两亲性梳型共聚物PAA-g-PMMA的合成及其溶胀行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次研究了丙烯酸(AA)单体和4-乙烯基苄氯(4-VBC)单体的自由基共聚合反应。采用IR技术、1H-NMR技术和GPC方法表征了产物共聚物P(AA-co-VBC)的组成和分子量。采用Fineman-Ross法和Kelen-Tudos法计算了单体的竞聚率:根据Fineman-Ross法,丙烯酸单体(M1)和4-乙烯基苄氯单体(M2)的竞聚率分别为r1= 0.50±0.06, r2=1.52±0.15;根据Kelen-Tudos法,两单体的竞聚率分别为r1= 0.43±0.21, r2 = 1.31±0.14。研究结果表明:在此共聚体系中,由于r1 < 1,r2 > 1,r1 r2 <1,从而共聚物组成曲线始终处于恒比共聚组成曲线下方,属于非理想共聚合体系。由所得竞聚率计算了AA-VBC共聚物主链中两单体单元的序列结构,结果表明可以通过调节两单体投料比来控制两单体单元在大分子链中的序列长度分布:当f2= 4.77%时,共聚物中4-VBC单元序列长度为1的含量占93.8%,表明4-VBC单元基本上被AA单元体完全分隔开;当f2=35.53%时,两种单体单元序列长度为1(交替共聚结构)的含量均超过55%,其余的为梯度共聚物结构;当f2=78.62%时,AA单元序列长度为1的含量占86.0%,AA主要以单个单元分布在4-VBC链中。另外,P(AA-co-VBC)的数均分子量随着单体4-VBC投料量的增加而增大。
     本文第二部分以产物共聚物P(AA-co-VBC)作为大分子引发剂,在FeCl2/PPh3催化下,引发了甲基丙烯酸甲酯(MMA)的ATRP反应,制备了结构明确的主链亲水、支链亲油的两亲性梳型共聚物P(AA-co-VBC)-g-PMMA。采用IR技术、1H-NMR技术和GPC方法表征了共聚物的结构参数和分子量,计算了共聚物的平均接枝数、平均支链长度、接枝率和接枝效率。第三部分考察了P(AA-co-VBC)-g-PMMA在水溶液中的溶胀行为和溶胀动力学:结果表明降低pH值、降低温度,加入电解质都会降低接枝共聚物的吸水倍率;接枝率增加,接枝共聚物的吸水倍率亦随之降低;随着pH值的降低,溶胀扩散机理由Fickian扩散逐渐转变为非Fickian扩散,在多数环境中的溶胀主要受溶剂分子的扩散为主,表现为Fickian扩散机理。
The radical copolymerization of acrylic acid (M1) and 4-Vinylbenzylchloride (M2) in dioxane was firstly studied. A series of copolymers with different compositions were obtained from feed ratios of M1:M2 = 95.2:4.8 to 21.4:78.6. The composition and average molecular weights of acrylic acid (AA) and 4-Vinylbenzylchloride (4-VBC) copolymers were determined by IR,1H-NMR and GPC. According to the composition of P(AA-co-VBC), the reactivity ratios of AA-VBC copolymerization system calculated by the Fineman-Ross method were r1= 0.50±0.06 and r2= 1.52±0.15, almost the same as r1 = 0.43±0.21 and r2 = 1.31±0.14 by the extended Kelen-Tudos method. The results showed that r1 < 1 and r2 > 1, and r1 r2 < 1, and the performance of AA-VBC copolymerization system is non-ideal copolymerization. AA in copolymer is always smaller than AA in feed. The composition curve is always below the diagonal. On the basis of the reactivity ratios of two monomers, the sequence-length distribution in the AA-VBC copolymers was obtained. Sequence-length distribution of AA and 4-VBC in the AA-VBC copolymers can be controlled through change of feed ratios. For f2 = 4.77%, the probability of the 4-VBC sequence of 1 unit in the copolymer chain is 93.8 % ,the monomer unit of 4-VBC is mostly separated by the sequence of AA; and for f2=35.53%, the probability of the 4-VBC and AA sequence of 1 unit in the copolymer chain is above 55%(alternating tendency prevails), the rest of copolymer is gradient structure; and in the case of f2 = 78.62%, the probability of the AA sequence of 1 unit in the copolymer chain is 86.0%, the monomer unit of AA is individually separated in the chain of 4-VBC. In the presence of constant initiator concentration, the gradual increase in the feed of 4-VBC was accompanied by a increase in number-average molecular weight of P (AA-co-VBC).
