板蓝根多糖对无初乳仔鼠免疫功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从中草药板蓝根中提取板蓝根多糖(RIP),将不同浓度的RIP分别灌胃于不同组别的无初乳SD仔鼠中(0d仔鼠随机分为A-E组:初乳组,常乳组,常乳+低RIP组,常乳+中RIP组,常乳+高RIP组),运用大体解剖学、流式细胞术、组织化学技术、免疫组化技术测定0-28d各组仔鼠免疫器官指数、外周血T细胞亚群、小肠形态发育、小肠黏膜中杯状细胞、肥大细胞、SIgA、IgG阳性细胞数量,来研究RIP对无乳仔鼠免疫器官、系统免疫和黏膜免疫功能的影响,为开发绿色、无副作用、无残留的RIP提供理论基础。结果显不:
     (1)RIP是非营养性多糖,对无初乳仔鼠体重的影响不明显,对无初乳仔鼠小肠重量0-21d影响不显著,28d可以显著增加无初乳仔鼠的小肠重量。
     (2)RIP可以增加无初乳仔鼠胸腺指数和脾脏指数。对胸腺指数和脾脏指数效果最好的RIP剂量随日龄增大而减小。胸腺指数在21d时A组与其他组差异显著(P<0.05)。脾脏指数在7d时C与其他各组之间差异显著(P<0.05)。
     (3)RIP可以增加无初乳仔鼠外周血CD3+、CD4+、CD8+T淋巴细胞数量,促进CD3+CD4+T细胞发育的最佳剂量是中剂量的RIP,对CD8+T细胞早期发育效果最好的RIP剂量随日龄增大而增加。CD3+和CD4+T淋巴细胞含量7-21 d时C、D、E三组与A组差异显著(P<0.05)。CD8+T淋巴细胞在7d、21d、28d时C、D、E三组显著高于A、B组(P<0.05)。
     (4)RIP可以促进无初乳仔鼠小肠形态发育,增加小肠绒毛高度,降低小肠隐窝深度,增大V/C值,对小肠绒毛高度、隐窝深度、V/C值影响的最佳剂量随仔鼠日龄增加而增大
     (5)RIP可以增加无初乳仔鼠肠道杯状细胞的数量。各组仔鼠杯状细胞数量从十二指肠到回肠逐渐增加。RIP对小肠各段杯状细胞数量影响效果最明显的剂量随日龄增加而增大十二指肠中杯状细胞数量在7d时C组与A、B组之间差异显著(P<0.05)。空肠杯状细胞数量在7d时D组与其他组之间差异显著(P<0.05),28d时C、D、E组与B组之间差异显著(P<0.05)。回肠杯状细胞数量分别在14d、21d时C、D组显著高于其他组(P<0.05)。
     (6)RIP可以增加无初乳仔鼠肠道肥大细胞的数量,十二指肠到空肠到同肠肥大细胞数量逐渐减少。RIP对小肠各段肥大细胞数量影响效果最明显的剂量随日龄增加而增大。十指肠肥大细胞数量在7d、21d、28d分别是E组,D、E组,D组高于B组(P<0.05)。仔鼠空肠肥大细胞数量在分别在7d、28d时E组数量显著高于B组(P<0.05)。回肠肥大细胞数量在14、21d时C组显著高于其他组(P<0.05)。
     (7)0d仔鼠小肠固有层出现零星的IgG弱阳性细胞,无SIgA阳性细胞。7-14d仔鼠小肠IgG、SIgA阳性细胞先出现在固有层腺体周围,接着绒毛固有层也有阳性细胞散在分布。21-28d时IgG、SIgA阳性细胞大量分布于固有层腺体周围和绒毛固有层。RIP可以促进无初乳仔鼠肠道黏膜IgG、SIgA阳性淋巴细胞的分泌,对小肠各段黏膜IgG、SIgA阳性淋巴细胞数量影响效果最明显的剂量随日龄增加而减小。
     综上所述,RIP是非营养性多糖,对仔鼠体重影响不显著,可增加仔鼠小肠重量,可以促进免疫器官发育,增加外周血中T淋巴细胞亚群数量,促进小肠形态发育,增加小肠黏膜杯状细胞、肥大细胞的数量,提高小肠黏膜IgG、SIgA阳性细胞的水平,对无初乳仔鼠具有免疫增强功能。
To study the immune function of extracted hydrophilic polysaccharides in Radix Isatidis on the immune organ, system immune and mucous membrane immune of the SD line renewal rats without colostrums and provide theories basis for exploitation of the Radix Isatidia Polysaccharide (RIP) that is green, no adverse effect and no drug residue. Renewal rats were grouped and administrated with different doses of IRP, and used the anatomy technology, flow cytometry. and immunohistochemistry technology to detecte the immune organ indexes, the numbers of T lymphocyte subpopulations in peripheral blood, the development of small intestine, the quantities of goblet cells, mast cells. SIgA and IgG positive cells in the small intestine. The results showed that
     (1) RIP was no trophicity. It didn't add the body weight of the renewal rats without colostrums on the first 28 days and the small intestinal weight at days 7-21. However, it could significantly raise the small intestinal weight at day 28.
