聚电解质—胶体溶液的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚电解质—胶体络合物由于其在很多领域内的重要应用,如胶体稳定性,电动力学性质、悬浊液粘性以及生物体系络合物等,已经成为国际上的一个研究热点。本文研究工作包括两个部分:聚电解质的桥链结构对胶体颗粒静态和动态行为的影响和水溶液中非均匀带电的类富勒烯结构的纳米颗粒在平板聚电解质刷上的吸附的布朗动力学(BD)研究。
     首先基于粗粒度模型我们用布朗动力学模拟的方法考察了以两端带电的聚电解质为媒介的桥链结构对水溶液中胶体的径向分布函数(RDF)和扩散行为的影响。为便于比较,我们还考察了由一端带电的聚电解质与胶体形成的体系的各种相对应的性质。模拟结果显示,当体系浓度较小时两端带电的聚电解质会引起胶体的聚集。这是由于在低浓度的情况下,聚电解质的回转半径小于体系胶体间的平均距离。当两端带电的聚电解质同时吸附在两个不同的胶体上时,聚电解质的桥链作用将主导胶体的RDF及其扩散行为。随着体系浓度的增大,聚电解质的回转半径将大于体系中胶体间的平均距离,这时聚电解质的桥链作用就可以忽略了。通过考察两端带电的聚电解质对胶体静态和动态行为的影响,有助于我们进一步的合成胶体溶液的稳定剂或聚沉剂。
     另外,随着高分子合成技术的发展,很多具有新结构的聚电解质被合成出来,其中包括一些聚电解质刷子系统。基于粗粒度模型,我们用BD的模拟方法在水溶液中考察了类富勒烯结构的纳米颗粒在平板聚电解质刷上的吸附。模拟发现,整体为电中性的纳米颗粒能够吸附在聚电解质刷上。这是由聚电解质刷对纳米颗粒表面正电区域的吸引和对其负电区域的排斥而引起的静电非对称作用力所导致的。模拟结果显示,当纳米颗粒的偶极矩非常大时,纳米颗粒在主体相中容易发生团聚形成纳米团簇,它的形成不利于纳米颗粒在分子刷上的吸附。当纳米颗粒偶极矩较小时,其吸附量随分子刷嫁接密度的增加而单调递减;但纳米颗粒的偶极矩较大时,其吸附量与分子刷嫁接密度的关系表现为非单调性。另外我们还发现分子刷的嫁接密度是影响分子刷厚度和体系渗透压的一个重要因素。
Due to important applications of polyelectrolyte (PE)-colloid system in many fields, such as colloidal stability, electrokinetics, viscosity of suspension and the complexations of biological system, the investigations on PE-colloids systems gain a lot of scientific attention in the last decades. This work contains two sections. One is Brownian dynamics (BD) simulation of the effect of bridging conformation of PEs on static and dynamic behavior of colloids. The other is adsorption of nonuniformly charged fullerene-like nanoparticles on planar PE brushes in an aqueous solution.
     BD simulation is performed to investigate the effect of the bridging conformation of the PE with two charged heads (two-heads PE) on the radial distribution function (RDF) and diffusion behavior of colloids on the basis of the coarse grained model. For comparison, the system containing colloids and the PE with only one charged head (one-head PE) is also investigated. The simulation results indicate that, at low concentrations, the bridging effect of the two-heads PE chain leads to correlation of colloids. The reason is that at low concentration the gyration radius of the PE chain is less than the average distance between two colloids. When the two-heads PE chains are adsorbed on different colloids, the bridging effect of the PE chain dominates the RDF and diffusion behavior of the colloids. With the increase of the concentration of the system, when the gyration radius of the PE chain is greater than the average distance between two colloids, the bridging effect of the PE chain becomes trivial. By investigating the mechanism of the two-heads PE chain affecting the static and dynamic properties of the colloids, we can provide useful information for the synthesis of stabilizers and destabilizers of colloidal particles.
