天童常绿阔叶林植被—大气界面水碳耦合模型与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被—大气界面是水汽和CO2交换的主要场所,该界面交换的水汽和CO2是陆地生态系统水、碳通量的主要组分,而且两者都受到冠层气孔导度的控制,因此冠层气孔导度成为陆地生态系统水碳耦合的主要节点。而冠层气孔导度对于环境因子响应敏感,对冠层水碳通量控制和调节的生态过程是非线性的,如何连续地模拟冠层的水碳通量是一个备受关注的科学问题。
     本论文选择天童常绿阔叶林为研究对象,于2009年6月-2011年3月,对栲树群落的树干液流、气象及水文要素、冠层叶片同位素以及该林区不同演替阶段的叶片碳同位素及水分利用效率进行了监测和研究,从树干液流与叶片碳同位素耦合的角度,建立了冠层水碳耦合模型,阐明了冠层水碳耦合过程。主要研究结果如下:
     1 2009年6月—2010年8月,林外总降雨量2316mm,林内穿透雨量、树干茎流量和林冠截留量分别占总降雨量的81.7%、2.3%和16.0%。穿透雨量与冠层叶面积指数、树冠开放度以及降雨因子具有极显著相关关系(P<0.01),树干径流量随树干胸径的增大而增加;林冠截留率与降雨量、降雨持续时间、降雨强度、降雨时间、空气相对湿度均呈极显著负相关(P<0.01),而与风速呈极显著正相关(P<0.01)。
     2天童常绿阔叶林植被演替,明显提高了0~60cm土壤深度的饱和导水率(Ks)。土壤容重、非毛管孔隙度、有机质含量是影响Ks的主要因子。植被演替到灌丛阶段,Ks均值已显著高于草地,演替到中后期阶段,Ks均值提高迅速,演替至顶极森林Ks均值达到最高(3.28mm min-1)。顶极群落栲树林能够抵御10年1遇的暴雨而不产生地表径流,次顶极群落木荷林能够抵御1年1遇的暴雨,而草地、灌丛和马尾松林等处于演替早期阶段的植物群落容易引发暴雨地表径流。
     3在栲树群落内,单日(2009年10月6日)单树蒸腾从最小值5.07(g m-2s-1)到最大值84.28(gm-2s-1),相差18倍,树种之间相比,栲树的日平均蒸腾量是木荷的2倍。反映了大小不同的树木个体在群落中对水分利用的差异、贡献和在群落中的功能地位。但是同一胸径级,木荷的树干液流和蒸腾速率较栲树快,因为木荷的气孔比栲树大。胸径较大的树木具有较高的整树蒸腾量,很大程度上归因于它的边材面积大、总液流量高,同时,高大树木在森林中占据空间优势,比其他个体从环境中获得较多的光热资源,这些条件保证了高大树木具有较高的液流量。不同气象环境条件下,栲树和木荷个体树干液流变化差异很大。在晴天,栲树和木荷的树干液流随太阳辐射有规律地变化,日进程曲线很规则,在中雨的天气条件下,栲树和木荷的树干液流值较晴天和多云天气迅速下降,日最大值仅为1.5gm-2s-1;在暴雨的气象条件下(2009年10月1日),栲树和木荷的树干液流降到0~0.5gm-2s-1极低的水平。一年内,栲树和木荷的蒸腾量表现出与季节变化吻合的规律。在11月到次年2月整个冬季,栲树和木荷的树干液流密度和树冠蒸腾量维持在一个很低的水平,3月份之后,树干液流密度开始上升,直到7、8月份,蒸腾量达到最大值,9月份之后开始下降,尤其是10月份以后下降速度非常明显。在诸多环境因子中,光合有效辐射和空气水蒸汽压亏缺是树干液流和蒸腾的主要驱动力。
     4用水量平衡方法测得的蒸散与用彭曼公式计算的蒸散比较接近,栲树群落的总蒸散占总降雨量的72.1%,土壤贮水变化值占总降雨量的20.2%,径流量仅占总降雨量的6.7%。在总蒸散中,林冠蒸腾量占总蒸散的81.4%,蒸散以林冠蒸腾为主,栲树冠层的蒸腾量最大值为7.2 mmd-1,出现在8月份,最小值为0.52 mmd-1,出现在2月。光辐射和空气水蒸汽压亏缺是影响冠层蒸腾的重要环境因子。栲树群落作为顶极群落具有巨大的拦蓄降雨和调节径流的作用。
     5常绿阔叶林木荷群落内6个常见树种叶片的δ13Cl值的范围在-28.45‰—-32.49‰之间,水分利用效率在3.5~4.7 mmolCO2·mol-1,6个树种水分利用效率的顺序为细叶青冈>木荷>苦槠>栲树>石栎>米槠。不同演替序列优势树种水分利用效率随演替进展表现出明显的协同变化规律,石栎的水分利用效率呈降低趋势,而栲树和木荷呈升高趋势。但是在后期演替阶段,木荷水分利用效率呈减少趋势,栲树一直在增加,优势种水分利用效率随演替进展的变化验证了天童植被演替序列的合理性。水分利用效率与生境有关,在山脊特殊生境,云山青冈水分利用效率最高,栲树和木荷较低,在灌丛生境,石栎水分利用效率最高,在水分条件较好的常绿阔叶林生境,栲树和木荷的水分利用效率较高。
     6栲树冠层沿8m高度梯度自上而下叶片δ13C范围在-27.57‰到-31.96‰之间,自上而下逐渐降低,存在Martinelli“冠层贫化效应”,下降值为-3.1‰,与Martinelli其提出的温带和热带冠层冠层叶片δ13C下降值-3.6‰非常吻合,为“冠层贫化效应”假说在我国东部亚热带常绿阔叶林区也成立提供了实验依据。栲树冠层WUE的均值范围在3.29到5.25mmolCO2 mol-1之间,水分利用效率WUE表现为冠层顶部>中部>底部的规律,在时间尺度上,5月份冠层上部的WUE最高,为5.25 mmolCO2 mol-1。在冠层梯度上,净光合速率Pn和Nmass均存在显著差异(p<0.01)。冠顶净光合速率显著高于冠下,从1月到7月Pn逐月上升,在7月份冠顶达到最高值15.4μmolCO2m-2s-1,9月份以后,Pn依次下降。Nmass也表现出与Pn相同的变化趋势,1-7月份呈上升趋势,9月份之后显著下降,最大值2.8%也出现在7月份。11月份到次年1月份比较低。在冠层梯度上,δ13C、WUE, Pn和Nmass之间均存在正相关的关系。
     7基于sap flow与冠层叶片13C的甄别率值Δ13C,首先建立栲树群落每个冠层梯度水碳耦合模型:然后根据每个冠层梯度的叶面积指数建立冠层整体平均水碳耦合模型:利用Li-6400对冠顶、冠下4 m、冠下6m高度的叶片光合速率进行实测,对模型进行验证,结果表明实测值与预测比较接近,所建模型精度很高(R=0.90,F=46.84,P<0.0001),具有可靠性。
     把冠层叶片δ13C值、树干液流值以及叶面积指数代入建立的模型,获取得了栲树冠层连续的瞬时平均净光合速率数据。以2010年8月份为例,上午8点之前,处于很低的水平,接近于0,上午8:00之后开始迅速上升,10:00达到最大值,之后开始下降,下午18:00以后,又恢复到0值附近。气温和光合有效辐射与冠层净光合速率也极为相关,可以用对数曲线表示。空气水汽压亏缺与冠层净光合速率呈正线性正相关。当冠层蒸腾量小于200 g m-2s-1时,冠层光合速率随蒸腾速率的增加而增加,当冠层蒸腾量大于200 g m-2s-1时,冠层光合速率随蒸腾速率的增加而减小。
