有机/无机复合微球的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于有机/无机复合微球兼具有有机材料和无机材料的优点,并且通过调节两相的组分、尺寸和结构可得到特殊结构和特殊性能的复合微球,近年来受到人们的广泛关注。有机/无机复合微球作为润滑剂具有耐热性好、强度高等特点,并且在制备过程中可以通过调节其制备方法,制备出特殊形态及性能的有机/无机复合微球。本文通过两种不同合成方法制备了具有不同结构和性能的有机/无机复合润滑微球,并对其结构和性能进行了研究,其主要工作如下:
     (1)插层型复合微球的制备及表征。
     以苯乙烯(St)、二乙烯基苯(DVB)为有机单体与有机蒙脱土(OMMT)通过悬浮聚合制备有机/无机复合微球。有机蒙脱土是由蒙脱土(MMT)经十六烷基三甲基溴化铵(CTAB)离子交换后得到。有机蒙脱土与有机单体通过超声波混合后,有机单体进入到蒙脱土层间,在引发剂作用下进行自由基聚合反应,反应过程中分子链段在蒙脱土层间进行增长,经8h反应固化,得到了聚苯乙烯/蒙脱土复合微球。
     利用傅立叶红外光谱仪(FT-IR)、X射线粉末衍射仪(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征了插层型复合微球的微观结构与形貌。结果表明,复合微球内部为插层型结构,即聚合物链段插入蒙脱土层间。用热重(TG)分析法研究了复合微球的热稳定性能,纯聚苯乙烯失重温度为399℃,而MMT、DVB含量分别为5%和10%(质量百分含量,下同)的复合微球失重温度达437℃,提高了38℃。采用ZN-3A泥饼粘附系数测定仪测定了插层型复合微球在钻井液中的润滑性能,结果表明,复合微球能有效的降低钻井液的摩阻系数(K_f),降低了钻井液的滤失量(FL),改进了钻井液的润滑性能。
     (2)核壳型复合微球、空心微球的制备及表征。
     以2-甲基丙烯酰氧乙基三甲基氯化铵(MTC)为功能单体与苯乙烯通过分散聚合制备了表面带有正电荷的功能化聚苯乙烯微球。以聚苯乙烯微球为模板,正硅酸四乙酯(TEOS)为前驱体,在碱性条件下水解,前驱体TEOS生成的硅羟基显负电性而被表面带正电荷的聚苯乙烯微球所捕获,从而在聚苯乙烯种球表面形成包覆层,制备了聚苯乙烯/二氧化硅核壳微球,经过煅烧的方法进一步制备了二氧化硅空心微球。
     通过傅立叶红外光谱仪(FT-IR)、X射线粉末衍射仪(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征了核壳微球及空心微球的微观结构与形貌。以植物油为基础油,采用MR-S10B四球摩擦试验机测试了二氧化硅空心微球的润滑性能。结果表明,在较低载荷下,二氧化硅空心微球具有较好的润滑性能。
In recent years, the preparation of organic-inorganic composite microspheres have been widely concerned because such composite microspheres combined the merits of organic materials and inorganic materials and its structure can be obtained by altering the two-phase composition, size and structure. Organic-inorganic composite microspheres as lubricant have some excellent properties, such as great heat-resistant and good strength. In this paper, the composite microspheres with different structures and properties were prepared by two different methods. The structures and properties of those composite microspheres had been studied. The main research contents as follows:
     (1) Preparation and characterization of intercalated composite microspheres.
     The intercalated composite microspheres were prepared by suspension polymerization with styrene(St), divinylbenzene(DVB) and organic montmorillonite(OMMT). OMMT were prepared by ion-exchange method between sodium montmorillonite(MMT) and cetyltrimethyl ammonium bromide (CTAB) in an aqueous solution. OMMT and organic monomer were mixed by using ultrasonic. And then the organic monomer inserted into the montmorillonite interlayer. When the free radical initiator caused polymerization, the polymer chains were growed up among the layers of OMMT. After 8h of polymerization, the intercalated polystyrene/organicmontmorillonite(PS/OMMT) composite microspheres were obtained.
