纳米Au催化剂的制备及其催化肉桂醛选择性加氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米Au催化剂在许多化合物的还原反应中表现出良好的催化活性和选择性,是一类很有发展前景的选择性加氢催化剂。探明调控Au催化剂的加氢活性位点和对特定基团的选择性吸附位点的主要方法,是此类催化剂开发过程中迫切需要解决的问题。
     本论文采用液相还原法制备出聚乙烯吡咯烷酮(PVP)稳定的Au纳米粒子催化剂,采用沉积-沉淀法制备出一系列Au/M_xO_y-TiO_2催化剂和Au-M/TiO_2双金属催化剂,以肉桂醛选择性加氢为模型反应,考察了各催化剂的催化性能,利用XRD、TEM、XPS等方法对催化剂进行了表征。
     研究发现,Au纳米粒子催化剂对肉桂醛分子中的C=C键加氢具有很高的选择性,小粒径、高分散的Au纳米粒子对催化剂加氢活性有利。实验优化出Au纳米粒子催化剂的最佳制备条件为:PVP作稳定剂,PVP/Au摩尔比为20:1,还原剂KBH4/Au摩尔比为3:1。此条件下制备的Au纳米粒子尺寸在10 nm左右,且分散均匀,加氢活性高,肉桂醛转化率可达98.82%,苯丙醛选择性为63.78%。
     将Au纳米粒子催化剂负载后研究发现,Au催化剂的加氢选择性吸附位点与载体的物化性质有很大关系。惰性载体SiO_2负载的Au纳米粒子经H_2还原处理前后其选择性与未负载的Au纳米粒子相似,优先选择吸附C=C键。用活性载体TiO_2负载的Au纳米粒子经H_2还原处理前后,其选择性发生很大变化,未用H_2处理的催化剂选择吸附C=C键,而经H_2处理后的催化剂,优先选择吸附C=O键,这与H_2处理过程中活性载体TiO_2部分电子转移到Au粒子上,产生了许多富电子Au颗粒有关。
     研究发现,用沉积-沉淀法制备的Au/MxOy-TiO_2催化剂的活性和选择性受到助剂种类、助剂含量、添加方式等因素的影响。选用ZrO_2助剂,先对TiO_2修饰再负载Au制备的2%Au/5%ZrO_2-TiO_2催化剂对肉桂醛加氢具有较高的活性。
     研究发现,Co的添加方式会影响Au-Co/TiO_2双金属催化剂的加氢性能。先负载Co再负载Au制备的Au-Co/TiO_2双金属催化剂对肉桂醛加氢具有较高的催化性能。而Au、Co共沉淀制备的Au-Co/TiO_2双金属催化剂的催化性能较差,这是由于Co加入导致催化剂表面Au粒子发生聚集,生成50 nm左右的大尺寸Au粒子,使催化剂的活性位降低。
Gold catalysts are a kind of promising catalysts for selective hydrogenation based on their good activity and selectivity for the reduction of many compounds. Finding good methods to tune the active sites and the selective adsorption sites is crucial for the further research and development of the gold catalysts.
     In this paper, a series of colloidal gold catalysts stabilized by poly( N-vinyl-2-pyrrolidone) (PVP) have been synthesized by the liquid reduction of HAuCl4. A series of Au/MxOy-TiO_2 catalysts and Au-M/TiO_2 bimetallic catalysts were prepared by deposition-precipitation (DP) method. All the catalysts were tested in cinnamaldehyde hydrogenation, and characterized by XRD, TEM and XPS techniques.
     The results showed that the gold nanoparticle catalysts are active for the reduction of carbon-carbon double bond in cinnamaldehyde. Au nanoparticles with quite narrow size distribution and small diameters (ca. 10nm ) prepared at the conditions of the mol ratio of surfactant to Au at 20:1, and the molor ratio of KBH4 to Au at 3:1, exhibits excellent catalytic activity and selectivity for the hydrogenation of cinnamaldehyde. The conversion of cinnamaldehyde and the selectivity to hydrocinnamaldehyde are 98.82% and 63.78%, respectively.
     The property of intrinsic support plays a key role for the supported colloidal gold catalysts. Colloidal gold supported on SiO_2 shows high selectivity for the reduction of carbon-carbon double bond, the same as unsupported Au nanoparticle catalyst. Colloidal gold supported on TiO_2 followed reduction treatment using H2 behavior an opposite selectivity to the unreduced PVP-Au/TiO_2 catalyst,selective for the reduction of carbon-oxygen double bond. The reduction process facilitates electron transfer from support to gold, and the multielectron gold particles are responsible for the selectivity adsorption of the carbon oxygen double bond.