     In addition, with the development of the synthesis technology of polymers, a great range of PEs with "vagarious" structures appear, including the PE brush systems. On the basis of the coarse grained model, we investigated the adsorption of nonuniformly charged fullerene-like nanoparticle on planar PE brushes in an aqueous solution by using BD simulation. It is found that the electroneutral nanoparticle can be adsorbed by the PE brush, which is attributed to the asymmetrical electrostatic interactions of the PEB with the positively charged sites and negatively charged sites of the fullerene-like nanoparticle. The simulation results indicated that the adsorption amount exhibits non-monotonic behavior with the dipole moment of nanoparticle. First, the adsorption amount increases with the dipole moment; and then reaches the maximum at the dipole moment ofμ=10.45. Finally the adsorption falls at the dipole moment ofμ=14.39. The reason may be that at the extremely large dipole moment ofμ=14.39, the fullerene-like nanoparticles aggregate together to form a big cluster in the bulk phase. This observation is confirmed by the extremely high peak in the RDF between nanoparticles. Accordingly, it is difficult for nanoparticles to enter into the PE brush at the dipole moment ofμ=14.39. In addition, it is also found that the brush grafting density is an important factor affecting the brush thickness and the osmotic pressure.
引文
[1]Wittemann,A.,B.Haupt,and M.Ballauff,Adsorption of proteins on spherical polyelectrolyte brushes in aqueous solution.Physical Chemistry Chemical Physics,2003.5(8):p.1671-1677.
    [2]Czeslik,C.,et al.,Mechanism of protein binding to spherical polyelectrolyte brushes studied in situ using two-photon excitation fluorescence fluctuation spectroscopy.Physical Review E,2004.69(2).
    [3]Wittemann,A.and M.Ballanff,Interaction of proteins with linear polyelectrolytes and spherical polyelectrolyte brushes in aqueous solution.Physical Chemistry Chemical Physics,2006.8(45):p.5269-5275.
    [4]Willem,N.,Adsorption of proteins from solution at the solid-liquid interface.Advances in Colloid and Interface Science,1986.25:p.267-340.
    [5]Vongoeler,F.and M.Muthukumar,Adsorption of Polyelectrolytes onto Curved Surfaces.Journal of Chemical Physics,1994.100(10):p.7796-7803.
    [6]Nguyen,T.T.and B.I.Shklovskii,Overcharging of a macroion by an oppositely charged polyelectrolyte.Physica a-Statistical Mechanics and Its Applications,2001.293(3-4):p.324-338.
    [7]Kunze,K.K.and R.R.Netz,Salt-induced DNA-histone complexation.Physical Review Letters,2000.85(20):p.4389-4392.
    [8]Schiessel,H.,R.F.Bruinsma,and W.M.Gelbart,Electrostatic complexation of spheres and chains under elastic stress.Journal of Chemical Physics,2001.115(15):p.7245-7252.
    [9]Gurovitch,E.and P.Sens,Adsorption of polyelectrolyte onto a colloid of opposite charge.Physical Review Letters,1999.82(2):p.339-342.
    [10]Nguyen,T.T.and B.I.Shklovskii,Complexation of DNA with positive spheres:Phase diagram of charge inversion and reentrant condensation.Journal of Chemical Physics,2001.115(15):p.7298-7308.
    [11]Cao,D.P.and J.Z.Wu,Density functional theory for semiflexible and cyclic polyatomic fluids.Journal of Chemical Physics,2004.121(9):p.4210-4220.
    [12]Pizio,O.,A.Patrykiejew,and S.Sokolowski,Phase behavior of ionic fluids in slitlike pores:A density functional approach for the restricted primitive model Journal of Chemical Physics,2004.121(23):p.11957-11964.
    [13]Wallin,T.and P.Linse,Monte Carlo simulations of polyelectrolytes at charged hard spheres with different numbers of polyelectrolyte chains.Journal of Chemical Physics,1998.109(12):p.5089-5100.
    [14]Angelescu,D.G.and P.Linse,Monte Carlo simulation of the mean force between two like-charged macroions with simple 1:3 salt added.Langmuir,2003.19(23):p.9661-9668.
    [15]Kong,C.Y.and M.Muthukumar,Monte Carlo study of adsorption of a polyelectrolyte onto charged surfaces.Journal of Chemical Physics,1998.109(4):p.1522-1527.
    [16]Jonsson,M.and P.Linse,Polyelectrolyte-macroion complexation.Ⅰ.Effect of linear charge density,chain length,and macroion charge.Journal of Chemical Physics, 2001.115(7):p.3406-3418.
    [17]Jonsson,M.and P.Linse,Polyelectrolyte-macroion complexation.Ⅱ.Effect of chain flexibility.Journal of Chemical Physics,2001.115(23):p.10975-10985.
    [18]Wallin,T.and P.Linse,Monte Carlo simulations of polyelectrolytes at charged micelles.2.Effects of linear charge density.Journal of Physical Chemistry,1996.100(45):p.17873-17880.