     8近60年,天童地区月平均气温、降雨量和月参考蒸散量(ET0)在7、8月份明显增加,年平均气温、降雨量和ET0增加趋势十分显著(P<0.001);天童地区常绿阔叶林56年NPP的平均值为12.196t·hm-2·a-1,近60年升高趋势极为显著(P<0.0001);未来温度升高2℃,降水量增加20%的情景下,该地区常绿阔叶林的NPP将升高15.9%。未来温度升高2℃,降水量减少20%的情景下,NPP将降低4.9%。未来温度升高2℃,降水量不变的情景下,NPP将增加5.5%;年降雨量、ET0年均值和年平均气温是影响NPP变化的主要因子。
The vegetation-atmosphere interface is the exchange space of water and CO2. Water and CO2 are the main components of water and carbon fluxes of the terrestrial ecosystem, and are controlled by canopy stoma. Therefore, canopy stoma is the connected point of water and carbon of the territal ecosystem. Canopy stoma is sensitive to environmental factors, and the ecological process that canopy controlled and adjusted the water and carbon fluxes. How to model the fluxes of water and carbon of the canopy is a scientific issues that many scientists focused on.
     This study was conducted in the evergreen broad-leaved forest in Tiantong National Forest Park, and measured sap flow, meteorological and hydrological factors, leaf carbon isotope of canopy, and water use effiency, based on coupling of sap flow and leaf carbon isotope, the coupling model of water and carbon model is created, and the process of water and carbon coupled is clarified.
     1 Permanent plot study was carried out from the meteorological data from June 2009 to august 2010 in Forest Ecosystem Observation and Research station in Tiantong. Total rainfall outside the forest was 2316 mm, and the throughfall, stemflow, and canopy interception accounted for 81.7%,2.3% and 16.0% of the total rainfall respectively. The through fall and stem flow had significant linear relationships with rainfall (P<0.01). The canopy interception rate showed significantly negative correlation with the rainfall, rainfall duration, rainfall intensity, and relative humidity during rainfall (P<0.01), but positive correlation with wind velocity (P<0.01).
     2 Saturated hydraulic conductivity (Ks) increased significantly in the 0-60 cm layers with the vegetation succession (p<0.001). The average Ks in the 60 cm soil profile significantly increased from the bare land, Lithocarpus glaba+Laroptahon chenese shrub, Pinus massonian forest, Schiima superba+Pinus massoniana forest, Schima superba forest to Castanopsis fargesii forest (df=5,F=10.69, p=0.002). In the shrub stage, the average Ks had made significant difference to bare land (p<0.05), in the Schima superba forest, the average Ks had been increased significantly(p<0.05), in the climax stage, the average Ks was 3.28 mm min-1 and reached maximum value. Soil bulk density, non-capillary porosity, and silt content were the key factors that affected Ks. Soil organic matter (SOM) was also increased with vegetation succession and positively correlated to Ks significantly (p<0.01). Castanopsis fargesii forest was able to resist the storm intensity of 10 years recurrence. Schima superba forest was able to resist the storm intensity of 1 year recurrence. However, overland runoff occurred easily in the early successional stages, such as, in the bare land, Lithocarpus glaba+Laroptahon chenese shrub, Pinus massonian forest.