     (2) RIP could increase the thymus gland index and spleen index of the renewal rats without colostrums. The doses of RIP which had the best effectiveness in the thymus gland and spleen index were decreased by the days. The thymus gland index in group A and the spleen index in group C at day 21 were significantly bigger than others at day 7 (P<0.05)
     (3) RIP could raise the numbers of CD3+, CD4+, CD8+T cells in the renewal rats without colostrums. The dose of RIP having the best effects on CD3+, CD4+T cells was 20 mg/kg, and on CD8+T cells was increased by the days. The numbers of CD3+T cells and CD4+T cells in group C, D and E were significantly larger than group A in the first 7-21 days (P<0.05). The numbers of CD8+T cells in group C, D and E were significantly larger than group A and B at days 7,21 and 28 (P<0.05)
     (4) RIP could promote the morphological development to the small intestine of the renewal rats without colostrums.It could enlarge the villi height of the small intestine, lower the crypt depth of the small intestine and increase the value of V/C. The doses of RIP having the best effect on villi height, crypt depth, value of V/C were increased by the days.
     (5) RIP could increase the quantities of goblet cells in the small intestine of the renewal rats without colostrums. From the duodenum to ileum, the numbers of goblet cells were gradually increased. The doses of RIP having the best effect on goblet cells in the small intestine were increased by the days. The quantities of goblet cells in duodenum in group C were remarkably higher than group A and B at day 7. These cells in jejunum the group D were remarkably higher than others at day 7 (P<0.05) and group C, D and E were remarkably higher than B at day 28 (P<0.05). The numbers of ileum in group C and group D were respectively remarkably higher than others at days 14 and 28 (P<0.05)
     (6) RIP could increase the quantity of mast cells in the small intestine of the renewal rats without colostrums. From the duodenum to the ileum, the numbers of mast cells were gradually decreased.The best dose of RIP in mast cells of the small intestine was increased by the days. The amounts of mast cells of duodenum respectively in group E. E and D, D were remarkably higher than others at days 7.21,28. (P<0.05) The numbers of jejunum in group E were remarkably higher than group B at days7 and 28 (P<0.05). The numbers of ileum in group C were remarkably higher than others at day 14 (P<0.05)
     (7)There were sporadic IgG positive cells in enteraden cavity lamina propria in the small intestine in 0 day and no SIgA positive cells were found. IgG and SIgA positive cells were first present in enteraden cavity lamina propria, and located in the villus of lamina propria in the 7-14 days. On the 21-28 days, a great number of IgG and SIgA positive cells were distributed in enteraden cavity lamina propria and villus of lamina propria in the small intestine. RIP could advance the secretion of IgG and SIgA positive cells in the small intestine mucous membrane in the renewal rats without colostrums, and the best dose of RIP on the numbers of IgG and SIgA positive cells was grew down by the days.
     In a word, the RIP was no trophicity, and it didn't add the body weight of the renewal rats without colostrums. However, it could increase the small intestinal weight, promote the development immune organ, increase the numbers of T lymphocyte subpopulations in peripheral blood, advance the morphological development of small intestine, raise the quantities of goblet cells and mast cells, and boost the SIgA and IgG positive cells in the small intestine.