     The microstructure and shape of composites were characterized by FT-IR、XRD、TEM and SEM. The result revealed that the polymer chains inserted into the montmorillonite interlayer and formed intercalated composite microspheres. The thermal stability of composites was studied by thermogravimetric analysis (TG). The TG result showed that the weight loss temperature of pure polystyrene was 399℃. While the weight loss temperature of composite microspheres with 5% MMT and 10% DVB was 437℃, which enhanced 38℃than pure polystyrene microspheres. The lubricity of intercalated composite microspheres in drilling fluid was tested by ZN-3A and. The result showed that the composite microspheres could reduce the friction coefficient, decrease the filter loss and improve the lubricity of drilling fluid.
     (2) Preparation and characterization of core-shell composite microspheres.
     The polystyrene microspheres with positively charged were prepared via dispersion polymerization of St with 2-(methacryloyl) ethyl trimethyl ammonium chlorilde (MTC). Using PS microspheres as template, TEOS as precursor, TEOS hydrolysised under alkaline conditions. The hydrolysate of TEOS with negative charged were captured by the PS template microspheres with positively charged. So the core-shell composite microspheres were obtained by this method. Then the core-shell composite microspheres were treated with high temperature and the hollow SiO_2 microspheres were obtained.
     The microstructure and shape of core-shell composites microspheres were characterized by FT-IR, XRD, TEM and SEM. The lubricity of hollow SiO_2 was tested by MR-S10B four-ball friction test machine. The result revealed that the hollow SiO_2 microspheres exhibited great lubricity at low load.
引文
[1]Sanchez C,Soler-llia G,Ribot F,et al.Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks[J].Chem.Mater,2001,13:3061-3083.
    [2]Reculusa S,Mingotaud C,Bourgeat E,et al.Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites[J].Nano.Letter,2004,4:1677-1682.
    [3]Tiarks T,Landfester K,Antonietti M.Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization[J].Langmuir,2001,17:5775-5780.
    [4]Barthet C,Hickey A J,Cairns D B,et al.Synthesis of novel polymer-silica colloidal nanocomposites via free-radical polymerization of vinyl monomers[J].Adv.Mater,1999,11:408-410.
    [5]Caruso F,Spasova M,Maceira V S,et al.Nanoengineering of particle surfaces[J].Adv.Mater,2001,13:11-22.
    [6]Gu Shunchao.Preparation of silica-polystyene core-shell particles up to microsizes[J].J.Colloid Interface.Sci,2004,272:314-320.
    [7]邹华,吴石山,沈健.单分散PS/SiO2纳米复合微球的制备与表征[J].高分子学报,2009,3:268-272.
    [8]Lu Y,Mclellan J,Xia Y N.Synthesis and crystallization of hybrid spherical collioids composed of polystyrene cores and silica shells[J].Langmuir,2004,20:3464-3470.
    [9]Kamata K,Lu Y,Xia Y N,et al.Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores[J].J.Am.Chem.Soc,2003,125:2384-2385.
    [10]李小琴,周娟,乔晓光,等.电子染色技术在SiO2/P(St-co-BA)复合微球TEM表征中的应用[J].高分子学报,2007,7:652.656.
    [11]龚涛,汪长春.具有核壳结构磁性复合微球的制备与表征[J].高分子学报,2008,11:1037-1042.
    [12]杜惠,刘志强,刘凤岐.复合Fe2O3纳米粒子的高分子微球的结构表征[J].高等学校化学学报,1997.9:1565-1567.
    [13]邓勇辉,王雷,样武利,等.反相微乳液合成30-100 nm磁性聚合物纳米微球[J].高等学校化学学报,2003,24:920-923.
    [14]Coltrain B K,Landry C J T,O Reily J M.Role of trialkoxysilane functionalization in the preparation of organic-inorganic composites[J].Chem.Mater,1993,5:1445-1455.
    [15]Loy D A,Shea K J.Bridged polysilesquioxanes:highly porous hybrid organic-inorganic materials[J]. Chem.Rev,1995,95:1431-1422.
    [16]Judeinstein P.Synthesis and properties of polyoxometalates based inorganic-organic polymers[J].Chem.Mater,1992,4:4-7.
    [17]Tsubokawa N,Hisanori I.Graft polymerization of methyl methacrylate from silica initiated by peroxide groups introduced onto the surface[J].Polym.Sci.Part A:Polym.Chem,1992,30:2241-2246.