     Then methyl methacrylate (MMA) was grafted onto P (AA-co-VBC) backbone using PhCH2Cl group in VBC unit of P (AA-co-VBC) as an initiation site and FeCl2/triphenyl phosphine complex as a catalyst. The resulted copolymer (AA-co-VBC)-g-PMMA with a comb-like branched structure has a hydrophilic backbone (PAA) and hydrophobic side chains (PMMA). The structure parameters and average molecular weights of P(AA-co-CMS)-g-PMMA were determined by IR,1H-NMR and GPC. The average graft number, the average length of side chains, the graft ratio and the graft efficiency were investigated. The swelling behavior and dynamics of the comb-like branched polymer in aqueous solution was also investigated. The gradual decrease of swelling ratios was accompanied by the decrease of pH and temperature, and the increase of concentration of NaCl solution and graft ratio. The kinetic exponents indicated that the swelling transport mechanisms transformed from Fickian diffusion to non-Fickian transport as the decreasing pH. In most of surroundings, swelling transport mechanisms were controlled by solvent diffusion and fitted by Fickian model.
引文
[1]胡静,马建中,一种新型两亲性聚合物的合成研究,日用化学工业,2007,37:152-155
    [2]徐坚,高分子表面活性剂研究进展,油田化学,1997,14(3):290-294
    [3]徐坚,AM/AEOn/NaMAA三元共聚物的结构、水溶液表面活性及流变性能,油田化学,1998,15(1):58-63
    [4] Anderson B.C., Cox S.M., Bloom P.D., et al, Synthesis and Characterization of Diblock and Gel-Forming Pentablock Copolymers of Tertiary Amine Methacrylates, Poly(ethylene glycol), and Poly(propylene glycol), Macromolecules, 2003, 36(5): 1670-1676
    [5] Zhao Q., Ni P.H., Synthesis of well-defined and near narrow-distribution diblock copolymers comprising PMMA and PDMAEMA via oxyanion-initiated polymerization, Polymer, 2005, 46(9): 3141-3148
    [6] Minoda M., Sawamoto M., Higashimura T., Block copolymers of 2-hydroxyethyl vinyl ether and alkyl vinyl ether by living cationic polymerization: new nonionic macromolecular amphiphiles, Macromolecules, 1987, 20(9): 2045-2328
    [7] Minoda M., Sawamoto M., Higashimura T., Amphiphilic block copolymers of vinyl ethers by living cationic polymerization. 4. Macromolecular amphiphiles with multiple hydroxyl groups and a cylindrical topology. Macromolecules, 1992, 25(11): 2796-2801
    [8]郭浩鹏,高保娇,杨莹,疏水缔合聚丙烯酰胺在表面活性单体胶束溶液中的制备及其流变特性,高分子学报,2008,5:416-423
    [9] Wang X.S., Luo N., Ying S.K., et al, The synthesis of ABA block copolymers by means of‘living’/controlled radical polymerization using hydroxyl-terminated oligomers as precursor, Eur Polym, 2000, 36: 149-156
    [10] Wang J.S., Mastyjaszewsi K., Control1ed "living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc., 1995, 117: 5614-5615
    [11]管丹,张明祖,王凯军,两亲性无规共聚物MAA-SMA-PEGMA的表面活性研究,胶体与聚合物,2007,4:17-19
    [12]班文彬,刘伟区,申德妍等,硅氢加成法制备含长链烷基两亲性聚合物,化工进展,2006,25(2):176-180
    [13]王莹,两亲性梳状聚合物的合成与研究,吉林大学2008硕士论文.