引文
[1]Levieux D. Oilier A. Bovine immunoglobulin G beta-lactoglobulin, alpha-lactalbumin and serum albumin in colostrum and milk during the early post partum period [J]. Journal of Dairy Research.1999.66:421-430.
    [2]Korhonen H. Marnila P, Gill H S. Milk immunoglobulins and complement factors [J]. British Journal of Nutrition,2000 a.84 (Suppl.1):S75-S80.
    [3]Elfstrand L. Lindmark M H. Paulsson M, et al. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing [J]. International Dairy Journal.2002, 12:879-887.
    [4]Butler J E. Immunoglobulin diversity, B-cell and antibody repertoire development in large farm animals [J]. Revue Soientifique et Technique de Office International des Epizooties.1998, 17:43-70.
    [5]Mostov K E. Transepithelial transport of immunoglobulins [J]. Annual Review of Immunology. 1994.12:63-84.
    [6]Groot N D, Kuik-Romeijn P V, Lee S H, et al. Over-expression of the murine plgR gene in the mammary gland of transgenic mice influences the milk composition and reduces its nutritional value [J]. Transgen Res,2001.10(4):285-291.
    [7]O'Brien J P, Sherman D M. Serum immunoglobulin concentrations of newboru goat kids and subsequent kid survival through weaning [J]. Small Ruminant Research.1993 (11):71-77.
    [8]Klobasa F. Habe F, Werhahn E. et al. Changes in the concentration of serum IgG, IgA and IgM of sows throughout the reproductive cycle [J]. Vet Immuno lmmunopathol.198510 (4): 341-353.
    [9]孟立峰.赵立,王林.母猪无乳综合症[J].饲料与养殖,2006,2:33.
    [10]Mellor D J, Murray L. Effects of maternal nutrition on under development during late pregnancy and on colostrum production in Scotish Blaclface ewes with twin lambs [J]. Res Ve Sci, 1985 (39):230-234.
    [11]Heath J P, Harrell R G, Komuves L G.52nd Annu Meet [D]. Microsc.Soc.Am.,1994,292.
    [12]Scoot A, Owen B D, Agar J L. Influnce of orally administered porcine immunoglobulins on survival and performance of newborn colostrum-deprived pigs [J]. J Anim Sci.1972(35): 1201-1205.
    [13]Holmes M A, Lunn D P. A study of bovine and equine immunoglobulin levels in pony foals fed bovine colostrums [J]. Equine Vet J.1991 (23):116-118.
    [14]Stubbings D P, Gibbons D G, Tindall J R. Feeding bovine colostrum to lambs [J]. Vet Rec.1983 (112):88-89.
    [15]贾涛.外援特异性卵黄抗体在防治仔猪大肠杆菌病中的应用[J].猪业科学,2008,9:90-91.
    [16]杨玉芬,乔建国,王文元,等.新生仔猪免疫人工乳配方的研制及其生产效果的研究[J].饲料与营养.2005.4:37-39.
    [17]沈叙庄.关注对动物使用抗生素与细菌耐药的问题[J].中华儿科杂志.2002,8,40(8):452-453.
    [18]谭周进.谢达平.多糖的研究进展[J].食品科技,2002.(3):10-12.
    [19]Vliegehthart J F. Abstract of the International Carbohydrate Symposium Netherlands[M]. Vonk Publishers,1984:566.
    [20]Karlsson KA糖类生物学-药物设计的新领域[M].国外医学(医学分册),1992,19(4):219.
    [21]周世文,徐传福.多糖的免疫药理作用[J].中国生化药物杂志,1994,15(2):143-147.
    [22]黄芳.蒙义文.活性多糖的研究进展[J].天然产物开发与研究,1996,11(5):90-98.
    [23]寇小红,江和源.崔宏春,等.膜过滤绿茶多糖的系统分级纯化及免疫活性分析[J].茶叶科学.2008,28(3):172-180.
    [24]梁华平.张艳,耿波.黄芪多糖对烧伤小鼠细胞免疫功能的影响[J].中华整形烧伤外科杂志,1994.10(2):138-141.
    [25]郑尧,何景华.甘草多糖对小鼠巨噬细胞包吞噬功能的影响[J].中医药学刊,2003,21(2):254-255.