    [19]Wallin,T.and P.Linse,Monte Carlo simulations of polyelectrolytes at charged micelles.3.Effects of surfactant tail length.Journal of Physical Chemistry B,1997.101(28):p.5506-5513.
    [20]Wallin,T.and P.Linse,Monte Carlo simulations of polyelectrolytes at charged micelles.1.Effects of chain flexibility.Langmuir,1996.12(2):p.305-314.
    [21]Akinchina,A.and P.Linse,Monte Carlo simulations of polyion-macroion complexes.1.Equal absolute polyion and macroion charges.Macromolecules,2002.35(13):p.5183-5193.
    [22]Akinchina,A.and P.Linse,Monte Carlo simulations of polyion-macroion complexes.2.Polyion length and charge density dependence.Journal of Physical Chemistry B,2003.107(32):p.8011-8021.
    [23]Skepo,M.and P.Linse,Complexation,phase separation,and redissolution in polyelectrolyte-macroion solutions.Macromolecules,2003.36(2):p.508-519.
    [24]Skepo,M.,Competition between a macroion and a polyelectrolyte in complexation with an oppositely charged polyelectrolyte.Journal of Physical Chemistry B,2004.108(17):p.5431-5437.
    [25]Ni,R.,D.Cao,and W.Wang,A Monte Carlo Study of Spherical Electrical Double Layer of Macroions-Polyelectrolytes Systems in Salt Free Solutions.J.Phys.Chem.B,2006.110(51):p.26232-26239.
    [26]Panchagnula,V.,et al.,Molecular dynamics simulations of polyelectrolyte multilayering on a charged particle.Langmuir,2005.21:p.1118-1125.
    [27]Bagatellla-Flores,N.,H.Schiessel,and W.M.Gelbart,Statics and dynamics of polymer-wrapped colloids.Journal of Physical Chemistry B,2005.109(45):p.21305-21312.
    [28]Podgornik,R.,T.Akesson,and B.Jonsson,Colloidal Interactions Mediated Via Polyelectrolytes.Journal of Chemical Physics,1995.102(23):p.9423-9434.
    [29]Sjostrom,L.,T.Akesson,and B.Jonsson,Charge reversal in electrical double layers -A balance between energy and entropy.Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics,1996.100(6):p.889-893.
    [30]Granfeldt,M.K.,B.Joensson,and C.E.Woodward,A Monte Carlo simulation study of the interaction between charged colloids carrying adsorbed polyelectrolytes.J.Phys.Chem.B,1991.95:p.4819.
    [31]Pincus,P.,Colloid Stabilization with Grafted Polyelectrolytes.Macromolecules,1991.24(10):p.2912-2919.
    [32]Amoskov,M.,T.M.Birshtein,and D.K.Belyaev,The effect of shear flow on the conformation of polyelectrolyte brushes.Polymer Science Series A,2007.49(7):p.851-860.
    [33]Jain,P.,et al.,Completely aqueous procedure for the growth of polymer brushes on polymeric substrates.Langmuir,2007.23:p.11360-11365.
    [34]Alexander,S.,Adsorption of Chain Molecules with a Polar Head a-Scaling Description.Journal De Physique,1977.38(8):p.983-987.
    [35]de Gennes,P.-G.,Macromolecules,1980.13:p.1069.
    [36]Borisov,O.V.,T.M.Birshtein,and E.B.Zhulina,Collapse of Grafted Polyelectrolyte Layer.Journal De Physique Ii,1991.1(5):p.521-526.
    [37]van der Maarel,J.R.C.,et al.,Salt-induced contraction of polyelectrolyte diblock copolymer micelles.Langmuir,2000.16(19):p.7510-7519.
    [38]Borisov,O.V.,E.B.Zhulina,and T.M.Birshtein,Diagram of the States of a Grafted Polyelectrolyte Layer.Macromolecules,1994.27(17):p.4795-4803.
    [39]Romet-Lemonne,G.,et al.,Thickness and density profiles of polyelectrolyte brushes:Dependence on grafting density and salt concentration.Physical Review Letters,2004.93(14).
    [40]Ahrens,H.,et al.,Nonlinear Osmotic Brush Regime:Experiments,Simulations and Scaling Theory.J.Phys.Chem.B,2004.108(43):p.16870-16876.
    [41]Naji,A.,R.R.Netz,and C.Seidel,Non-linear osmotic brush regime:Simulations and mean-field theory.European Physical Journal E,2003.12(2):p.223-237.