    [14]杨福廷,疏水缔合型聚丙烯酰胺共聚物在水处理中的应用,精细化工,2001,18(3): 144-147
    [15]郭拥军,李富生,李林辉等,水溶性疏水缔合聚合物在高岭土/水界面的吸附,应用化学,2002,19(1):26-29
    [16] Nilhan K., Elifgiirel E., Baysal B.M.et al, Kinetics of Coil-Globule Collapse in Poly(methyl methacrylate) in Dilute Solutions below Temperature,Macromolecules, 1999, 32: 8399-8403
    [17] Tonge S.R., Tighe B.J., Responsive hydrophobically associating polymers: a review of structure and properties, Advanced Drug Delivery Reviews, 2001, 53: 109-122
    [18] Debra T.A., Obert K.R, Patrick L A et al. Association of hydrophobically-modified poly(ethylene glycol) with fusogenic liposomes, Biochimica et Biophysica Acta ,2003,1616:184-195
    [19] Jonsson M., Johansson H.O., Protein partitioning in thermoseparating systems of a charged hydrophobically modified ethylene oxide polymer,Journal of Chromatography A,2003, 983:133-144
    [20]周明,代加林,李春福等,疏水缔合水溶性聚合物在水性涂料中的研究进展,中国涂料,2004, (11): 38-41
    [21]孙芳,徐群,孙贵友等,新型高分子表面活性剂的合成,精细石油化工,1994,6:12-14
    [22]徐坚,高分子表面活性剂的分子设计,高分子通报,1997,2:90-92
    [23]孙立力,杨旭,杨世光,一种新型高分子表面活性剂的性能研究,西南石油学院学报,2002,24(4):53-55
    [24]范仲勇,李娜,吴大诚,一类活性极高的表面活性剂,高等学校化学学报,1996,17(12):1962-1964
    [25]罗向东,李瑞霞,吴大诚,氟碳端基聚合物合成及其表面吸附性能,功能高分子学报,1999,12 (2) : 225-229
    [26]曹亚,李惠林, CMC型高分子表面活性剂在稀溶液中分子的聚集形态,四川大学学报(工程科学版),2005,37(2):51-54
    [27]齐琳琳,王巍,李智敏,共聚物聚乙烯醇(PVA)-丙烯酸甲酯(MA)-丙烯酸聚乙二醇酯(PEGA)的表面活性研究,西南交通大学学报,1999,34(1):76-81
    [28]韩利娟,陈洪,蒋珍菊等,高分子表面活性剂的研究现状,西南石油学院学报,2003,25(4):63-65
    [29]赵娜娜,佟瑞利,邹立壮等,疏水改性高分子絮凝剂的合成及其对含油污水的净化,2008,27(4):454-457
    [30]鲁智勇,安利,操卫平等,疏水缔合阳离子型高分子絮凝剂合成与性能研究,环境科学与技术,2008,31(10):95-97
    [31]陈鸿,张熙,梁兵,疏水改性阳离子型高分子絮凝剂P (AM -DMDAAC-BA)的合成与性能研究,高分子材料科学与工程,2003,19(2):97-100
    [32] Hayashi H., Kono K., Takagishi T., Temperature-controlled release property of phosphohilipid vesicles bearing a thermo-sensitive polymer, Biochimica et Biophysica Acta,1996, 1280: 127-134
    [33] Polozova A., Winnik F.M., Aechanism of the interaction of hydrophobically-modified poly-(N-isopropylacrylamides) with liposomes, Biochimica et Biophysica Acta,1997, 1326: 213-224
    [34]郭艳玲,赵军,任翔宇等,两亲性接枝聚天冬氨酸的合成与降解性能研究,天津科技大学学报,2008,23(3):49-51
    [35]赵军,郭艳玲,两亲性接枝聚天冬氨酸胶束作为药物载体的研究,山西大学学报(自然科学版),2008,31(4):570-572
    [36]陈卫星,范哓东,刘郁杨等,以季戊四醇为核的多臂星形链转移剂的合成及表征,高分子材料科学与工程,2008,24(9):56-59
    [37]陈卫星,范哓东,刘郁杨,星形两亲性嵌段共聚物的自组装及其药物控释行为研究,功能材料,2008,4(39):663-666
    [38]宋玉林,郑启新,郭晓东等,两亲性含IKVAV的肽体内诱导血管生成的研究,组织工程与重建外科杂志,2008,4(5):254-258
    [39] Rouzes C., Durand A., Leonard M.et al. Surface activity and emulsification properties of hydrophobically modified dextrans, Journal of Colloid and Interface Science,2002,253: 217-223
    [40]徐福贵,董晓臣,聚丙烯酰胺疏水缔合衍生物研究进展,化学推进剂与高分子材料,2003,1(2):25-29
    [41]于辉,改性聚丙烯酰胺共聚物的合成及水溶液性质,硕士论文,青岛科技大学,2007
    [42]徐国财,接枝型高分子表面活性剂的合成、性质及应用,化工进展,1999,2:43-45
    [43]李弘,活性开环歧化聚合合成梳形聚合物,化学通报,2002,1:24-28
    [44] Plate N.A., Shibaev V.P., Comb-Shaped Polymers and Liquid Crystals, New York: Plenum Press, 1987. 1-8
    [45]齐力,林云青,景遐斌等,具有多重玻璃化转变的梳状聚合物的合成、表征和导电性—侧链分子量为550的聚乙二醇单甲醚,功能高分子学报,2000,13:266-270
    [46]张田林,郝庆英,蔡泉源等,一种双离子梳状聚合物电解质的合成与性能研究,化工科技,2004,12(2):26-30
    [47]张静智,张其震,侧基含偶氮基的硅氧烷梳状聚合物的光致变色性,1997,9:930-936
    [48]姜海峰,王德民,夏惠芬,梳形聚合物溶液的流变性及驱油效果分析,大庆石油学院学报,2008,32(4):61-65
    [49]夏必来,林有尚,王永强等,梳形聚合物分散剂在工业涂料体系中的应用基础研究,涂料工业,2008,38(3):17-20