    [26]王剑,蒲蔷,何开泽,等.川牛膝多糖的体外免疫活性研究[J].应用与环境生物学报,2008,14(4):481-483.
    [29]孙惠玲,苗得园,龚玉梅,等.3种免疫植物多糖对法氏囊活疫苗的免疫效果的影响[J].华北农学报,2006,21(4):106-109.
    [30]邱妍,崔保安,胡元亮,等.4种多糖对免疫雏鸡抗体效价和T淋巴细胞的影响[J].南京农业大学学报.2008,31(1):77-81.
    [31]单铁英,关华,苏安英,等.枸杞多糖对人外周血.淋巴细胞免疫调节功能的影响[J].实用医学杂志,2010,26(3):361-363.
    [32]徐增莱,汪琼,赵猛,等.淮山药多糖的免疫调节作用研究[J].时珍国医国药,2007,18(5):1040-1042.
    [33]郜红利,肖本见,梁文梅.山药多糖对糖尿病小鼠降血糖作用[J].中国公共卫生,2006,22(7):804-805.
    [34]李雪华,盛龙京.木耳多糖的提取与抗活性氧的研究[J].食品科学,2001,22(3):26-29.
    [35]左绍远.螺旋藻多糖抗衰老作用的实验研究[J].中国中药杂志,1999,24(80):490-491
    [36]李星艳,罗燕,谷新利.中药复方多糖对鸡红细胞免疫功能的影响[J].上海畜牧兽医通 讯.2008.4:30-31.
    [37]楼之岑.秦波.常用中药材品种整理和质量研究(北方编)[M].第1册.北京:北京医利大学、中国协和医科大学联合出版社.1995:a0a-306.
    [38]高秀芝.板蓝根药理和临床应用概况[J].中医药研究.2001,17(12):57-58.
    [39]张弩.板蓝根多糖的化学分离及其免疫增强活性的研究[D].华中科技大学硕十学位论文,2008.
    [40]许桂红.板蓝根多糖化学与溶液粘度及免疫调节活性的研究[D].扬州大学硕十学位论文.
    [41]Yamada H.Antiviral compostitons containing new glycoprotein from Isatistinctoria [P], JP:1160599[99 60 599],1999-03-03.
    [42]黄小芳.板蓝根多糖提取分离及其分子量测定的研究[J].扬州大学学十论文.
    [43]马莉,唐健元,李祖伦,等.板蓝根多糖分离纯化及其性质的研究中草药[J].2007,38(8):1143-1146.
    [44]王学兵,魏战勇,崔保安.等.板蓝根多糖的提取及其对猪细小病毒的体外作用[J].畜牧兽医科学,2008,24(4):4-7.
    [45]徐小琴,李青,郜平光.等.板蓝根多糖抗小鹅瘟病毒的作用[J].中国兽医学报,2008,11,28(11):1340-1343.
    [46]郭新华,邱研,严桂芹.等.板蓝根多糖对鸡新城疫抗体滴度和免疫器官的影响[J].科技视野.2007(11):20-22.
    [47]邱研,胡元亮,董发明,等.板蓝根多糖对鸡新城疫疫苗效果的影响[J].中国兽医学报,2008,7,28(7):753-756.
    [48]许益民,陆平成,王永珍.板蓝根多糖促进免疫功能的实验研究[J].中西医结合杂志,1991,11(6):357-359.
    [50]李晓玉,童乐民.氧代赖氨酸对免疫反应的增强作用[J].中国药理学报,1987,8(2):173
    [51]吴慧平,哈团柱,李祥,等.板蓝根多糖对NF-KB活性的作用[J].药物生物技术,2008,8(5):276-278.
    [52]冯群先,毕一例,仇建明.板蓝根多糖降脂作用的初步观察[J].中国医药学报,1993,8(增刊):75.
    [53]张萍,刘婕,邓杨悟,等.板蓝根多糖的提取工艺及其清除自由基的作用的初步研究[J].河南工业大学学报(自然科学版),2006,27(3):36.
    [54]余沛涛,陈燕,等.板蓝根和泽泻蛋白质提取物的糖含量[J].上海师范大学学报(自然科学版),1999,28(1):102.