    [42]Seidel,C.,Strongly stretched polyelectrolyte brushes.Macromolecules,2003.36(7):p.2536-2543.
    [43]Seidel,C.,Strongly stretched polyelectrolyte brushes.(vol 36,pg 2536,2003).Macromolecules,2005.38(6):p.2540-2540.
    [44]Jiang,T.,Z.D.Li,and J.Z.Wu,Structure and swelling of grafted polyelectrolytes:Predictions from a nonlocal density functional theory.Macromolecules,2007.40(2):p.334-343.
    [45]Mei,Y.,et al.,Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels.Chemistry of Materials,2007.19(5):p.1062-1069.
    [46]Guo,X.and M.Ballauff,Spherical polyelectrolyte brushes:Comparison between annealed and quenched brushes.Physical Review E,2001.64(5).
    [47]Mei,Y.,et al.,Collapse of spherical polyelectrolyte brushes in the presence of multivalent counterions.Physical Review Letters,2006.97(15).
    [48]Mei,Y.,et al.,Engineering the interaction of latex spheres with charged surfaces:AFM investigation of spherical polyelectrolyte brushes on mica.Macromolecules,2003.36(10):p.3452-3456.
    [49]Takahashi,D.,et al.,Effects of Surface Charge Distribution of Proteins in Their Complexation with Polyelectrolytes in an Aqueous Salt-Free Systemdoi:10.1021/la991108z.Langmuir,2000.16(7):p.3133-3140.
    [50]de Vries,R.,F.Weinbreck,and C.G.de Kruif,Theory of polyelectrolyte adsorption on heterogeneously charged surfaces applied to soluble protein-polyelectrolyte complexes.Journal of Chemical Physics,2003.118(10):p.4649-4659.
    [51]Carlsson,F.,M.Malmsten,and P.Linse,Monte Carlo Simulations of Lysozyme Self-Association in Aqueous Solutiondoi:10.1021/jp012235i.The Journal of Physical Chemistry B,2001.105(48):p.12189-12195.
    [52]Ramanadham,M.,L.C.Sieker,and L.H.Jensen,Refinement of Triclinic Lysozyme.2. The Method of Stereochemically Restrained Least-Squares.Acta Crystallographica Section B-Structural Science,1990.46:p.63-69.
    [53]McGuffee,S.R.and A.H.Elcock,Atomically detailed simulations of concentrated protein solutions:The effects of salt,pH,point mutations,and protein concentration in simulations of 1000-molecule systems.Journal of the American Chemical Society,2006.128:p.12098-12110.
    [54]Bohrisch,J.,et al.,New polyelectrolyte architectures.Polyelectrolytes with Defined Molecular Architecture I,2004.165:p.1-41.
    [55]Wittemann,A.and M.Ballauff,Secondary structure analysis of proteins embedded in spherical polyelectrolyte brushes by FT-IR spectroscopy.Analytical Chemistry,2004.76(10):p.2813-2819.
    [56]Haupt,B.,et al.,Activity of enzymes immobilized in colloidal spherical polyelectrolyte brushes.Biomacromolecules,2005.6(2):p.948-955.
    [57]Noguti,T.and N.Go,Efficient Monte-Carlo Method for Simulation of Fluctuating Conformations of Native Proteins.Biopolymers,1985.24(3):p.527-546.
    [58]Jusufi,A.,Fluctuation effects and monomer-counterion correlations in starlike polyelectrolyte systems.Journal of Chemical Physics,2006.124(4).
    [59]Plimpton,S.,Fast Parallel Algorithms for Short-Range Molecular-Dynamics.Journal of Computational Physics,1995.117(1):p.1-19.
    [60]Liu,J.,D.P.Cao,and L.Q.Zhang,Molecular dynamics study on nanoparticle diffusion in polymer melts:A test of the Stokes-Einstein law.Journal of Physical Chemistry C,2008.112(17):p.6653-6661.
    [61]Hu,Y.,et al.,Effect of the Bridging Conformation of Polyelectrolytes on the Static and Dynamic Behavior of Macroions.Langmuir,2008.24(18):p.10138-10144.
    [1]Gurovitch,E.and P.Sens,Adsorption of polyelectrolyte onto a colloid of opposite charge.Physical Review Letters,1999.82(2):p.339-342.
    [2]Park,S.Y.,R.F.Bruinsma,and W.M.Gelbart,Spontaneous overcharging of macro-ion complexes.Europhysics Letters,1999.46(4):p.454-460.