    [50]何卫东,许建烟,刘群峰,结构规整支化聚合物的制备方法,功能高分子学报,2001,2:237-244
    [51] Shohi H., Sawamoto M., Higashimura T., End - functionalized polymers of p-alkoxystyrenes by living cationic polymerization 1, p-methoxystyrene. Macromolecules, 1992, 25 (1): 53-57
    [52] Kanaoka S., Sueoka M., Sawamoto M., et al. Star-shaped polymers by living cationic polymerization VII, amphiphilic graft polymers of vinyl ethers with hydroxyl groups: Synthesis and host-guest interaction. J Polym Sci Part A Polym Chem Ed, 1993, 31 (10): 2513-2521
    [53] Anderson B.C., Andrew G.D., Arthur P., et al. Anionic polymerization of methacrylates: Novel functional polymers and copolymers. Macromolecules, 1981 , 14 (5): 1599-1601
    [54] Asami R., Takaki M., Hanahata H., Preparation of (p2vinylbenzyl) polystyrene macromer. Macromolecules, 1983, 16 (4) : 628-631
    [55] Schulz W.M., Kaladas J., Schulz D.N., Compostional and molecular weight analysis of polyehter macromers by chromatographic techniques. J Polym Sci Part A Polym Chem Ed, 1984, 22 (12) : 3795-3804.
    [56] Schulz G.O., Johnson S.C., Racine S.I., Graft polymers with macromonomers I: Synthesis from methacrylate2terminated polystyrene.J Appl Polym Sci, 1982, 27 (12): 4773-4786.
    [57]Asami R., Kondo Y., and Takaki M., Synthesis of poly(methyl methacrylate) macromer by group transfer polymerization and polymerization of the macromers. Polym Prepr, 1986, 27 (1): 186-189
    [58] Miyashita K., Kamigaito K., Sawamoto M., et al. End-functionalized polymers of styrene and p-methylstyrene by living cationic polymerization with functionalized initiators. Macromolecules, 1994, 27 (5): 1093-1098
    [59] Miyashita K., Kamigato K., Sawamoto M., et al. Synthesis of end-functionalized polystyrenes with organosilicon end - capping reagents via living cationic polymerization. J Polym. Sci. Part A Polym Chem, 1994, 32 (13): 2531-2542
    [60] Biedron T., Brzezinska K., Kubisa P, et al. Macromonomers by activated polymerization of oxiranes : Synthesis and polymerization. Polym Int, 1995, 36 (1): 73-80.
    [61] Shibamuna T., Takashi A., Kohei S., et al, Thermosensitive phase-separation behavior of poly (acrylic acid)-graft-poly (N ,N-dimethylacrylamide) aqueous solution, Macromolecules, 2000, 33 (2) : 444-450
    [62] Smith S.D., DeSimone J.M., Huang H., et al, Synthesis and characterization of PMMA-g-PDMS copolymers. 1. Bulk and surface characterization, Macromolecules, 1992, 25(10) : 2575-2581
    [63] Maniruzzaman M., Kawaguchi S., Ito K., Micellar copolymerization of styrene with PEO macromonomer in water - approach to unimolecular nanoparticles via pseudo-living radical polymerization, Macromolecules, 2000, 33 (5) : 1583-1592
    [64] Qiu X.P., Wu C., Study of the core-shell nanostructure formed through the coil-to-globule transition of poly (N-isopropylacrylamide) grafted with poly(ethylene oxide), Macromolecules, 1997, 30 (25) : 7921-7926
    [65] Terao K., Nakamura Y., Norisuye T., Solution properties of polymacromonomers consisting of polystyrene : Chain dimensions and stiffness in cyclohexane and toluene, Macromolecules, 1999, 32 (3) : 711-716
    [66] Pannell J., Polystyrenes of known structure: Part 2, Comb-shaped Molecules, Polymer, 1971, 12 (9): 558-578