     3 In the Castanopsis fargesii community, the values of transpiration varied clearly from 5.07 (g m-2 s-1) to 84.28 (g m-2s-1), Maximum value was 18 times greater than minimum value, which indicated that trees with different diameters varied obviously in water using straggles, contribution, functions in the same community. Trees with larger diameter had higher value of transpiration because of their larger sapwood area. Furthermore, Tall trees occupied superior spaces and obtained more resources than any other tree species. These conditions ensured tall trees had greater sap flow. Although the value of transpiration of Catanopsts fargesii was greater than that of Schima superba attributed to larger diameter and sapwood area of Catanopsts fargesii, the sap low velocity of Schima superba was higher than Catanopsts fargesii because the stoma size of Schima superba was bigger than Catanopsts fargesii. Sap flow of Catanopsts fargesii and Schima superba varied widely associated with weather conditions. In the sun day, sap flow regularly changed with the solar radiation, in the cloudy day, sap flow fluctuated with solar radiation. However, in moderate rain, sap flow decreased significantly, and in the storm weather condition, such as October 1,2009, the value of sap flow declined to 0-0.5 g m-2 s-1, a lowest value in the same month. Annual change of sap flow and transpiration of Catanopsts fargesii and Schima superba was consistent with seasonal change. In winter from December to February, sap flow and transpiration was at a low lever, then became increasing in March, till to July and August, sap flow and transpiration reached maximum value. After September, sap flow and transpiration began decreasing. Photosynthetic active radiation (PAR) and vapor deficient (D) driving force of canopy transpiration.
     4 The values of evapotranspiration were closed estimated by the method of water balance and Penman-Metainth Equation in Catanopsts fargesii community. During the study period from June, 2009 to August,2009, evapotranspiration, soil water content change, and run off accounted for 72.1%,20.2%, and 6.7% of total rainfall. Canopy transpiration accounted for 81.4% of evapotranspiration, which indicated that transpiration was the main component of evaportranspiration. The maximum value of Catanopsts fargesii canopy was 7.2 mm d-1 in August, and minimum value was 0.52 mm d-1 in February. Photosynthetic active radiation (PAR) and vapor deficient (D) driving force of canopy transpiration. The results of this study suggested that the climax forest, Catanopsts fargesii community had good function of intercepting rainfall and reforming runoff.
     5δ13C1, of six tree species varied from-28.45‰to-32.49‰, and water use effecint (WUE) varied from 3.5-4.7 mmolCO2·mol-1 in the Schima superba community. The WUE order of six tree species was Cyclobalanopsis myrsinae> Schima superba> Castanopsis sclerophylla> Catanopsts fargesii> Lithocarpus glaba> Castanopsis carlesii. The WUE of the dominant tree species collaboratly changed with the sequence of the forest succession. WUE of Lithocarpus glaba decreased, Catanopsts fargesii and Schima superba increased as the succession process. However,, WUE of Schima superba began to decreasing, and WUE of Catanopsts fargesii was still increased in the late ssuccessional stage. These results were so interesting that verified the reasonableness of the forest succession series in Tiantong National Park. WUE was correlated to habitation. On the ridge, WUE of Cyclobalanopsis sessilifolia was greatest, and lower values of Catanopsts fargesii and Schima superba increased as the succession process. However, In the shrub stage, where forest was serious disturbed, Lithocarpus glaba had higher WUE value, lower value of Catanopsts fargesii and Schima superba. However, in the sites of evergreen broad-leaved forest, where soil water conditions were better, WUE values of Catanopsts fargesii and Schima superba were greater than Lithocarpus glaba.
     6 The mean value ofδ13C under the gradients of 8 m canopy was from-27.57‰to-31.96‰, and showed Martinelli "canopy isotope depleted effect". The decreased value was-3.1‰, and this value was closed to-3.6% in the canopy of tropical rain forest and boreal forest. We tested this hypothesis in the subtropical evergreen broad-leaved forest in Eastern China. The mean of WUE along canopy was from 3.29 to 5.25 mmolCO2 mol-1. The order of WUE was upper canopy>middle canopy> low canopy. WUE along canopy temperately changed with the season change. The maximum value of WUE was 5.25 mmolCO2 mol-1, and appeared in May. Net photosynthetic rate (Pn) and Nmass varied significantly Along the gradient of canopy (p<0.01). Pn of the upper canopy was higher than lower canopy. Pn increased from January to July, and obtained maximum value (15.4μmolCO2 m-2 s-1) in July. After September, Pn began decreasing. Nmass showed same trend as Pn, and maximum value (2.8%) also appeared in July. From December to Januray, Nmass was lower than any othe month.δ13C, WUE, and Pn were positive correlated to Nmass along the gradient of canopy.
     7 Based on sap flow and△13C, The first step, The model of water coupled carbon was constructed in each canopy gradient of Catanopsts fargesii community: then, according to LAI of each canopy Catanopsts fargesii community
     In order to test accuracy of model, we used Li-6400 and measured the Pn in the upper canopy,4 m,6m layers along the gradients of canopy, and calculated Pn of canopy by big leaf model. The predicted data fitted the measured data very well, which indicated the model had good performance (F=46.89, P<0.0001).
     We inputted the data ofδ13C, sap flow density and LAI in August,2010 into the model, and obtained the data of Pn. The diurnal change of Pn accosiated with the solar radiation, before 8:00 AM, the value of Pn is very low, and closed to 0. After 8:00 AM, Pn increased quickly, and achieved maximum value at 10:00 AM. After this time, Pn began decreasing, after 18:00 PM, Pn declined to 0 levels. Air temperature (T) was linearly correlated to Pn, PAR, and D fitted Pn significantly as logarithmic curve. Moreover, canopy transpiration (Tr) was also correlated to Pn significantly. When Tr< 200 g m-2s-1, Pn increased with Tr increasing, when Tr> 200g m-2s-1, Pn declined with Tr increasing.