    [55]李奎,王永才,康相涛.等.固始鸡免疫器官内T淋巴细胞亚群的动态变化[J].中国兽.医学报,2009,29(10):1315-1318.
    [56]Smyth M J, Godfreg D I. NKT cells and tumor immunity-A double-edgth sword [J]. Nature Immunol,2000,1 (6):459-460.
    [57]李百营,高峰.李强.等.脾破裂37例脾切除术后和保脾手术对免疫机制的影响研究[J].陕西医学杂志.2005.34(9):1101-1103.
    [58]姜洪池, 乔海泉.脾脏外科学[M].沈阳.辽宁科技出版社.2007.2.
    [59]周国忠.急性脾破裂患者手术前后外周血淋巴细胞亚群的变化及临床意义[J].放射免疫学杂志,2005,18(4):341-343.
    [60]夏穗生.论脾脏外科新成就与发展方向[J].临床外科杂志,2006,14(7):8-9.
    [61]崔治中,崔保安.兽医免疫学[M].中国农业出版社.2004:18-20.
    [62]王世若,王兴龙,韩文瑜.现代动物免疫学[M].第2版.吉林:吉林科学技术出版社,2001.183-206;516-517.
    [63]邱全瑛,关洪全.医学免疫学与病原微生物学[M].科学出版社,2005,8:33-34.
    [64]Turner J R, Madara J L. Physiological regulation of intestinal epithelial tight junctions as a consequence of Na(+)-coupled nutrient transport[J]. Gastroenterology.1995,109(4):1391-1396.
    [65]McKay D M, Perdue M H.Intestinal epithelial function:the case for immunophysio-regulation.Cells and mediators 1 [J]. Dig Dis Sci.1993.38(8):1377-1387.
    [66]McKay D M, Perdue M H.Intestinal epithelial function:the case for immunophysio-regulation. Implications for disease2[J]. Dig Dis Sci.1993,38(9):1735-1745.
    [67]Fearon D T, Locksley R M. The instructive role of innate immunity in the acquired immune response[J]. Science.1996,272(5258):50-53.
    [68]Ouellette A J, Greco R M, James M, et al. Developmental reg of cryptdin, a corticostatin/ defensin precursor mRNA in mouse small intestinal crypt epithelium [J].J Cell Biol.1989,108(5): 1687-1695.
    [69]Harwig S S, Eisenhaner P B, Chen N P, et al.Cryptdins:endogenous antibiotic peptides small intestinal Panteh cells. Adv Exp Med Biol.1995,371A:251-255.
    [70]London S D, Cebra J J, Rubin D H.Intraepithelial lymphocytes contain virus-specific, MHC-restricted cytotoxic cell precursors after gut mucosal immunization with reovirus serotype 1/Long[J].1 Reg Immunol.1989,2(2):98-102.
    [71]Blumberg R S, Stenson W F. The immune system. In:Yamada T (ed) Textbook of gastroenterology [J]. Lippincott, Philadelphia.1999,11:140
    [72]Balk S P, Ebert E C, Blumenthal R L, et al. Oligoclonal expansion and CD1 recognition by human intestinal intraepithelial lymphocytes [J]. Science.1991,253:1411-1415.
    [73]Blumberg R S, Yockey C E, Gross G G. et al. Human intestinal intraepithelial lymphocytes are derived from a limited number of T cell clones that utilize multiple V β T cell receptor genes [J].J Immunol.1993,150(11):5144-5153.
    [74]Van Kerckhove C, Russel G J, Deusch K, et al.Oligoclonatity of human intestinal intraepithelial T cells [J]. J Exp Med.1992,175(1):57-63.
    [75]Freeman J A. Goblet cell fine structure [J].Anat. Rec.1966,154.121-148.
    [76]Shearman D J. Observations on the secretory cycle of goblet cell [J].Q J I exp. Physiol. cogn. med. Sci.1960,45,337-342.
    [77]Berlin J D. The localization of acid mucopolysaccharides in the Golgi complex of intestinal goblet cells [J]. Cell Biol.1967,32(3):760-766.
    [78]Swift J G, Mukherjee T M. Membrane changes associated with mucus production by intestinal goblet cell [J]. J Cell Sci.1978,33,301-316.