    [67] Takaki M., Asami R., IchiKawa M., Coupling reaction between living polystyrene and poly (chloromethylstyrene), Macromolecules, 1977, 10 (4): 850-855
    [68] Candau F., Taromi F.A., Rempp P., Synthesis and characterization of PST-PEO graft copolymers, Polymer, 1977, 18 (12) : 1253-1257
    [69] Price C., Woods D., Synthesis and solution behavior of polystyrene-g-polyisoprene coplymers, Polymer, 1973, 14 (3): 82-86
    [70]张洪敏,候元雪,活性聚合.北京:中国石化出版社,1997,259 - 260
    [71] Zhang H.M., Ruckenstein E., Graft, block-graft and star-shaped copolymers by an in-situ coupling reaction, Macromolecules, 1998, 31 (15): 4753-4759
    [72] Takaki M., Asami R., Mizuno M., Anionic grafting reaction of living polystyrene with poly(p-vinylstyrene oxide) and its styrene copolymers, Macromolecules, 1977, 10 (4): 845-850
    [73] Piirma I., Polymeric surfactants in emulsion polymerization. Mcromol Symp, 1990, 35-36: 467-475
    [74]Jialanellla G.L., Fire E.M., Pirrma I., Synthesis of polystyrene–block–poly(oxyethylene) for use as a stabilizer in the emulsion polymerization of styrene. J Polym.Sci. Part A,1992, 30: 1925-1933
    [75] Retzing G.S., Cook B.C., The binding of fibrinogen to surface and identification of two distinct surface-bound specials of the protein. J Colloid and Interface Sci, 1994, 168: 514-521
    [76]邱永兴,俞小洁,封麟先等,接枝共聚物聚苯乙烯-g-聚氧乙烯的微相分离形态研究,高分子学报,1994,6:694-701
    [77]徐祖顺,封麟先,易昌凤等,两亲聚合物溶液性质及其乳液聚合的研究进展,分子材料科学与工程,1998,4:1-4
    [78]江立鼎,高保娇,孔德轮,丙烯酰胺型阴离子表面活性单体与丙烯酰胺共聚物水溶液的流变特性,高分子学报,2007,4:349-355
    [79]于亚明,高保娇,江立鼎,丙烯酰胺型阴离子表面活性单体的化学结构与其胶束化行为,化学学报,2006,18:1859-1864
    [80]吕茂森,李季,王中华等,耐温抗盐共聚物AMPS/ AM/ AMC14S的合成,油田化学,1999,16(4):362-364
    [81]王玉鹏,武玉民,于跃芹等,AM/AA/AMPS/ AMC14S共聚物的制备与表征,青岛科技大学学报,2006,27(1):1-4
    [82]刘慷慨,高保娇,郭浩鹏,阳离子型表面活性单体(2-丙烯酰胺基)乙基十四烷基二甲基溴化铵的合成及其胶束化行为,胶体与聚合物,2006,24(3):10-15
    [83]刘慷慨,李蕾,高保娇,季铵盐型阳离子型表面活性单体AMC16AB胶束化行为的研究,化工中间体,2007,2:33-36
    [84]叶琳,张明祖,闻荻江,两亲性高聚物的研究进展,山东轻工业学院学报,2005,19(3):9-13
    [85]李永胜,李弘,何炳林,梳型接枝共聚物的合成(Ⅳ) -氯乙酸降冰片烯甲酯引发苯乙烯、甲基丙烯酸甲酯原子转移自由基聚合的研究,化学学报,2002,60:1485-1489
    [86]李岸龙,梁晖,卢江,活性正离子聚合与原子转移自由基聚合转换合成聚β-蒎烯接枝共聚物,高分子学报,2006,1:151-155
    [87]李爱香,鲁在君,结构明确的梳形支化聚合物的合成与表征,高分子学报,2008,3:203-208
    [88] Luo X.L., Wang G.W., Pang X.C., et al, Synthesis of a Novel Kind of Amphiphilic Graft Copolymer with Miktoarm Star-Shaped Side Chains, Macromolecules, 2008, 41: 2315-2317
    [89] Rzayev J., Synthesis of Polystyrene-Polylactide Bottlebrush Block Copolymers and Their Melt Self-Assembly into Large Domain Nanostructures, Macromolecules, 2009, 42: 2135-2141
    [90] Zhang N., Huber S., Schulz A., et al, Cylindrical Molecular Brushes of Poly(2-oxazoline)s from 2-Isopropenyl-2-oxazoline, Macromolecules, 2009, 42: 2215-2221
    [91] Wang J.S., Matyjaszewski K.“Living”/controlled radical polymerization. transition-metal- catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules, 1995, 28, 7572-7573
    [92] Yuan J.Y., Pan C.Y., Tang B.Z.,”Living”free radical ring-opening polymerization of 5, 6-benzo-2-methykene-1, 3-dioxeoane using the atom transfer radical polymerization method, Macromolecules, 2001, 34: 211-214
    [93] Huang, J.L.; Gil, R.; Matyjaszewski, K. Synthesis and characterization of copolymers of5,6-benzo-2-methylene-1,3-dioxepane and n-butyl acrylate, Polymer, 2005, 46, 11698-11706.