    [18]Luciana S,Maurizio P,Fabio B.Grafting of selected presynthesized macromonomers onto various dispersions of silica particles[J].J.Appl.Polym.Sci,2002,85:1287-1296.
    [19]潘祖仁.高分子化学[M].北京:化学工业出版社,2002.
    [20]曹同玉,刘庆普,胡金生.聚合物乳液合成原理、性能及应用[M].北京:化学工业出版社,2000.
    [21]王群,府寿宽,于同隐.乳液聚合的最新进展[J].高分子通报,1996,9:141-151.
    [22]纪庆绪,程时远.无皂乳液聚合法合成功能高分子微球[J].高分子材料科学与工程,1994,2:9-15.
    [23]李刚辉,沈一丁,任庆海.无皂乳液聚合的稳定方法和应用进展[J].化工进展,2005,24:489-492.
    [24]马光辉,苏志国.高分子微球材料[M].北京:化学工业出版社,2005.
    [25]Okubo M,Shiozaki M,Tsujihiro,et al.Synthesis of greater than 2-μm-sized monodispersed polymer particles by one-step seeded polymerization for highly monomer-swollen polymer particles prepared utilizing the dynamic swelling method[J].Colloid.Polym.Sci,1999,2:278-285.
    [26]刘大壮,霍东霞,孙培勤.复合型乳胶粒子形态热力研究进展[J].胶体与聚合物,1999,17:18-20.
    [27]唐业仓,罗时忠,孙益民.微波种子聚合制备单分散PMMA高分子微球[J].合成化学,2002,10:324-326.
    [28]陈鑫,陈志民,崔占臣,等.表面富集季胺盐的交联聚苯乙烯微球合成与表征及其溶胀行为研究[J].高分子学报,2003,4:293-297.
    [29]邵谦,王成国.种子乳液聚合的研究进展[J].高分子通报,2007,10:57-61.
    [30]罗正平,张秋禹,谢钢,等.分散聚合研究[J].高分子通报,2002,5:35-40.
    [31]党高飞,付志峰.分散聚合技术及其研究进展[J].高分子通报,2008,10:41-46.
    [32]张凯,雷毅.分散聚合及单分散聚合物微球制备技术[J].化学世界,2002,7:378-381.
    [33]Thomson B,Rundin A,Lajoie G.Dispersion copolymerization of styrene and divinylbenzene[J].J.Appli.Polym.Sci,1996,59:2009-2028.
    [34]Y Lu Y,Tseng C M,Elaasser M S,et al.Uniform polymer particles by dispersion polymerization in alcohol[J].Polym.Sci.PartB:Polym.PHys,1988,26:1187-1195.
    [35]曹同玉,戴兵.分散聚合稳定机理及动力学研究[J].高分子科学与工程,1998,14:31-34.
    [36]Sato Katsuhiko,Suzuki Iwao,Anzai Jun-Ichi.Layered assemblies composed of sulfonated cyclodextrin and polyallylamine[J].Colloid.Polym.Sci,2004,282:287-290.
    [37]Furusawa K.Preparation of composie fine particles from polymer and inorganic power[J].Kobunshi Ronbunshu,1993,50:343-347.
    [38]Furusawa K.Preparation of composite particles with multilayers by hetercoagulation and encapsulation polymerization[J].Kobunshi Ronbunshu,1993,50:337-342.
    [39]Caruso F,Lichtenfeld H,Donath E,et al.Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles[J].J.Am.Chem.Soc,1998,120:8523-8524.
    [40]Mayya K S,Gittins D I,Dibaj A M,et al.Nanotubes prepared by templating sacrificial nickel nanorods[J].Nano.Lett,2001,1:727-730.
    [41]Caruso F,Spasova M,Susha A,et al.Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J].Chem.Mater,2001,13:109-116.
    [42]Caruso R A,Suaha A,Caruso F,et al.Multilayered titania,silica and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres[J].Chem.Mater,2001,13:400-409.
    [43]Wang D,Rogach A L,Caruso F,et al.Composite pHotonic crystals from semiconductor nanocrystal/polyelectrolyte-coated colloidal spheres[J].Chem.Mater,2003,15:2724-2729.