    [79]Specian R D, Oliver M G. Functional biology of intestinal goblet cell [J].Am J Physiol Cell Physiol.1991,260(2 pt 1):C183-C193.
    [80]Moncada D M, Kammanadiminti S J, Chadee K. Mucin and Toll-like receptors in host defense against intestinal parasites [J]. Trends Parasitol.2003,19(7):305-311.
    [81]Taupin D, Podolsky D K. Trefoil factors:initiators of mucosal healing [J]. Nat Rev Mol Cell Biol.2003,4(9):721-732.
    [82]Deplancke B, Gaskins H R.Microbial modulation of innate defense:goblet cells and the intestinal mucus layer [J]. Am J Clin Nutr.2001,73(6):1131S-1141S.
    [83]Van Klinken B J, Einerhand L W, Duits L A,, et al. Gastrointestinal expression and partial cDNA cloning of murine Muc2 [J]. Am J Physiol. Gastrointest Liver Physiol.1999,276(1 pt 1): G115-G124.
    [84]Forstner GG, Forstner J F. Gastrointestinal mucus. In Physiology of the Gastrointestinal Tract. 3rd ed. R. Johnson and P. Leonard, ed. Raven Press, New York, NY.1994:1255-1283.
    [85]Van Klinken B J, Dekker J, Buller H A, et al. Mucin gene structure and expression:Protection vs. adhesion [J]. Am J Physiol.1995,269(5 pt 1):G613-G627.
    [86]Belley A, Keller K, Gottke M, et al.Intestinal mucins in colonization and host defense against pathogens [J].Am J Trop Med Hyg.1999,60(4 Suppl 1):10-15.
    [87]Deplancke B, Gaskins H R. Microbial modulation of innate defence:Goblet cells and the intestinalmucus layer [J]. Am J Clin Nutr.2001,73(6):1131S-1141S.
    [88]Kiernan J A. Carbohydrate histochemisrty. in Histological and Histochemical Methods: Theory and Practice.2nd ed. Pergamon Press, Oxford, UK.1990:170-197.
    [89]Meslin J C, Fontaine N, Andrieux C.Variation of mucin distribution in the rat intestine, caecum and colon:Effect of the bacterial flora [J]. Comp Biochem Physiol A Mol Integr Physiol. 1999,123 (3):235-239.
    [90]Sharma R, Schumacher U. Carbohydrate expression in the intestinal mucosa[J]. Adv Anat. Embryol Cell Biol.2001,160:Ⅲ-Ⅸ,1-91.
    [91]Fontaine N, Meslin J C, Lory S, et al. Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora:Effect of inulin in the diet [J]. Br J Nutr. 1996,75(6):881-892.
    [92]Cebra J J. Influences of microbiota on intestinal immune system development [J]. Am J Clin Nutr.1999,69(5):1046S-1051S.
    [93]Deplancke B, Gaskins H R. Microbial modulation of innate defense:Goblet cells and the intestinalmucus layer [J]. Am J Clin Nutr.2001,73(6):1131S-1141S.
    [94]Sonnenburg J L, Xu J, Leip D D, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont [J]. Science.2005,307(5717):1955-1959.
    [95]. Taupin D R, Kinoshita K, Podolsky D K. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis [J]. ProcNatl Acad Sci. USA 2000,97:799-804.
    [96]Mashimo H. Wu D C, Podolsky D K, et al. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor [J]. Science.1996,274(5285):262-265.
    [97]Kindon H, Pothoulakis C, Thim L, et al. Trefoil peplide protection of intestinal epithelial barrier function:cooperative interaction with mucin glycoprotein [J]. Gastroenterology.1995. 109(2):516-523.
    [98]Beaven M A. Our perception of the mast cell from Paul Ehrlich to now [J].Eur J Immunol 2009;39(1):11-25.
    [99]Razin E, IhleJ N, Seldin D, et al. Interleukin 3:a differentiation and growth factor for the mouse mastcell that contains chondroitin sulfate E proteoglycan [J]. J Immunol.1984, 132(3):1479-1486.
    [100]Galli S J, Zsebo K M, Geissler E N. The kit ligand, stem cell factor [J]. Adv Immunol.1994, 55,1-96.