    [94] Save M., Weaver J.V.M., Armes S.P., Atom transfer radical polymerization of hydroxy-functional methacrylates at ambient temperature: Comparison of glycerol Monomethacrylate with 2-hydroxypropyl methacrylate, Macromolecules, 2002, 35, 1152-1159
    [95] Zhong Ling, Jia Bin Bin, Chen Dian Bao. Atom transfer radical polymerization of butadiene initiated by PhCH2Cl/MoCl3 (OC8H17)2/PPh3, China Synthetic Rubber Industry, 2003, 26 (6): 381-384.
    [96] Jain P., Dai J.H., Baker G.L., et al, Rapid Synthesis of Functional Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization of an Acidic Monomer, Macromolecules, 2008, 41: 8413-8417
    [97]徐守萍,刘伟区,原子转移自由基聚合催化体系的研究进展,合成橡胶工业,2008,31(2):156-161
    [98] Matyjaszewski K., Patten T.E., Xia J., Controlled/“Living”Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene, J. Am. Chem. Soc. 1997, 119: 674-680
    [99] Cheng, G.L., Hu, C.P., Ying, S.K., Controlled radical polymerization of methyl methacrylate in the presence of CuX/phen complexes and alkyl halides, Polymer 1999, 40: 2167-2169.
    [100] Tsarevsky N.V., Matyjaszewski K.,“Green”Atom Transfer Radical Polymerization: From Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials, Chem. Rev, 2007, 107: 2270-2299
    [101] Xia J., Matyjaszewski K., Controlled/“Living”Radical Polymerization. Atom Transfer Radical Polymerization Using Multidentate Amine Ligands, Macromolecules, 1997, 30: 7697-7700
    [102] Queffelec J., Gaynor S.G., Matyjaszewski K., Optimization of Atom Transfer Radical Polymerization Using Cu(I)/Tris(2-(dimethylamino)ethyl)amine as a Catalyst Macromolecules, 2000, 33: 8629-9639
    [103] Teodorescu M., Matyjaszewski K., Controlled polymerization of (meth)acrylamides by atom transfer radical polymerization, Macromol. Rapid Comm., 2000, 21: 190-194.
    [104] Paik H.J., Teodorescu M., Xia J., et al, Block Copolymerizations of Vinyl Acetate by Combination of Conventional and Atom Transfer Radical Polymerization,Macromolecules,1999, 32: 7023-7031
    [105] Xia J., Matyjaszewski K., Controlled/“Living”Radical Polymerization. Atom TransferRadical Polymerization Catalyzed by Copper(I) and Picolylamine Complexes, Macromolecules, 1999, 32: 2434-2437
    [106] Haddleton D.M., Jasieczek C.B., Hannon M.J., et al. Atom Transfer Radical Polymerization of Methyl Methacrylate Initiated by Alkyl Bromide and 2-Pyridinecarbaldehyde Imine Copper(I) Complexes, Macromolecules 1997, 30: 2190-2193
    [107] Haddleton D.M., Crossman M.C., Dana B.H., et al. Atom Transfer Polymerization of Methyl Methacrylate Mediated by Alkylpyridylmethanimine Type Ligands, Copper(I) Bromide, and Alkyl Halides in Hydrocarbon Solution, Macromolecules 1999, 32: 2110-2119
    [108] Ambundo E.A., Deydier M.V., Grall A.J., et al. Influence of Coordination Geometry upon Copper(II/I) Redox Potentials. Physical Parameters for Twelve Copper Tripodal Ligand Complexes, Inorg. Chem., 1999, 38: 4233-4242
    [109] Kabachii Y.A., Kochev S.Y., Bronstein L.M., et al, Atom Transfer Radical Polymerization with Ti(III) Halides and Alkoxides, Polym. Bull., 2003, 50: 271-278.