    [3]Mateescu,E.M.,C.Jeppesen,and P.Pincus,Overcharging of a spherical macroion by an oppositely charged polyelectrolyte.Europhysics Letters,1999.46(4):p.493-498.
    [4]Goeler,F.v.and M.Muthukumar,Adsorption of polyelectrolytes onto curved surfaces.J.Chem.Phys.,1994.100:p.7796.
    [5]Nguyen,T.T.and B.I.Shklovskii,Complexation of DNA with positive spheres:Phase diagram of charge inversion and reentrant condensation.The Journal of Chemical Physics,2001.115(15):p.7298-7308.
    [6]Netz,R.R.and J.F.Joanny,Complexation between a semiflexible polyelectrolyte and an oppositely charged sphere.Macromolecules,1999.32(26):p.9026-9040.
    [7]Schiessel,H.,R.F.Bruinsma,and W.M.Gelbart,Electrostatic complexation of spheres and chains under elastic stress.Journal of Chemical Physics,2001.115(15):p.7245-7252.
    [8]Kunze,K.K.and R.R.Netz,Complexes of semiflexible polyelectrolytes and charged spheres as models for salt-modulated nucleosomal structures.Physical Review E,2002.66(1).
    [9]Nguyen,T.T.and B.I.Shklovskii,Overcharging of a macroion by an oppositely charged polyelectrolyte.Physica a-Statistical Mechanics and Its Applications,2001.293(3-4):p.324-338.
    [10]Kunze,K.K.and R.R.Netz,Salt-induced DNA-histone complexation.Physical Review Letters,2000.85(20):p.4389-4392.
    [11]Wallin,T.and P.Linse,Monte Carlo simulations of polyelectrolytes at charged micelles.Ⅰ.Effects of chain flexibility.Langmuir,1996.12(2):p.305-314.
    [12]Jonsson,M.and P.Linse,Polyelectrolyte-macroion complexation.Ⅱ.Effect of chain flexibility.Journal of Chemical Physics,2001.115(23):p.10975-10985.
    [13]Wallin,T.and P.Linse,Monte Carlo simulations of polyelectrolytes at charged micelles.2.Effects of linear charge density.Journal of Physical Chemistry,1996.100(45):p.17873-17880.
    [14]Akinchina,A.and P.Linse,Monte Carlo Simulations of Polyion-Macroion Complexes.Ⅰ.Equal Absolute Polyion and Macroion Charges.Macromolecules,2002.35(13):p.5183-5193.
    [15]Wallin,T.and P.Linse,Monte Carlo simulations of polyelectrolytes at charged micelles.3.Effects of surfactant tail length.Journal of Physical Chemistry B,1997.101(28):p.5506-5513.
    [16]Wallin,T.and P.Linse,Monte Carlo simulations of polyelectrolytes at charged hard spheres with different numbers of polyelectrolyte chains.Journal of Chemical Physics,1998.109(12):p.5089-5100.
    [17]Jonsson,M.and P.Linse,Polyelectrolyte-macroion complexation.Ⅰ.Effect of linear charge density,chain length,and macroion charge.Journal of Chemical Physics, 2001.115(7):p.3406-3418.
    [18]Skepo,M.and P.Linse,Complexation,Phase Separation,and Redissolution in Polyelectrolyte-Macroion Solutions.Macromolecules,2003.36(2):p.508-519.
    [19]Bryk,P.,O.Pizio,and S.Sokolowski,Density functional theory of adsorption of mixtures of charged chain particles and spherical counterions.The Journal of Chemical Physics,2005.122(17):p.174906-7.
    [20]Pizio,O.,et al.,Density-functional theory for fluid mixtures of charged chain particles and spherical counterions in contact with charged hard wall:Adsorption,double layer capacitance,and the point of zero charge.The Journal of Chemical Physics,2005.123(21):p.214902-9.
    [21]Bryk,P.,S.Sokolowski,and O.Pizio,Density functional theory for inhomogeneous associating chain fluids.The Journal of Chemical Physics,2006.125(2):p.024909-10.
    [22]Tscheliessnig,R.,et al.,The role of fluid wall association on adsorption of chain molecules at functionalized surfaces:A density functional approach.The Journal of Chemical Physics,2006.124(16):p.164703-8.
    [23]Bryk,P.,O.Pizio,and S.Sokolowski,Capillary condensation of short-chain molecules.The Journal of Chemical Physics,2005.122(19):p.194904-7.