     8 Based on the daily meteorological data from 1954 to 2009 in Tiantong region, net primary productivity (NPP)model of Zhou Guangsheng was used to study effect of climate change on NPP of evergreen broad-leaved forest. The result showed that, (1) Monthly average values of air temperature, precipitation, and reference evaportranspiration (ET0) clearly increased in July and August, and the annual trends of average air temperature, precipitation, and ET0 increased significantly in Tiantong region in recent 60 years (P<0.001). (2) Annual average NPP of 56 years was 12.196 t·hm-2·a-1, and increased significantly in recent 60 years (P<0.0001). (3) In the future, if air temperature increases 2℃and precipitation increases 20%, NPP will increase 15.9% in this region, if air temperature increases 2℃and rainfall decreases 20%, NPP will decrease 4.9%, if air temperature increases 2℃and rainfall is not changed, NPP will increase 5.5%. (4) Annual average precipitation, ET0 and air temperature were the main meteorological factors that affected NPP in this region.
引文
常志勇,包维楷,何丙辉,等.2006.岷江上游油松与华山松人工林混交林对降雨的截留分配效应.水土保持学报,20(6):3740.
    曹文强,韩海荣,马钦彦,等.2004.山西太岳山辽东栎夏季树干液流通量研究.林业科学,40(2):174-177.
    陈步峰,周光益,曾庆波,等.1998.热带山地雨林生态系统水文动态特征研究.植物生态学报,22(1):68-75.
    陈世苹,白永飞,韩兴国.2002.稳定性碳同位素技术在生态学研究中的应用.植物生态学报,26(5):549-560.
    崔向慧,李海静,王兵.2006.江西大岗山常绿阔叶林生态系统水量平衡研究,林业科学,42(2):8-12.
    樊敏,马履一,王瑞辉.2008.刺槐春夏季树干液流变化规律.林业科学,44(1):41-45.
    方精云.2000.中国森林生产力及其对全球气候变化的响应.植物生态学报,24(5):513-517.
    樊军,王全九,邵明安.盘式吸渗仪测定土壤导水率的两种新方法.农业工程学报,2007,23(10):14-18.
    方精云.2000.北半球中高纬度的森林碳库可能远小于目前的估算.植物生态学报,24(5):635-638.
    方精云,刘国华,朱彪,等2006.北京东灵山三种温带森林生态系统的碳循环.中国科学D辑地球科学,36(6):533-543.
    何勇,董文杰,季劲松,等.2005.基于AVM的中国陆地生态系统净初级生产力模拟.地球科学进展,20(3):345-349.
    黄忠良,丁铭懋,张祝平,等.1994.鼎湖山季风常绿阔叶林的水文学过程及其氮素动态.植物生态学报,18(2):194-199.
    胡克林,李保国,陈研.2006.表层土壤饱和导水率的空间变异对农田水分渗漏的影响.水利学报,37(10):1217-1223.
    梁向锋,赵世伟,张扬,等.2009.子午岭植被恢复对土壤饱和导水率的影响.生态学报,29(2):636-642.
    侯英雨,柳钦火,延昊,等.2007.我国陆地植被净初级生产力变化规律及其对气候的响应.应用生态学报,28(9):1546-1553.
    柯金虎,朴世龙,方精云.2003.长江流域植被净第一性生产力及其时空格局研究.植物生态学报,27(6):764-770
    李广德,贾黎明,富丰珍.2010.三倍体毛白杨不同方位树干边材液流特性研究.西北植物学报,(6):1209-1218.
    李海涛,陈灵芝.1998.应用热脉冲技术对棘皮桦和五角枫树干液流的研究.北京林业大学学报,20(1):1-6.
    雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988,77-78.
    刘晨峰,张志强,孙阁等.2009.基于涡度相关法和树干液流法评价杨树人工林生态系统蒸发散及其环境响应.植物生态学报,33(4):706-718.
    李焕波.2008.黄土高原红富士苹果树干茎流速率的研究.西北农林科技大学硕士论文.
    刘建立,王彦辉,管伟,等.2008.六盘山北侧生长季内华北落叶松树干液流速率研究.华中农业大学学报,27(3):434-440.
    刘京涛,刘世荣.2006.植被蒸散研究方法的进展与展望.林业科学,42(6):108-114.
    刘京涛.2006.岷江上游植被蒸散时空格局及其模拟研究.中国林业科学研究院博士论文.
    刘敏,贺康宁,于洋.2009.青海云杉树干液流研究.水土保持应用技术,12(1):1-6.
    刘世荣,温远光,等.1996.中国森林生态系统水文生态功能规律.北京:中国林业出版社.
    刘世荣,常建国,孙鹏森.2007.森林水文学:全球变化背景下的森林与水的关系.植物生态学报,31(5):753-756.
    刘世荣,郭泉水,王兵.1998.中国森林生产力对气候变化响应的预测研究.生态学报,18(5):478-483.
    刘钰,Pereira LS, Teixeira JL,等.1997.参照腾发量的新定义及计算方法对比.水利学报,28(6):27-33
    马长明,袁玉欣,翟明普.2008.基于物候期的核桃树干液流特征.东北林业大学学报,36(1):4-9.
    马玲,赵平,饶兴权,等.2005.马占相思树干液流特征及其与环境因子的关系.生态学报, 29(10):2146-2151.
    梅婷婷,王传宽,赵平,等.2010.木荷树干液流的密度特征.林业科学,(1):40-47.
    孟陈.2009.栲树冠层光合生理生态学研究.华东师范大学硕士毕业论文.
    倪健.1996.中国亚热带常绿阔叶林净第一性生产力的估算.生态学杂志,15(6):1-8.
    彭舜磊,由文辉.2010.天童亚热带常绿阔叶林降雨再分配的数量特征.中国科技论文在线学报,5(5):387-396.
    彭舜磊,由文辉,沈会涛.2010.植被群落演替对土壤饱和导水率的影响.农业工程学报,26(11):78-84.