    [110] Brandts J.A.M., van de Geijn P.; van Faassen E.E., et al, Controlled radical polymerization of styrene in the presence of lithium molybdate(V) complexes and benzylic halides, J. Organomet. Chem., 1999, 584: 246-253
    [111] Le Grognec E., Claverie J., Poli R., Radical Polymerization of Styrene Controlled by Half-Sandwich Mo(III)/Mo(IV) Couples: All Basic Mechanisms Are Possible, J. Am. Chem. Soc. 2001, 123: 9513-9524
    [112] Kotani Y., Kamigaito M., Sawamoto M., Re(V)-Mediated Living Radical Polymerization of Styrene:1 ReO2I(PPh3)2/R?I Initiating Systems, Macromolecules, 1999, 32, 2420-2424
    [113] Kotani Y., Kamigaito M., Sawamoto M., Living Radical Polymerization of Para-Substituted Styrenes and Synthesis of Styrene-Based Copolymers with Rhenium and Iron Complex Catalysts1, Macromolecules, 2000, 33: 6746-6751
    [114] Percec V., Barboiu B., Neumann A., et al. Metal-Catalyzed“Living”Radical Polymerization of Styrene Initiated with Arenesulfonyl Chlorides. From Heterogeneous to Homogeneous Catalysis, Macromolecules, 1996, 29: 3665-3668
    [115] Moineau G., Granel C., Dubois P., et al. Controlled Radical Polymerization of Methyl Methacrylate Initiated by an Alkyl Halide in the Presence of the Wilkinson Catalyst, Macromolecules, 1998, 31: 542.-544
    [116] Granel C., Dubois P.H., Teyssie P.H.,“Living”radical polymerization of styrene initiated by arenesulfonly chlorides and CuI (bpy)nCl, Macromolecules, 1995, 28: 7970-7972
    [117] Uegaki H., Kotani Y., Kamigito M., et al. NiBr2 (Pn-Bu3)2-Mediated living radical polymerization of methacrylates and acrylates and their block or random copolymerization. 61Macromolecules, 1998, 31: 6756-6761
    [118] Granel C., Dubois P., Jerome R., et al. Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(II) Complex and Different Activated Alkyl Halides, Macromolecules, 1996, 29: 8576-8582
    [119] Uegaki H., Kotani Y., Kamigaito M., et al. Nickel-Mediated Living Radical Polymerization of Methyl Methacrylate, Macromolecules, 1997, 30: 2249-2253
    [120] Lecomte P., Drapier I., Dubois P., et al. Controlled Radical Polymerization of Methyl Methacrylate in the Presence of Palladium Acetate, Triphenylphosphine, and Carbon Tetrachloride, Macromolecules, 1997, 30: 7631-7633
    [121] Wang B., Zhuang Y., Luo X., et al. Controlled/“Living”Radical Polymerization of MMA Catalyzed by Cobaltocene, Macromolecules, 2003, 36: 9684-9686
    [122] Braunecker W.A., Itami Y., Matyjaszewski K., Osmium-Mediated Radical Polymerization, Macromolecules, 2005, 38: 9402-9404
    [123] Chen X.P., Qiu K.Y., The in situ atom transfer radical polymerization of MMA using the TD- FeCl3-PPh3 initiating system. New J. Chem., 2000, 24: 865-869.
    [124] Oreilly R.K., Gibson V.C., White A.J.P, et al. Design of highly active iron-based catalysts for atom transfer radical polymerization: Tridentate salicylaldiminato ligands affording near ideal nernstian behavior. J. Am. Chem. Soc., 2003, 125 (28): 8450-8451
    [125] Zhu S., Yan D.Y., Zhang G.S., Atom transfer radical polymerization of styrene with FeCl2/acetic acid as the catalyst system. Polymer Bulletin, 2001, 45: 457-464
    [126] Iqbal J., Bhatia B., Nayyar N.K., Transition metal-promoted free-radical reactions in organic synthesis: the formation of carbon-carbon bonds. Chem. Rev, 1994, 94: 519-564.
    [127] Kotani Y., Kamigaito M., SawaMoto M., FeCp(CO)2I: A phosphine-free half-metallocene- type iron(II) catalyst for living radical polymerization of styrene, Macromolecules, 1999, 32: 6877-6880
    [128] Braunecker W.A., Matyjaszewski K., Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci., 2007, 32 (1): 93 -146
    [129] Nishikawa T., Kamigaito M., Sawamoto M. Living Radical Polymerization in Water and Alcohols: Suspension Polymerization of Methyl Methacrylate with RuCl2 (PPh3) 3 Complex1, Macromolecules, 1999, 32 (7) : 2204-2209
    [130] Qiu J., Gaynor S.G., Matyjaszewski K. Emulsion Polymerization of n-Butyl Methacrylate by Reverse Atom Transfer Radical Polymerization, Macromolecules, 1999,32 (9) : 2872-2875.