    [24]Podgornik,R.,T.Akesson,and B.Jonsson,Colloidal Interactions Mediated Via Polyelectrolytes.Journal of Chemical Physics,1995.102(23):p.9423-9434.
    [25]Sjostrom,L.,T.Akesson,and B.Jonsson,Charge reversal in electrical double layers -A balance between energy and entropy.Berichte Der Bunsen-Gesellschaff-Physical Chemistry Chemical Physics,1996.100(6):p.889-893.
    [26]Podgornik,R.,Self-consistent-field theory for confined polyelectrolyte chains.J.Phys.Chem.,1992.96(2):p.884-896.
    [27]Akesson,T.,C.Woodward,and B.Jonsson,Electric double layer forces in the presence of polyelectrolytes.The Journal of Chemical Physics,1989.91(4):p.2461-2469.
    [28]Podgornik,R.and B.Jonsson,Stretching of Polyelectrolyte Chains by Oppositely Charged Aggregates.Europhysics Letters,1993.24(6):p.501-506.
    [29]Borukhov,I.,D.Andelman,and H.Orland,Polyelectrolyte Solutions between Charged Surfaces.Europhysics Letters,1995.32(6):p.499-504.
    [30]Chatellier,X.and J.F.Joanny,Adsorption of polyelectrolyte solutions on surfaces:A Debye-Huckel theory.Journal De Physique Ii,1996.6(12):p.1669-1686.
    [31]Cao,D.and J.Wu,Surface Forces between Telechelic Brushes Revisited:The Origin of a Weak Attraction.Langmuir,2006.22(6):p.2712-2718.
    [32]Cao,D.and J.Wu,Theoretical Study of Cooperativity in Multivalent Polymers for Colloidal Stabilization.Langmuir,2005.21(21):p.9786-9791.
    [33]Podgornik,R.,A Variational Approach to Charged Polymer-Chains-Polymer Mediated Interactions.Journal of Chemical Physics,1993.99(9):p.7221-7231.
    [34]Podgornik,R.and B.Jonsson,Polyelectrolyte Mediated Interactions between Oppositely Charged Planar Surfaces and Micellar Aggregates.Biophysical Journal,1994.66(2):p.A292-A292.
    [35]Podgornik,R.,Two-body polyelectrolyte-mediated bridging interactions.The Journal of Chemical Physics,2003.118(24):p.11286-11296.
    [36]Granfeldt,M.K.,B.Joensson,and C.E.Woodward,A Monte Carlo simulation study of the interaction between charged colloids carrying adsorbed polyelectrolytes.J.Phys.Chem.B,1991.95:p.4819.
    [37]Ni,R.,D.Cao,and W.Wang,A Monte Carlo Study of Spherical Electrical Double Layer of Macroions-Polyelectrolytes Systems in Salt Free Solutions.J.Phys.Chem.B,2006.110(51):p.26232-26239.
    [38]Podgornik,R.and W.M.Saslow,Long-range many-body polyelectrolyte bridging interactions.Journal of Chemical Physics,2005.122(20).
    [39]Ilekti,P.,et al.,Effects of Polyelectrolytes on the Structures and Interactions of Surfactant Aggregates.J.Phys.Chem.B,1999.103(45):p.9831-9840.
    [40]Woodward,C.E.,T.Akesson,and B.Jonsson,Forces between polyelectrolyte coated surfaces in the presence of electrolyte.The Journal of Chemical Physics,1994.101(3):p.2569-2576.
    [41]Cabane,B.,et al.,Short-Range Order of Silica Particles Bound through Adsorbed Polymer Layers.Colloid and Polymer Science,1988.266(2):p.101-104.
    [42]Lafuma,F.,K.Wong,and B.Cabane,Bridging of Colloidal Particles through Adsorbed Polymers.Journal of Colloid and Interface Science,1991.143(1):p.9-21.
    [43]Huang,H.H.and E.Ruckenstein,Double layer interaction between two plates with polyelectrolyte brushes.Journal of Colloid and Interface Science,2004.275(2):p.548-554.
    [44]Grest,G.S.,K.Kremer,and T.A.Witten,Structure of Many-Arm Star Polymers-a Molecular-Dynamics Simulation.Macromolecules,1987.20(6):p.1376-1383.
    [45]Grest,G.S.,Structure of Many-Arm Star Polymers in Solvents of Varying Quality-a Molecular-Dynamics Study Macromolecules,1994.27(13):p.3493-3500.