    [101]Reddy E P, Korapati A, Chaturvedi P, et al. IL-3 signaling and the role of Src kinases, JAKs and STATs:a covert liaison unveiled [J]. Oncogene.2000,19(21):2532-2547.
    [102]Theoharides T C, Conti P. Mast cells:the Jekyll and Hyde of tumor growth [J]. Trends Immunol.2004,25(5):235-241.
    [103]Galli S J, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses [J]. Nature Immunol.2005,6(2):135-142.
    [103]Kobayashi H, Ishizuka T, Okayama Y. Human mast cells and basophils as sources of cytokines [J]. Clin Exp Allergy.2000,30(9):1205-1212.
    [105]Bischoff S C, Crowe S E.Gastrointestinal food allergy new insights into pathophysiology and clinical perspectives [J]. Astroenterology.2005,128(4):1089-1113.
    [106]Brightling C E, Bradding P. The re-emergence of the mas cell as a pivotal cell in asthma pathogenesis [J]. Curr Allergy Asthma Rep.2005,5(2):130-135.
    [107]Leung D Y, Boguniewicz M, Howell M D, et al.New insights into atopic dermatitis [J]. J Clin Inves.2004,113(5):651-657.
    [108]Theoharides T C, Kalogeromitros D. The critical role of mast cells in allergy and inflammation [J]. Ann N Y Acad Sci.2006,1088:78-99.
    [109]Midulla F. Tromba V, Lo Russo L, et al. Cytokines in the nasal washes of children with respiratory syncytial virus bronchiolitis [J]. Int J Immunopathol Pharmacol.2006,19(1):231-235.
    [110]Mekori Y A, Metcalfe D D. Mast cell-T cell interactions [J]. J Allergy Clin Immunol. 1999,1049(3 pt I)::517-523.
    [111]Trivedi N N. Caughey G H.. Mast Cell Peptidases-Chameleons of Innate Immunity and Host Defense [J]. Am J Respir Cell Mol Biol.2010.42(3):257-267.
    [112]Elson C O, Heck J A, Strober W. T cell regulation of murine IgA synthesis [J].J Exp Med.1979,149(3):632-643.
    [113]Kawanishi H, Saltzman L E, Strober W:Characteristics and regulatory function of murine Con A-induced, cloned T cells obtained from Peyer's patches and spleen:Mechanisms regulating isotype specific immunoglobulin production by Peyer's patch B cells [J]. J Immunol.1982,129(2): 475-483.
    [114]Kawanishi H, Saltzman L, Strober W:Mechanisms regulating IgA class-specific immunoglobulin production in murine gut associated lymphoid tissues. I. T cells derived from Peyer's patches that switch slgA B cells to slgA B cells in vitro [J]. J Exp Med.1983,157(2): 433-450.
    [115]McGhee J R, Mestecky J, Elson C O, et al.Regulation of IgA synthesis and immune response by T cells and interleukins[J]. J Clin Immunol.1989,9(3):175-99.
    [116]Brandtzaeg P, Valnes K, Scott H, et al. The human gastrointestinal secretory immune system in health and disease [J]. Scand J Gastroenterol Suppi..1985,114:17-38.
    [117]Mestecky J:The common mucosal immune system and current strategies for induction of immune responses in external secretions [J].J Clin Immunol.1987,7:265-276.
    [118]Scicchitano R, Stanisz A, Ernst P, et al.A common mucosal immune system revisited [M]. In Migration and Homing of Lymphoid Cells, Vol Ⅱ, Husband AJ (ed). Boca Raton, FL, CRC Press: 1-34.
    [119]Phillips-Quagliata J M, Lamm M E. Migration of lymphocytes in the mucosal immune system [M]. In Migration and Homing of Lymphoid Cells, Vol Ⅱ, Husband AJ (ed). Boca Raton, FL, CRC Press:53-75.
    [120]Casanova J E.Structure and function of the polymeric immunoglobulin receptor in epithelial cells [M]. In Kagnoff M F, Kiyono H (eds) Essentials of mucosal immunology. Academic Press. San Diego,1996:151-166.