    [131] Matyjaszewski K., Shipp D.A., Qiu J., et al. Water -Borne Block and Statistical Copolymers Synthesized Using Atom Transfer Radical Polymerization. Macromolecules, 2000, 33 (7):2296-2298
    [132] Woods H.M., Nouvel C., Licence P., et al. Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide: An Investigation into Stabilizer Anchor Group, Macromolecules, 2005, 38: 3271-3282
    [133] Duxbury C.J., Wang W., de Geus M., et al. Can Block Copolymers Be Synthesized by a Single-Step Chemoenzymatic Route in Supercritical Carbon Dioxide? J. Am. Chem. Soc. 2005, 127: 2384-2385
    [134]张红燕,刘崴崴,王华平,以离子液体为溶剂的原子转移自由基聚合,高分子通报,2007,3:17-22
    [135] Carmichael A.J., Haddleton D.M., Bos S.A.F., et al, Copper(i) mediated living radical polymerisation in an ionic liquid, Chem Commun, 2000, 14 : 1237-1238
    [136]朱丹,黄韩英,王国建,两亲性嵌段共聚物P (NVP-b-tBMA)的制备,筑材料学报,2002,5(3):248-252
    [137]朱蕙,刘世勇,潘全名等,窄分布两亲性嵌段共聚物的合成及其胶束化行为研究,高等学校化学学报,2002,23 (2): 138-142
    [138]李虹,张兆斌,胡春圃等,含羧基的含氟嵌段共聚物的合成及表面性能研究,化学学报, 2004, 62: 213~218
    [139] Greszta D., Matyjaszewski K., mechanism of controlled "living" radical polymerization of styrene in the presence of nitroxyl radicals kinetics and simulations, Macromolecules, 1996, 29 (24) : 7661-7670.
    [140] Greszta D., Matyjaszewski K., Comments on the Paper "Living Radical Polymerization: Kinetic Results". Macromolecules, 1996, 29 (15): 5239-5240
    [141] Andreas H., Cattien, Nyuyen, et al, Starlike polymeric Architectures by ATRP: Templates for the production of low Dielectric Constant This Films, Macromolecules, 2000, 33 (7): 2346-2354
    [142]陈滇宝,刘青,华静,一种新型富勒烯卤化衍生物的原子转移自由基聚合引发体系,中国发明专利申请号:CN00124489. 2,2000-9-11
    [143]曹健,原子转移自由基聚合基本原理及最新进展,长春理工大学学报,2005,28(3):92-99
    [144] Kong H., Gao C., Yan D.Y., Functionalization of Multiwalled Carbon Nanotubes by Atom Transfer Radical Polymerization and Defunctionalization of the Products, Macromolecules, 2004, 37 : 4022-4030
    [145] Kong H., Gao C., Yan D.Y., Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization, J. Am. Chem. Soc., 2004, 126: 412-413
    [146] Qin S.H., Qin D.Q., Ford W.T., et al. Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods, Macromolecules, 2004, 37: 752-757
    [147] Kabra B.G.., Geherke S.H., Hwang S.T., et al. Modification of the dynamic swelling behavior of poly(2-hydroxyethyl methacrylate), J. Appl. Polym. Sci. 1991, 42: 2409-2416
    [148]张永明,罗宁,应圣康,对-氯甲基苯乙烯共聚物引发合成接枝共聚物,高等学校化学学报,1999,3:492-494
    [149] Fineman M., Ross S., Linear method for determining monomer reactivity ratios in copolymerization, J. Polym.Sci., 1950, 5: 259-262
    [150] Tudos F., Kelen T., Foldes, B.T., et al. Analysis of Linear Methods for Determining Copolymerization Reactivity Ratios. III. Linear Graphic Method for Evaluating Data Obtained at High Conversion Levels, J. Macromol. Sci. Chem, 1976, A10(8): 1513-1540
    [151] Alfrey, T., Bohrer J.J., Mark, H. Copolymerization, New York: Interscience, 1952. 23-24
    [152]林思聪,陈景平,关建宁等,对氯甲基苯乙烯的聚合及其聚合物性质的研究,高分子学报,1991,2:238-242
    [153]周塔芝,聚酯纤维光接枝丙烯酸聚合反应动力学研究,化学工程与装备,2008,9:26-28
    [154] Alfreyt T., Gurnee E.F., Lioyd W.G., Diffusion in glassy polymer. J. Polym. Sci. Part C: Polymer symposia,1966, 12(1): 249-261

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700