    彭舜磊,由文辉,郑泽梅,王良衍.2011.近60年气候变化对天童常绿阔叶林净第一生产力的影响.生态学杂志,30(3):502-507.
    茹桃勤.2007.刺槐无性系水分利用效率和适应性研究.北京林业大学博士论文.
    单秀枝,魏由庆,严惠峻,等.1998.土壤有机质含量对土壤水动力学参数的影响.土壤学报,35(1):1-9.
    桑玉强,刘全军,吴文良等.2008.毛乌素沙地新疆杨生长季节蒸腾耗水规律.东北林业大学学报,36(9):28-30.
    时忠杰,王彦辉,徐丽宏,等.2009.六盘山华山松(Pinus armandii)林降雨再分配及其空间变异特征生态学报.29(1):76-85.
    孙守家,古润泽,丛日晨,等.2006.银杏树干茎流变化及其对抑制蒸腾措施的响应.林业科学,42(5):22-28.
    宋永昌,陈小勇,王希华.2005.中国常绿阔叶林研究的回顾与展望.华东师范大学学报(自然科学版),1:1-7.
    宋永昌,王祥荣.1995.浙江天童国家森林公园的植被和区系.上海:上海科学技术出版社.18-20.
    宋永昌.1999.中国东部森林植被带划分之我见.植物学报,41(5):541-552.
    孙鹏森,马履一.2000.油松树干液流的时空变异性研究.北京林业大学学报.22(5):1-6.
    孙慧珍,周晓峰,康绍忠.2004.叶斑病对白桦树干液流的影响,西北植物学报,24(5):837-842.
    孙慧珍,周晓峰.2002.白桦树干液流的动态研究.生态学报,22(9):1387-1391.
    孙慧珍.2002.东北东部山区主要树种树干液流动态及与环境因子关系.东北林业大学博士
    孙慧珍,康绍忠,龚道枝.2006.测定位点对计算梨树树干液流的影响.应用生态学报,17(11):2024-2028
    孙善磊,周锁铨,薛根元,等.2010.环杭州湾地区近36年自然植被净初级生产力的变化特征.自然资源学报.25(5):830-841.
    王瑞辉,马履一,奚如春等.2008.北京7种园林植物及典型配置绿地用水量测算.林业科学,44(10):63-68.
    王艳君,姜彤,许崇育,等.2005.长江流域1961—2000年蒸发量变化趋势研究.气候变化研究进展,1(3):99-105.
    王翠,王传宽,孙慧珍等.2008.移栽自不同纬度的兴安落叶松(Larix gmefinii Rupr.)的树干液流特征.生态学报,28(1):136-144.
    王华赵平蔡锡安马玲等.2008.马占相思树干液流与光合有效辐射和水汽压亏缺间的时滞效应.应用生态学报,19(2):225-230.
    王希华,阎恩荣,严晓,等.2005.中国东部常绿阔叶林退化群落分析及恢复重建研究的一些问题生态学报,25(7):1796—1803.
    王效科,冯宗炜,欧阳志云.2001.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,12(1):13-16.
    吴丽萍王学东尉全恩,等.2003.樟子松树干液流的时空变异性研究.水土保持研究,10(4):66-68.
    吴芳,陈云明,于占辉.2010.黄土高原半干旱区刺槐生长盛期树干液流动态.植物生态学报,34(4):469-476.
    夏永秋,邵明安.2008.黄土高原半干旱区柠条树干液流动态及其影响因子.生态学报,28(4):137-144.
    肖金喜,宋永昌.1993.天童国家森林公园常绿阔叶林水文作用初步研究.山西师范大学学报,2(增):84-89.
    熊伟,王彦辉,于澎涛等.2008.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推.林业科学,44(1):34-40.
    徐军亮,马履一.2008.土壤温度对油松(Pinus tabulaeformis)树干液流活动的影响.生态学报,28(12):6107-6112.
    胥晓.2004.四川植被净第一性生产力(NPP)对全球气候变化的响应.生态学杂志,23(6):19-24.
    徐小牛,王勤,平田永二.2006.亚热带常绿阔叶林水文生态特征.应用生态学报,17(9):1570-1574.
    杨建军.2009.基于遥感的新疆潜在蒸散模式研究.新疆大学博士论文.
    殷秀辉.2010.油松树干液流动态研究.西北农林科技大学硕士论文.
    严昌荣Down.,A.1999.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究.生态学报,19(6):793-797.
    严昌荣,韩兴国,陈灵芝,等.1998.暖温带落叶阔叶林主要植物叶片中δ13C值的种间差异及时空变化.植物学报,40(9):853-859.
    杨同辉,宋坤,达良俊,等.2010.中国东部木荷-米槠林的生物量和地上净初级生产力.中国科学:生命科学,40(7):610-619.
    杨保,周清波,施雅风.2002.长江下游地区过去300年的气候变化.长江流域资源与环境,11(4):352-357.
    闫俊华.1999.森林水文学研究进展.热带亚热带植物学报,7(4):347-356.
    闫淑君,洪伟,吴承祯,等.2001.福建近41年气候变化对净初级生产力的影响.山地学报,19(6):522-536.
    于贵瑞,王秋凤,于振良.2004.陆地生态系统水一碳耦合循环与过程管理研究.地理科学进展,19(5):831-939.
    于贵瑞等.2010.植物光合蒸腾与水分利用效率生理生态学研究.科学出版社.
    于强,谢贤群,孙菽芬,等.1999.植物光合生产力与冠层蒸散模拟研究进展.生态学报,19(5):745-753.
    于占辉,陈云明,杜盛等.2009.黄土高原半干旱区侧柏(Platycladus orientalis)树干液流动态.生态学报,29(7):3970-3976.
    余新晓,赵玉涛,张志强,等.2003.长江上游亚高山暗针叶林土壤水分入渗特征研究.应 用生态学报,14(1):15-19.