    [46]Stevens,M.J.and K.Kremer,The Nature of Flexible Linear Polyelectrolytes in Salt-Free Solution-a Molecular-Dynamics Study.Journal of Chemical Physics,1995.103(4):p.1669-1690.
    [47]Frenkel,D.and B.Smit,Understanding Molecular Simulation-From Algorithm to Applications.1996,New York:Academics.
    [48]Plimpton,S.,Fast Parallel Algorithms for Short-Range Molecular-Dynamics.Journal of Computational Physics,1995.117(1):p.1-19.
    [49]Podgomik,R.and M.Licer,Polyelectrolyte bridging interactions between charged macromolecules.Current Opinion in Colloid & Interface Science,2006.11(5):p.273-279.
    [1]Ruhe,J.,et al.,Polyelectrolyte brushes,in Polyelectrolytes with Defined Molecular Architecture I.2004.p.79-150.
    [2]Guenoun,P.,J.F.Argillier,and M.Tirrell,End-tethered charged chains at surfaces.Comptes Rendus De L Academie Des Sciences Serie Iv Physique Astrophysique,2000.1(9):p.1163-1169.
    [3]Pavoor,P.V.,et al.,Tribological characteristics of polyelectrolyte multilayers.Wear,2004.256(11-12):p.1196-1207.
    [4]Klein,J.,et al.,Lubrication Forces between Surfaces Bearing Polymer Brushes.Macromolecules,1993.26(21):p.5552-5560.
    [5]Alexander,S.,Adsorption of Chain Molecules with a Polar Head a-Scaling Description.Journal De Physique,1977.38(8):p.983-987.
    [6]de Gennes,P.-G.,Macromolecules,1980.13:p.1069.
    [7]Pincus,P.,Colloid Stabilization with Grafted Polyelectrolytes.Macromolecules,1991.24(10):p.2912-2919.
    [8]Borisov,O.V.,T.M.Birshtein,and E.B.Zhulina,Collapse of Grafted Polyelectrolyte Layer.Journal De Physique Ii,1991.1(5):p.521-526.
    [9]van der Maarel,J.R.C.,et al.,Salt-induced contraction of polyelectrolyte diblock copolymer micelles.Langmuir,2000.16(19):p.7510-7519.
    [10]Groenewegen,W.,et al.,Neutron scattering estimates of the effect of charge on the micelle structure in aqueous polyelectrolyte diblock copolymer solutions.Macromolecules,2000.33(9):p.3283-3293.
    [11]Groenewegen,W.,et al.,Counterion distribution in the coronal layer of polyelectrolyte diblock copolymer micelles.Macromolecules,2000.33(11):p.4080-4086.
    [12]Borisov,O.V.,E.B.Zhulina,and T.M.Birshtein,Diagram of the States of a Grafted Polyelectrolyte Layer Macromolecules,1994.27(17):p.4795-4803.
    [13]Csajka,F.S.,C.C.van der Linden,and C.Seidel,Molecular dynamics studies of anchored polyelectrolytes.Macromolecular Symposia,1999.146:p.243-249.
    [14]Csajka,F.S.and C.Seidel,Strongly charged polyelectrolyte brushes:A molecular dynamics study.Macromolecules,2000.33(7):p.2728-2739.
    [15]Csajka,F.S.,et al.,Collapse of polyelectrolyte brushes:Scaling theory and simulations.European Physical Journal E,2001.4(4):p.505-513.
    [16]Csajka,F.S.and C.Seidel,Strongly charged polyelectrolyte brushes:A molecular dynamics study.(vol 33,pg 2728,2000).Macromolecules,2005.38(5):p.2022-2022.
    [17]Seidel,C.and R.R.Netz,Individual polymer paths and end-point stretching in polymer brushes.Macromolecules,2000.33(2):p.634-640.
    [18]Seidel,C.,Strongly stretched polyelectrolyte brushes.Macromolecules,2003.36(7):p.2536-2543.
    [19]Seidel,C.,Strongly stretched polyelectrolyte brushes.(vol 36,pg 2536,2003).Macromolecules,2005.38(6):p.2540-2540.
    [20]Kumar,N.A.and C.Seidel,Polyelectrolyte brushes with added salt.Macromolecules,2005.38(22):p.9341-9350.
    [21]Wittemann,A.,B.Haupt,and M.Ballauff,Adsorption of proteins on spherical polyelectrolyte brushes in aqueous solution.Physical Chemistry Chemical Physics,2003.5(8):p.1671-1677.