    [121]Mestecky J, Lue C, Russell M W. Selective transport of IgA. Cellular and molecular aspects[J]. Gastroenterol Clin North Am.1991,20(3):441-471.
    [122]Youngman K R, Fiocchi C, Kaetzel C S. Inhibition of IFN-gamma activity in superuatants from stimulated human intestinal mononuclear cells prevents up-regulation of the polymeric Ig receptor in an intestinal epithelial cell line[J]. J Immunol.1994,153(2):675-681.
    [123]Piskurich J F, France J A, Tamer C M, et al. Interferon-gamma induces polymeric immunoglobulin receptor mRNA in human intestinal epithelial cells by a protein synthesis dependent mechanism [J]. Mol Immunol.1993.30(4):413-421.
    [124]Kvale D, Brandtzaeg P. Constitutive and cytokine-induced expression of HLA molecules, secretory component, and intercellular adhesion motecule-1 is modulated by butyrate in the colonic epithelial cell line HT-29 [J]. Gut.1995,36(5):737-742.
    [125]Brandtzaeg P. Halstensen T S, Huitfeldt H S, et al. Epithelial expression of HLA, secretory component (poly-Ig receptor), and adhesion molecules in the human alimentary tract [J]. Ann N Y Acad Sci.1992.664:157-179.
    [126]李树鹏,赵献军.黄芪多糖、益生菌合生元对雏鸡生长和免疫的作用[J].中国农学通报,2005,21(6):51-55.
    [127]刘惠,李丽立,张彬等.中草药多糖对断奶仔猪生长性能和免疫器官指数的影响[J].养猪.2007,1:5-7.
    [128]朱南山,张彬,李丽立等.复方中药多糖对断奶仔猪生长性能和激素水平的影响[J].广东农业科学.2007,2:72.74.
    [129]单俊杰.黄芪毛状根多糖与黄芪多糖化学组成及免疫活性的比较[J].中草药,2002,33(12):1096-1099.
    [130]安松兰,张善玉孙,朴惠顺.1年生黄芪中黄芪多糖对小鼠免疫器官指数的影响[J].延边大学医学学报,2007,30(1):195-197.
    [131]胡兴吕,黄旭东,许燕.板蓝根凝集素对小鼠胸腺发育的影响[J].解剖学杂志.2008,28(6):559-561.
    [132]杨铁虹,贾敏,梅其炳.当归多糖对细胞免疫功能的增进作用[J].细胞与分子免疫学杂志,2005,21(6):782-784.
    [133]张乐萃,王金宝,孙月平,等.新城疫中药多糖佐剂油乳苗对鸡免疫器官发育的影响[J].中国兽医学报.1998.18(4):378-381.
    [134]邱妍,崔保安,胡元亮.等.4种多糖对免疫雏鸡抗体效价和T淋巴细胞的影响[J].南京农业大学学报.2008,31(1):77-81.
    [135]张红英,崔沛,崔保安,等.板蓝根多糖对PRRS弱毒苗免疫猪抗体和T细胞亚群的影响[J].中国农学通报,2008,24(6):4-7
    [136]马仲华.家畜解剖及组织胚胎学[M].北京农业出版社,1990.
    [137]CasPary W F. physiology and pathophysiology of intestinal absorption [J]. Am J Clin Nutr. 1992,55:299-308.
    [138]王子旭,佘锐萍,陈越,等.日粮锌硒水平对肉鸡小肠黏膜结构的影响[J].中国兽医科技,2003(7):18-21.
    [139]韩正康.家畜营养生理学[M].北京农业出版社,1991:16-17.
    [140]Deplancke B, Gaskins H R.Microbial modulation of innate defense:goblet ceils and the intestinal mucus layer[J]. Am Soc Nutrition,2001,6(73):1131S-1141S.
    [141]Cebra J J.Influences of microbiota on intestinal immune system development [J]. Am Clin Nutr,1999,69(suppl):1046S-1051S.
    [142]刘彦威,刘娜.肥大细胞与T淋巴细胞[J].上海畜牧兽医通讯,1994,9(1):26-27.
    [143]黄兴兰.陈晓理,贾成瑶,等.大黄对Balb/c小鼠肠黏膜屏障保护作用的机理探讨[J].四川医学,1999,11(5):486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700