    张一平,王馨,王玉杰,等.2003.西双版纳地区热带季节雨林与橡胶林林冠水文效应比较研究.生态学报,23(12):2653-2665.
    赵风华,于贵瑞.2008.陆地生态系统碳—水耦合机制初探.地理科学进展,27(1):32-38.
    赵平,马玲,孙谷畴,等.2005.利用基于sap flow测定值的冠层气孔导度和13C甄别率测定森林的碳同化率.科学通报,50(15):1620-1626.
    赵平,饶兴权,马玲,等.2006.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异.生态学报26(12):4050-4058.
    周光益,曾庆波,黄全,等.1995.热带山地雨林林冠对降雨的影响分析.植物生态学报,3(19):201-207
    臧春鑫,杨劼,袁劫等.2009.毛乌素沙地中间锦鸡儿整株丛的蒸腾特征.植物生态学报,33(4):719-727
    张雷,孙鹏森.刘世荣.2009.树干液流对环境变化响应研究进展.生态学报,29(10):5600-5610.
    张庆费,宋永昌,吴化前,等.1999.浙江天童常绿阔叶林演替过程凋落物数量及分解动态植物生态学报,23(3):250-255.
    张庆费,由文辉,宋永昌.浙江天童森林公园植物群落演替对土壤物理性质的影响[J].植物资源与环境,1997,6(2):3640.
    张中峰,黄玉清,李先琨,等.2008.岩溶区青冈栎树干液流特征及其与环境因子关系.中国岩溶.27(3):228-234.
    郑元润,周广胜,张新时,等.1997.中国陆地生态系统对全球变化的敏感性研究.植物学报,39(9):837-840.
    周广胜,张新时.1996.全球气候变化的中国自然植被的净第一性生产力研究.植物生态学报,120(1):11-19.
    周海光,刘广全,焦醒.等.2008.黄土高原水蚀风蚀复合区几种树木蒸腾耗水特性.生态学报,28(9):4568-4574.
    周孝明,陈亚宁,李卫红等.塔里木河下游胡杨树干液流特征研究.中国沙漠,2008,28(4):673-678.
    Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92,463-474.
    Amoozegar A (1989) A compact constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone. Soil Science Society Of America Journal 53,1356-1361.
    Amthor JS (1994) Scaling CO2-photosynthesis relationships from the leaf to the canopy. Photosynthesis Research 39,321-350.
    Axel T H.2000. Spatial and temporal characteristics of reference evapotranspiration trends over China. International Journal of Climatology,20,381-396.
    Bonal D, Barigah TS, Granier A, Guehl JM (2000) Late-stage canopy tree species with extremely low delta 13C and high stomatal sensitivity to seasonal soil drought in the tropical rainforest of French Guiana. Plant Cell & Environment 23,445-459.
    Bonal D, Sabatier D, Montpied P, Tremeaux D, Guehl JM (2000) Interspecific variability of δ 13 C among trees in rainforests of French Guiana: functional groups and canopy integration. Oecologia 124,454-468.
    Bovard BD, Curtis PS, Vogel CS, Su HB, Schmid HP (2005) Environmental controls on sap flow in a northern hardwood forest. Tree Physiology 25,31-38.
    Braun P, Schmid J (1999) Sap flow measurements in grapevines (Vitis vinifera L.)-2. Granier measurements. Plant And Soil 215,47-55.
    Cao Y, Ouyang ZY, Zheng H, Huang ZG, Wang XK, Miao H (2008) Effects of forest plantations on rainfall redistribution and erosion in the red soil region of southern China. Land Degradation & Development 19,321-330.
    Cermak J, Kucera J, Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees Structure And Function 18,529-546.
    Chen JM, Liu J, Cihlar J, Goulden ML (1999) Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling 124,99-119.
    Cienciala E, Kucera J, Malmer A (2000) Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo. Journal Of Hydrology 236,109-120.
    Clearwater MJ, Meinzer FC, Andrade JL, Goldstein G, Holbrook NM (1999) Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiology 19,681-687.
    Cochard H, Breda N, Granier A (1996) Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Annales Des Sciences Forestieres 53,197-206.
    Cohen Y, Cohen S, Cantuarias-Aviles T, Schiller G (2008) Variations in the radial gradient of sap velocity in trunks of forest and fruit trees. Plant And Soil 305,49-59.
    Cohen Y, Fuchs M, Green GC (1981) Improvement of the heat pulse method for determining sap flow in trees. Plant, Cell & Environment 4,391-397.
    Crockford RH, Richardson DP (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes 14, 2903-2920.
    Czikowsky MJ, Fitzjarrald DR (2009) Detecting rainfall interception in an Amazonian rain forest with eddy flux measurements. Journal Of Hydrology 377,92-105.
    Dai Y, Zeng X, et al. (2003) The common land model. Bulletin Of The American Meteorological Society 84,1013-1024.
    Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33,507-559.
    Deans JD, Munro RC (2004) Comparative water use by dryland trees in Parklands in Senegal. Agroforestry Systems 60,27-38.
    Delzon S, Loustau D (2005) Age-related decline in stand water use:sap flow and transpiration in a pine forest chronosequence. Agricultural And Forest Meteorology 129,105-119.
    Delzon S, Sartore M, Granier A, Loustau D (2004) Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology 24,1285-1293.
    Duursma RA, Marshall JD (2006) Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest. Trees Structure And Function 20,496-506.
    Ehleringer JR, Cook CS (1998) Carbon and oxygen isotope ratios of ecosystem respiration along an Oregon conifer transect: preliminary observations based on small-flask sampling. Tree Physiology 18,513.
    Ermak J, Ku Era J, Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees-Structure And Function 18,529-546.