    [22]Czeslik,C.,et al.,Mechanism of protein binding to spherical polyelectrolyte brushes studied in situ using two-photon excitation fluorescence fluctuation spectroscopy.Physical Review E,2004.69(2).
    [23]Anikin,K.,et al.,Polyelectrolyte-mediated protein adsorption:Fluorescent protein binding to individual polyelectrolyte nanospheres.Journal of Physical Chemistry B,2005.109(12):p.5418-5420.
    [24]Wittemann,A.and M.Ballauff,Interaction of proteins with linear polyelectrolytes and spherical polyelectrolyte brushes in aqueous solution.Physical Chemistry Chemical Physics,2006.8(45):p.5269-5275.
    [25]Leermakers,F.A.M.,M.Ballauff,and O.V.Borisov,On the Mechanism of Uptake of Globular Proteins by Polyelectrolyte Brushes:A Two-Gradient Self-Consistent Field Analysis.Langmuir,2007.23(7):p.3937-3946.
    [26]Biesheuvel,P.M.,F.A.M.Leermakers,and M.A.C.Stuart,Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush.Physical Review E,2006.73(1).
    [27]de Vos,W.M.,et al.,Adsorption of the protein bovine serum albumin in a planar poly(acrylic acid) brush layer as measured by optical reflectometry.Langmuir,2008.24(13):p.6575-6584.
    [28]Takahashi,D.,et al.,Effects of Surface Charge Distribution of Proteins in Their Complexation with Polyelectrolytes in an Aqueous Salt-Free Systemdoi:10.1021/la991108z.Langmuir,2000.16(7):p.3133-3140.
    [29]Carlsson,F.,M.Malmsten,and P.Linse,Monte Carlo Simulations of Lysozyme Self-Association in Aqueous Solutiondoi:10.1021/jp012235i.The Journal of Physical Chemistry B,2001.105(48):p.12189-12195.
    [30]Ni,R.,D.Cao,and W.Wang,Release of Lysozyme from the Branched Polyelectrolyte,2212;Lysozyme Complexationdoi:10.1021/jp076348z.The Journal of Physical Chemistry B,2008.112(14):p.4393-4400.
    [31]Grest,G.S.,K.Kremer,and T.A.Witten,Structure of Many-Arm Star Polymers-a Molecular-Dynamics Simulation.Macromolecules,1987.20(6):p.1376-1383.
    [32]Grest,G.S.,Structure of Many-Arm Star Polymers in Solvents of Varying Quality-a Molecular-Dynamics Study.Macromolecules,1994.27(13):p.3493-3500.
    [33]Stevens,M.J.and K.Kremer,The Nature of Flexible Linear Polyelectrolytes in Salt-Free Solution-a Molecular-Dynamics Study.Journal of Chemical Physics,1995.103(4):p.1669-1690.
    [34]Jeon,J.,et al.,Molecular Dynamics Simulations of Mutilayer Films of Polyelectrolytes and Nanoparticles.Langmuir,2006.22(10):p.4629-4637.
    [35]Ni,R.,et al.,Conformation of a spherical polyelectrolyte brush in the presence of oppositely charged linear polyelectrolytes.Macromolecules,2008.41(14):p.5477-5484.
    [36]Plimpton,S.,Fast Parallel Algorithms for Short-Range Molecular-Dynamics.Journal of Computational Physics,1995.117(1):p.1-19.
    [37]Liu,J.,D.P.Cao,and L.Q.Zhang,Molecular dynamics study on nanoparticle diffusion in polymer melts:A test of the Stokes-Einstein law.Journal of Physical Chemistry C,2008.112(17):p.6653-6661.
    [38]Hu,Y.,et al.,Effect of the Bridging Conformation of Polyelectrolytes on the Static and Dynamic Behavior of Macroions.Langmuir,2008.24(18):p.10138-10144.
    [39]Jiang,T.,Z.D.Li,and J.Z.Wu,Structure and swelling of grafted polyelectrolytes:Predictions from a nonlocal density functional theory.Macromolecules,2007.40(2):p.334-343.
    [40]Rosenfeldt,S.,et al.,Interaction of proteins with spherical polyelectrolyte brushes in solution as studied by small-angle x-ray scattering.Physical Review E,2004.70(6):p.061403.
    [41]Ahrens,H.,et al.,Nonlinear Osmotic Brush Regime:Experiments,Simulations and Scaling Theory.J.Phys.Chem.B,2004.108(43):p.16870-16876.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700