002,346:1221-1231.
    [218]Barnard RJ, Youngren JF, Scheck SH. Reversibility of diet-induced skeletal muscle insulin resistance [J]. Diabetes Res Clin Pract,1997,32:213-221.
    [219]Youngren JF, Paik J, Barnard RJ. Impaired insulin-receptor autophosphorylation is an early defect in fat-fed, insulin-resistant rats[J]. J Appl Physiol,2001,91:2240-2247.
    [220]Grundleger ML, Thenen SW. Decreased insulin binding, glucose transport, and glucose metabolism in soleus muscle of rats fed a high fat diet[J]. Diabetes,1982,31:232-237.
    [221]Hansen PA, Han DH, Marshall BA, et al. A high-fat diet impairs insulin stimulation of glucose transport in muscle[J]. J Biol Chem,1998,273:26157-26163.
    [222]Singh MK, Krisan AD, Crain AM, et al. High-fat diet and leptin treatment alter skeletal muscle insulin-stimulated phosphatidylinositol 3-kinase activity and glucose transport[J]. Metabolism,2003,52:1196-1205.
    [223]Zierath, JR, Houseknecht KL, Gnudi L, et al. High-fat feeding impairs insulin-stimulated GLUT 4 recruitment via an early insulin-signaling defect[J]. Diabetes, 1997,46:215-223.
    [224]Kim Y, Tamura T, Iwashita S, et al. Effect of high-fat diet on gene expression of GLUT4 and insulin receptor in soleus muscle[J]. Biochem Biophys Res Commun,1994,202: 519-526.
    [225]Sevilla L, Guma A, Enrique-Tarancon G, et al. Chronic high-fat feeding and middle-aging reduce in an additive fashion Glut4 expression in skeletal muscle and adipose tissue[J]. Biochem Biophys Res Commun,1997,235:89-93.
    [226]Kahn BB, Pedersen O. Suppression of GLUT4 expression in skeletal muscle of rats that are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity[J]. Endocrinology,1993,132:13-22.
    [227]Pedersen O, Kahn CR, Flier JS, et al. High fat feeding causes insulin resistance and a marked decrease in the expression of glucose transporters (Glut4) in fat cells of rats[J]. Endocrinology,1991,129:771-777.
    [228]Haystead TAJ, Sim ATR, Carling D, et al. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism[J]. Nature,1989,337:78-81.
    [229]Mhairi C, Towler D, Grahame Hardie. AMPK in Metabolic Control and Insulin Signaling[J]. Circ. Res,2007,100:328-341.
    [230]Kemp BE, Stapleton D, Campbell DJ. AMP-activated protein kinase, super metabolic regulator[J]. Biochem Soc Trans,2003,31:162-168.
    [231]Kohn AD, SA Summers, MJ Birnbaum, et al. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation[J]. J Biol Chem,1996,271:31372-31378.
    [232]Summers SA, MJ Birnbaum. A role for the serine/threonine kinase, Akt, in insulin-stimulated glucose uptake[J]. Biochem Soc Trans,1997,25:981-988.
    [233]Garofalo RS, SJ Orena, K Rafidi, et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta[J]. J Clin Invest,2003, 112:197-208.
    [234]Cho HJ, Mu JK, Kim JL, et al. Insulin resistance and a diabetes mellitus-like syndrime in mice lacking the protein kinase Akt-2(PKB beta)[J]. Science,2001,292:1728-1731.
    [235]Hill MM, SF Clarke, DF Tucker, et al. A role for protein kinase B beta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes[J]. Mol Cell Biol,1999,19: 7771-7781.
    [236]Calera M R, C Martinez, H Liu, et al. Insulin increase the association of Akt-2 with Glut4-containing vescles[J]. J Biol Chem,1998,273:7201-7204.
    [237]Kupriyanova TA, KV Kandror. Akt-2 binds to Glut4-containing vesicles and phosphorylates their component proteins in response to insulin[J]. J Biol Chem,1999,274: 1458-1464.
    [238]Jiang ZY, QL Zhou, KA Coleman, et al. Insulin signaling through Akt/protein B analyzed by small interfering RNA-mediated gene silencing[J]. Proc natl Acad Sci USA, 2003,100:7569-7574.
    [239]Katome T, T Obata, R Matsushima, et al. Use of RNA interference-mediated gege silencing and adenoviral overexpression to elucidate the roles of AKT/protein kinase B isoforms in insulin actions[J]. J Biol Chem,2003,278:28312-28323.
    [240]Kandel ES, N Hey. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB[J]. Exp Call Res,1999,253:210-229.
    [241]DeFronzo RA, Gunnarsson R, Bjorkman O, et al. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type Ⅱ) diabetes mellitus[J]. J Clin Investig,1985,76:149-155.
    [242]Zierath JR, Krook A, Wallberg-Henriksson H. Insulin action and insulin resistance in human skeletal muscle[J].Diabetologia,2000,43:821-835.
    [243]Bjornholm M, Zierath JR. Insulin signal transduction in human skeletal muscle: identifying the defects in Type Ⅱ diabetes[J]. Biochem Soc Trans,2005,33:354-357.
    [244]Koistinen HA, Zierath JR. Regulation of glucose transport in human skeletal muscle[J]. Ann Med,2002,34:410-418.
    [245]Jessen N, Goodyear L. Contraction signaling to glucose transport in skeletal muscle[J] J. Appl. Physiol,2005,99:330-337.
    [246]Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation[J]. J Biol Chem,2003,278: 14599-14602.
    [247]Thong F, Duagani CB, Klip A. Turning signals on and off:GLUT4 traffic in the insulin-signaling highway[J]. Physiology,2005,20:271-284.
    [248]Kramer HF, Witczak CA, Fuji N, et al. Distinct signals regulate AS 160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle[J]. Diabetes, 2006,55:2067-2076
    [249]Bruss MD, Arias EB, Lienhard GE, et al. Increased phosphorylation of Akt substrate of 160 kDa (AS 160) in rat skeletal muscle in response to insulin or contractile activity [J]. Diabetes,2005,54(1):41-50.
    [250]Karlsson HK, Zierath JR, Kane S, et al. Insulin-stiumulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects[J]. Diabetes, 2005,54(6):1692-1697.
    [251]Beeson M, Sajan MP, Dizon M, et al. Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-(P04)3 is defective in muscle in type 2 diabets and impaired glucose tolerance:amelioration by rosiglitazone and exercise[J]. Diabetes,2003,52: 1926-1934.
    [252]Eguez L, Lee A, Chavez JA, et al. Full intracellular retention of GLUT4 requires AS 160 Rab GTPase activating protein[J]. Cell Metab,2005,2:263-272.
    [253]Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation[J]. J Biol. Chem.2003,278: 14599-14602.
    [254]Sakamoto K, Hirshman MF, Aschenbach WG, et al. Contraction regulation of Akt in rat skeletal muscle[J]. J Biol Chem,2002,277:11910-11917.
    [255]Kennedy JW, Hirshman MF, Gervino EV, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes[J]. Diabetes,1999,48:1192-1197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700