    Ewers BE, Mackay DS, Gower ST, Ahl DE, Burrows SN, Samanta SS (2002) Tree species effects on stand transpiration in northern Wisconsin. Water Resources Research 38,1-11.
    Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149,78-90.
    Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annual Review Of Plant Biology 40,503-537.
    Ford CR, McGuire MA, Mitchell RJ, Teskey RO (2004) Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Tree Physiology 24,241-249.
    Forrester DI, Collopy JJ, Morris JD (2010) Transpiration along an age series of Eucalyptus globulus plantations in southeastern Australia. Forest Ecology And Management 259,1754-1760.
    Friend AD (2001) Modelling canopy CO2 fluxes: are big-leaf' simplifications justified? Global Ecology And Biogeography 10,603-619.
    Garten CT, Taylor GE (1992) Foliar δ13C within a temperate deciduous forest: spatial, temporal, and species sources of variation. Oecologia 90,1-7.
    Germer S, Elsenbeer H, Moraes JM (2006) Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondenia, Brazil). Hydrology And Earth System Sciences 10,383-393.
    Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Cavelier J, Jackson P, Celis A (1998) Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell And Environment 21,397-406.
    Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agricultural And Forest Meteorology 100,291-308.
    Granier A, Breda N (1996) Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements. Annales Des Siences Forestieres 53,537-546.
    Granier A, Huc R, Barigah ST (1996) Transpiration of natural rain forest and its dependence on climatic factors. Agricultural And Forest Meteorology 78,19-29.
    Green S, Clothier B, Jardine B (2003) Theory and practical application of heat pulse to measure sap flow. Agronomy Journal 95,1371-1379.
    Gush MB (2008) Measurement of water-use by Jatropha curcas L. using the heat-pulse velocity technique. Water SA 34,579-583.
    Holtum JAM, Winter K (2005) Carbon isotope composition of canopy leaves in a tropical forest in Panama throughout a seasonal cycle. Trees Structure And Function 19,545-551.
    Hu KL, Li BG, Chen Y (2006) Effect of spatial variability of surface soil saturated hydraulic conductivity on water drainage at field scale. Journal of Hydraulic Engineering 37,1217-1223.
    IPCC. Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment. New York:Cambridge University Press.
    James SA, Clearwater MJ, Meinzer FC, Goldstein G (2002) Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiology 22,277-283.
    Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal Of Soil Science 58,523-546.
    Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 273,593.
    Jarvis PG, McNaughton KG (1986) Stornata control of transpiration: Scaling up from leaf to region. Advanced in Ecology Research 15,1-49.
    Jimenez MS, Nadezhdina N, Ermak J, Morales D (2000) Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands. Tree Physiology 20,1149-1156.
    Kostner B, Granier A, Cermak J (1998) Sapflow measurements in forest stands:methods and uncertainties. Annales Des Siences Forestieres 55,13-27.
    Kumagai T, Saitoh TM, Sato Y, Morooka T, Manfroi OJ, Kuraji K, Suzuki M (2004) Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp
    forest in Sarawak, Borneo:dry spell effects. Journal Of Hydrology 287,237-251.
    Lado MP, Ben-Hur A (2004) Organic matter and aggregate size interactions in infiltration, seal formation, and soil loss. Soil Science Society Of America Journal 68,935-942.
    Lankreijer H, Hendriks MJ, Klaassen W (1993) A comparison of models simulating rainfall interception of forests. Agricultural And Forest Meteorology 64,187-199.
    Leuzinger S, Zotz G, Asshoff R, Korner C (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology 25,641-650.
    Llorens P, Domingo F (2007) Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal Of Hydrology 335,37-54.
    Lu P, Muller WJ, Chacko EK (2000) Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiology 20, 683-692.
    Lu P, Muller WJ, Chacko EK (2000) Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiology 20, 683-692.
    Lu P, Urban L, Zhao P (2004) Granier's Thermal Dissipation Probre (TDP) method for measuring sap flow in trees: theory and practice. Chinese Bulletin of Botany 46,631-646.
    Lundblad M, Lindroth A (2002) Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics. Basic and Applied Ecology 3,229-243.
    Luo Y, Medlyn B, Hui D, Ellsworth D, Reynolds J, Katul G (2001) Gross primary productivity in Duke Forest:modeling synthesis of CO2 experiment and eddy-flux data. Ecological Applications 11,239-252.
    Marshall DC (1958) Measurement of sapflow in conifers by heat transport. Plant Physiology 33, 385-396.
    Martinelli LA, Almeida S, Brown IF, Moreira MZ, Victoria RL, Sternberg L, Ferreira C, Thomas WW (1998) Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondonia, Brazil. Oecologia 114,170-179.
    Martinez-Vilalta J, Mangiron M, Ogaya R, Sauret M, Serrano L, Penuelas J, Pinol J (2003) Sap flow of three co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Tree Physiology 23,747-758.
    Medlyn BE, Badeck FW, et al. (1999) Effects of elevated CO2 on photosynthesis in European forest species:a meta-analysis of model parameters. Plant, Cell & Environment 22,1475-1495.
    Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Jackson P (1997) Control of transpiration from the upper canopy of a tropical forest:the role of stomatal, boundary layer and hydraulic architecture components. Plant Cell & Environment 20,1242-1252.
    Michael L R, Graham D F.2002. The cause of decreased pan evaporation over the past 50 years. Science,298,1410-1411.
    Mo X, Liu S, Lin Z, Zhao W (2004) Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. Journal Of Hydrology 285,125-142.
    Nemani RR, Kelling CD, Hashimoto H (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300,1560-1563.
    New M, Hulme M, Jones P.1999. Representing twentieth-century space-time climate variability. Part Ⅰ: Development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate, 12,829-856.