    [44]Kato N,Suchutz P,Fery A,et al.Thin multilayer films of weak polyelectrolytes on colloid particles[J].Macromolecules,2002,35:9780-9787.
    [45]M Konno.Synthetic method of inorganic/organic monodisperse mone-core particles[C].Reprint of 12th polymer microspheres symposium,2002:125-128.
    [46]Imholf A.Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells[J].Langmuir,2001,17:3579-3585.
    [47]El-Aasser,Dimonie V L.Encapsulation of inorganic particles via miniemulsion polymerization[J].Macromolecular Symposia 2000,155:181-198.
    [48]El-Aasser,Al-Ghamdi,Sudol E D,et al.Preparation and characterization of styrene miniemulsion polymerization droplets containing TiO2 particles[J].J.Polym.Sci.Part A:Polym.Chem,2000,38:4431-4440.
    [49]Shim J W,Kim J W,Han S H,et al.Zinc oxide/polymerthylmethacrylate composite microspheres by in situ suspension polymerization and their morpHological study[J].Colloid.Surf.Part A:PHys.Chem.Eng.Aspects.2002,207:105-111.
    [50]Bourgeat-Lami E,Lang J.Encapsulation of inorganic particles by dispersion polymerization in polar media:1.Silica nanoparticles encapsulated by polystyrene[J].J.Colloid.Interface.Sci,1998,197:293-308.
    [51]Bourgeat-Lami E,Lang J.Encapsulation of inorganic particles by dispersion polymerization in polar media:2.Effect of silica size and concentration on the morphology of silica-polystyrene composite particles[J].J.Colloid.Interface.Sci,1999,210:280-289.
    [52]Percy M J,Michailidou B,Armes S P,et al.Synthesis of vinyl polymer-silica colloidal nanocomposites via aqueous dispersion polymerization[J].Langumir,2003,19(6):2072-2079.
    [53]Armes S P,Schmid A,Fujii S.Synthesis of micrometer-sized silica-stabilized polystyrene latex particles[J].Langmuir,2005,21(18):8103-8105.
    [54]Ugelstad J,Berge A,Ellingsen T.preparation and biochemical and biomedical application of new monosized polymer particles[J].Polymer International,1993,30:157-168.
    [55]Ninjbadgar T,Yamamoto S,Fukuda T.Synthesis and magnetic properties of γ-Fe2O3/poly(methyl methacrylate)-core/shell nanoparticles[M].Solid State Sci,2004,879-885.
    [56]姜立忠.有机/无机复合纳米粒子的设计、合成与应用研究[D],北京:北京化工大学博士毕业论文,2007.
    [57]Xia Y N,Yin Y D,Lu Y,et al.Monodispersed colloidal spheres:old materials with new applications[J].Adv.Mater,2000,12:693-713.
    [58]周倩,懂鹏.PS/TiO2核壳型微球和空心TiO2微球有序排列的制备[J].化工学报,2009,60(4):1035-1039.
    [59]Mandal T K,Fleming M S,Walt D R.Novel colloidal assembly methods for the preparation of core-shell composite materials[J].Chem Mater,2000,12:3481-3487.
    [60]于祥智.固体润滑剂--石墨粉在完井液作业中的应用[J].石油钻采工艺,1985,2:38.
    [61]吴志均,王浩.固体润滑剂在中深定向井中降摩阻的现场试验[J].油田化学,2002,5(25):68-70.
    [62]耿东士,陈卫红,孙树清,等.钻井液用固体润滑剂--塑料小球的研究与应用[J].油田化学, 1993,2(10):169-172.
    [63]闫加省.纳米铜润滑油添加剂摩擦磨损机理研究[M],开封:河南大学硕士毕业论文,2006.
    [64]Tarasov S,Kolubaev A.Study of friction reduction by nanocopper additives to motor oil[J].Wear,2002,252:63-69.
    [65]于应明.过渡族金属硒化物纳米材料的制备及摩擦学性能研究[M],镇江:江苏大学硕士毕业论文,2009.
    [66]田玉美.无机纳米润滑油添加剂的合成及性能研究[M],长春:吉林大学硕士毕业论文,2006.
    [67]Rapoport L,Lvosky M,Lapsker I,et al.Slow release of fullerene-like WS2 as a superior solid lubrication mechanism in composites matrices[J].Adv Eng Mater,2001,3:71-75.
    [68]Volovik Y,Rapoport L,Leschinsky V,et al.Mechanism of friction of fullerenes[J].Industrial Lubrication& Tribology,2002,54(4):17.
    [69]张文钲.空心富勒烯纳米MS2和WS2[J].中国铝业,2002,26(4):18-20.
    [70]Sur G S,Sun H L,Lyu S G,et al.Synthesis,structure,mechanical properties,and thermal stability of some polysulfone/organoclay nanocomposites[J].Polymer,2001,42:9783-9789.
    [71]Messersmith P B,Giannelis E P.Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites[J].Journal of Polymer Science Part A:Polymer Chemistry,1995,33:1047-1057.
    [72]Lim S T,Choi H L,Biswal D,et al.Polymer/organoclay nanocomposites with biodegradable alipHatic polyester and its blends:preparation and characterization[J].E-POLYMERS,2004,26.
    [73]Morlat S,Mailhot B,Gonzalez D,et al.PHoto-oxidation of polypropylene/montmorillonite nanocomposites[J].Chem.Mater,2004,16:377-383.
    [74]Beyer G.Nanocomposites:a new class of flame retardants for polymers[J].Plast.Addit.Compound,2002;4:22-27.
    [75]Kannan M,Bhagawan S S,JosepH K,et al.Thermomechanical behavior of nanoclay filled TPU/PP blends[J].E-POLYMERS,2008,133.
    [76]Lee S R,Park H M,Lim H,et al.Microstructure,tensile properties,and biodegradability of alipHatic polyester/clay nanocomposites[J].Polymer,2002,43:2495-2500.
    [77]Mravcakova M,Boukerma K,Omastova M,et al.Montmorillonite/polypyrrole nanocomposites.The effect of organic modification of clay on the chemical and electrical properties[J].Mater Sci Eng C 2006,26,306-415.
    [78]Gefu Ji,Guoqiang Li.Effects of nanoclay morphology on the mechanical,thermal,and fire-retardant properties of vinyl ester based nanocomposite[J].Materials Science and Engineering A,2008,498:327-334.
    [79]Kim H B,Hyun Y H,Lim S T,et al.Relationship between structural evolution and rheological measurements for polymer plus organoclay nanocomposites[J].E-POLYMERS,2005,019.
    [80]张玉清,彭淑鸽.插层复合材料[M].北京:科学出版社,2008.
    [81]Zanetti M,Lomakin S,Camina S.Polymer layered silicate nanocmposites[J].Macromolecular Materials and Engineering,2000,279:1-9.
    [82]Pavlidoua S,Papaspyridesb C D.A review on polymer-layered silicate nanocomposites[J].Progress in Polymer Science,2008,33:1119-1198.
    [83]Seok-Kee Yoon,Bok-Soo Byun,Seungho Lee,et al.Radiolytic synthesis of poly(styrene-co-divinylbenzene)-clay nanocomposite[J].Journal of Industrial and Engineering Chemistry,2008,14(4):417-422.
    [84]邱玉超,韦莉萍,路新卫,等.插层蒙脱土不同方法的比较[J].第一军医大学分校学报,2004,27(2):100-102.
    [85]Yang W T,Ko T H,Wang S C,et al.Preparation of Polystyrene/Clay Nanocomposite by Suspension and Emulsion Polymerization[J].Polymer Composites,2008,10:(409-414).
    [86]K Samba Sivudu,Saji Thomas,D.Shailaja.Synthesis and characterization of poly(4vp-co-dvb)/montmorillonite nanocomposites by in situ intercalative polymerization[J].Applied Clay Science,2007,37:185-192.
    [87]Yang J T,Fan H,Bu Z Y,et al.Preparation and structure of polystyrene/montmorillonite nanocomposite[J].ACTA POLYMERICA SINICA,2007,1:70-74.[88]Chang J H,Kim S J,Joo Y L,et al.Poly(ethylene terepHthalate) nanocomposites by in situ interlayer polymerization:the thermo-mechanical properties and morphology of the hybrid fibers[J].Polymer,2004,45:919-926.