    New M, Hulme M, Jones P (1999) Representing twentieth-century space-time climate variability. Part Ⅰ, Development of a 1961-1990 mean monthly terrestrial climatology.Journal of Climate 12, 829-856.
    O'Grady AP, Eamus D, Hutley LB (1999) Transpiration increases during the dry season:patterns of tree water use in eucalypt open-forests of northern Australia. Tree Physiology 19,591-597.
    Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP (1999) Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiology 19,337-347.
    Oren R, Phillips N, Katul G, Ewers BE, Pataki DE (1998) Scaling xylem sap flux and soil water balance and calculating variance: a method for partitioning water flux in forests. Annales Des Siences Forestieres 55,191-216.
    Park A, Cameron JL (2008a) The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation. Forest Ecology And Management 255, 1915-1925.
    Park A, Cameron JL (2008b) The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation. Forest Ecology And Management 255, 1915-1925.
    Parolin P (2001) Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128,326-335.
    Pataki DE, Oren R, Katul G, Sigmon J (1998) Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions. Tree Physiology 18,307-315.
    Peramaki M, Eerro N, Sanna S, Hannu I, Erkki S, Pertti H, Timo V (2001) Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model. Tree Physiology 21,889-897.
    Petersen LW, Moldrup P, Jacobsen OH, Rolston DE (1996) Relations between specific surface area and soil physical and chemical properties. Soil Science 161,9-21.
    Peterson T C, Golubev V S, Groisman P Y.1995. Evaporation losing its strength. Nature,377: 687-688.
    Phillips N, Bond BJ, McDowell NG, Ryan MG (2002) Canopy and hydraulic conductance in young, mature and old Douglas-fir trees. Tree Physiology 22,205-211.
    Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. International Journal Of Climatology 23,479-510.
    Poyatos R, Cermak J, Llorens P (2007) Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements. Tree Physiology 27,537-548.
    Price K, Jackson CR, Parker AJ (2008) Variation of Surficial Soil Hydraulic Properties Across Land Uses in the Southern Blue Ridge Mountains. Journal of hydrology 383,256-268.
    Ryan MG, Bond BJ, Law BE, Hubbard RM, Woodruff D, Cienciala E, Kucera J (2000) Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia 124,553-560.
    Schaeffer SM, Williams DG, Goodrich DC (2000) Transpiration of cottonwood/willow forest estimated from sap flux. Agricultural And Forest Meteorology 105,257-270.
    Schulze ED, Ermak J, Matyssek M, Penka M, Zimmermann R, Vasicek F, Gries W, Ku Era J (1985) Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees—a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66,475-483.
    Scotter DR, Clothier BE, Harper ER (1982) Measuring saturated hydraulic conductivity and sorptivity using twin rings. Australian Journal Of Soil Research 20,295-304.
    Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. International Journal Of Remote Sensing 6,1335-1372.
    Staelens J, De Schrijver A, Verheyen K, Verhoest NEC (2006) Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover. Journal Of Hydrology 330,651-662.
    Tietje O, Hennings V (1996) Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes. Geoderma 69, 71-84.
    Tognetti R, Longobucco A, Miglietta F, Raschi A (1998) Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring. Plant Cell & Environment 21,613-622.
    Tognetti R, Longobucco A, Miglietta F, Raschi A (1999) Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring. Tree Physiology 19,261-270.
    Vogel JC (1978) Recycling of carbon in a forest environment. Oecol Plant 13,89-94.
    Wang YP, Jarvis PG (1990) Description and validation of an array model-MAESTRO. Agricultural And Forest Meteorology 51,257-280.
    Wang YP, Leuning R (1998) A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy Model description and comparison with a multi-layered model. Agricultural And Forest Meteorology 91,89-111.
    Williams DG, Cable W, et al. (2004) Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural And Forest Meteorology 125,241-258.
    Woolhiser DA, Smith RE, Giraldez JV (1996) Effects of spatial variability of saturated hydraulic conductivity on Hortonian overland flow. Water Resources Research 32,671-678.
    Wullschleger SD, Hanson PJ, Todd DE (2001) Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. Forest Ecology And Management 143,205-213.
    Xu CY, Gong LB, Jiang T (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. Journal of Hydrology,327,81-93.
    Yan ER, Wang XH, Guo M, Zhong Q, Zhou W, Li YF (2009) Temporal patterns of net soil N mineralization and nitrification through secondary succession in the subtropical forests of eastern China. Plant And Soil 320,181-194.
    Yi L, You WH, Song YC (2006) Soil animal communities at five succession stages in the litter of the evergreen broad-leaved forest in Tiantong, China. Frontiers of Biology in China 2,142-150.
    Yunusa I, Walker RR, Lu P (2004) Evapotranspiration components from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia. Agricultural And Forest Meteorology 127,93-107.
    Zang DQ, Beadle CL, White DA (1996) Variation of sapflow velocity in Eucalyptus globulus with position in sapwood and use of a correction coefficient. Tree Physiology 16,697-703.
    Zeppel M, Eamus D (2008) Coordination of leaf area, sapwood area and canopy conductance leads to species convergence of tree water use in a remnant evergreen woodland. Australian Journal Of Botany 56,97-108.
    Zhang HP, Simmonds LP, Morison J, Payne D (1997) Estimation of transpiration by single trees: comparison of sap flow measurements with a combination equation. Agricultural And Forest Meteorology 87,155-169.
    Zimmermann A, Zimmermann B, Elsenbeer H (2009) Rainfall redistribution in a tropical forest: Spatial and temporal patterns. Water Resources Research 45, W114131-18.
    Zimmermann R, Schulze ED, Wirth C, Schulze EE, McDonald KC, Vygodskaya NN, Ziegler W (2000) Canopy transpiration in a chronosequence of Central Siberian pine forests. Global Change Biology 6,25-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700