    [89]Yohei Miwa,Andrew R Drews,et al.Unique Structure and Dynamics of Poly(ethylene oxide) in Layered Silicate Nanocomposites:Accelerated Segmental Mobility Revealed by Simulating ESR Spectra of Spin-Labels,XRD,FT-IR,and DSC[J|.Macromolecules,2008,41(13):4701-4708.
    [90]张径,杨玉坤.插层悬浮聚合制备PMMA/蒙脱土纳米复合材料[J].高分子学报,2001,1:79-83.
    [91]Suzuki H,Taira M,Wakasa K,et al.Refractive-index-adjustable fillers for visible-light-cured dental resin composites;preparation of titantium dioxide-silicon dioxide glass power by the sol-gel process[J].J Dent res,1991,70(5):883-888.
    [92]Cochrane H.Aqueous colloidal dispersion of fumer silica without a stabilizer[P].USA,B01J13/00.USP,5116535.7992-26-05.
    [93]Feng Huixia,Wang Rongmin,He Yufeng,et al.preparation and catalysis of porous silica supported metal Schiff-base complex[J].J Molecular Catalysis A:Chemical,2000,159:25.
    [94]Jang K Y,Kim K.Evaluation of sol-gel processing as a method for fabricationg spherical-shell silica aerogel inertial comfingment fusion targets[J].J Vac Sci Technol A,1992,10(4):1152-1158.
    [95]Beck A,Caps R,Fricke J.Scattering of visible light from silica aerogels[J].J PHys D:Appl PHys,1989,22:730-737.
    [96]Kidambi S,Dai J H,Bruening M L.Selective hydrogenation by pd nanoparticles embedded in polyelectrolyte multilayers[J].J Am Chem Soc,2004,126:2685-2659.
    [97]Wang T,Cohen R E,Rubner M F.Metallodielectric pHotonic structures based on polyelectrolyte multilayers[J].Adv Mater,2002,14:1534-1537.
    [98]Wang Y,Cai L,Xia Y.Monodisperse spherical colloids Pb and their use as chemical templates to produce hollow particles[J].Adv Mater,2005,17:473-477.
    [99]Zhong Z,Yin Y,Gates B,et al.Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads[J].Adv Mater 2000,12:206-209.
    [100]Quaroni L,Chumanov G.Preparation of polymer-coated functionalized silver nanoparticles[J].J Am Chem Soc 1999,121:10642-10643.
    [101]Zhang K,Chen X,Yang B,et al.Hollow titania spheres with movable silica spheres inside[J].Langmuir,2004,20:11312-11314.
    [102]Caruso F,Shi X,Susha A.Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles[J].Adv Mater 2001,13:740-745.
    [103]郭洪娜,郑少华,马士玉,等.表面修饰纳米SiO_2的抗磨减磨性能研究[J].纳米科技,2009,6(2):21-24.
    [104]霍玉秋,闫玉涛,翟玉春.纳米SiO_2润滑油添加剂的摩擦学性能研究[J].材料导报,2004,18(4):101-103.
    [105]李小红,刘峰,张治军,等.DNS-Am型可分数散性SiO_2纳米微粒的表征及摩擦学性能[J].润滑与密封,2005,7(4):1-3.
    [106]翟晓瑜,张秋禹,王为强,等.超细二氧化硅的改性及在润滑油中的应用[J].材料科学与工程学报,2009,27(3):483-487.
    [107]霍玉秋,翟玉春.纳米SiO_2润滑油添加剂的制备[J].材料导报,2003,17:138-139.
    [108]李小红,李庆华,张治军,等.一种可反应性纳米SiO_2的制备和表征及其摩擦磨损性能研究[J].摩擦学学报,2005,25(6):499-503.
    [109]赵彦保,周静芳,张治军,等.油酸/PS/TiO_2复合纳米微球对液体石蜡抗磨性能的影响研究[J].摩擦学学报,2001,21(1):73-75.
    [110]袁旦.纳米二氧化铈和二氧化硅复合粒子作用润滑油添加剂的摩擦学性能及机理研究[M],上海:上海海事大学硕士毕业论文,2007.
    [111]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700