     The supported catalysts prepared by deposition-precipitation (DP) method are selective for cinnamaldethyde hydrogenation to cinnamyl alcohol. The type, dosage and adding method of metal oxide modifier significantly affect on the performance of Au/MxOy-TiO_2 catalysts via the different interaction between gold species and the support. Pre-deposition and pre-impregnating could make the zirconium modifier finely dispersed on the supports. The Au/5%ZrO_2-TiO_2 catalyst, prepared by decomposition of ZrO_2 on TiO_2 followed by loading gold, shows comparable performance in cinnamaldethyde hydrogenation.
     The addition of cobalt can influence the performance of Au/TiO_2 catalyst. Au-Co/TiO_2 catalyst synthesized by the pre-decomposition of cobalt followed by loading gold showed comparable performance in cinnamaldethyde hydrogenation. While the cobalt added by co-deposition with Au could lead to congregating of the gold nanoparticle, which is inert for cinnamaldethyde hydrogenation.
引文
[1] Haruta M., Yamada N., Kobyashi T., et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and carbon monoxide[J]. Journal of Catalysis, 1989, 115(2): 301~309.
    [2]郭志新,李玉良,朱道本.富勒烯的化学研究进展[J].化学进展, 1998, 10(1): 1~15.
    [3]朱道本,王佛松.有机固体[M]. 1999, 236~273.
    [4] Uphade B S., Yamada Y., Akita T. Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti-MCM-41[J]. Applied Catalysis A: General, 2001, 215(1-2): 137-148.
    [5] Hammer B., Norskov J. K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376:238-240.
    [6] Kung H. H., Kung M. C., Costello C. K. Supported Au catalysts for low temperature CO oxidation[J]. Journal of Catalysis, 2003, 216 (1-2): 425-432.
    [7] Haruta M., Date M. Advances in the catalysis of Au nanoparticles[J]. Applied Catalysis A:General, 2001, 222(1-2): 427~437.
    [8] Bond G. C., Thompson D. T. Catalysis by Gold[J]. Catalysis Reviews Science and Engineering, 1999, 41(3-4): 319~388.
    [9] Mertens P., Poelman H., Ye X., et al. Au0 nanocolloids as recyclable quasihomogeneous metal catalystsin the chemoselective hydrogenation of a,b-unsaturated aldehydes and ketones to allylic alcohols[J]. Catalysis Today 2007, 122:352-360.
    [10] Shi H., Xu N., Zhao D., et al. Immobilized PVA-stabilized gold nanoparticles on silica show an unusual selectivity in the hydrogenation of cinnamaldehyde[J]. Catalysis Communications 2008, (9): 1949~1954.
    [11] Turkevitch J., Stevenson P C., Hillier J. Nucleation and growth process in the synthesis of colloidal gold [J]. Discussion of the FaradaySociety, 1951, (11):55~75.
    [12] Munro C. H., Smith W. E., GARNER M., Characterization of the surface of a citrate colloid optimized for use as a substrate for surface-enhanced resonance raman-scattering[J]. Langmuir, 1995, 11(10): 3712-3720.
    [13] Frens G. Regulation of the particle size in monodisperse gold suspensions[J]. Nature:Physical Science, 1973, 241(105): 20-22.
    [14] Ji X H, Song X N, Li J. Size control of gold nanocrystals in citrate reduction: The third role of citrate [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2007, 129 (31 ): 13939 -13948.
    [15] Brust M., Bethell D., Schiffrin D. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system[J]. Journal of the Chemical Society,Chemical Communications, 1994, 7:801-802.
    [16] Glish G. L., Evans N. D., Murray R. W. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm:core and monolayer properties as a function of core size[J]. Langmuir, 1998, 14 (1): 17-30.
    [17]李中春,周全法. SDS/Vc/H20微乳液中纳米金的合成[J].稀有金属材料与工程, 2007, 36 (6): 1055.
    [18]姚玉峰,杨功俊,朱靖,等.反相微乳液中憎水性纳米金的原位还原法合成[J].化学研究与应用, 2008, 20 (6): 729.
    [19] Swami A., Kumar A., Sastry M. Formation of Water-Dispersible Gold Nanoparticles Using a Technique Based on Surface-Bound Interdigitated Bilayers[J]. Langmuir, 2003, 19(4): 1168–1172
    [20]赵振国.吸附作用应用原理[M]. 2005.
    [21] Pugh T. L., Heller W. Coagulation and stabilization of colloidal solutions with polyelectrolytes[J] J Polym Sci, 1960, 47(149): 219~227
    [22] Boutoux J., Dauplan A., Marignan R., et al. PhisPhysicochim Biol, 1969, (19): 1259.
    [23] Wang Y, Wei G W, Zhang W Q, et al. Responsive catalysis of thermoresponsive micelle-supported gold nanoparticles[J]. J Mol Catal A, 2007, 266: 233.
    [24] Wang Y, Wei G W. Synthesis of gold nanoparticles stabilized withpoly(N-isopropylacrylamide)-co-poly(4-vinyl pyridine) colloid and their application in responsive catalysi [J]. Journal of Molecular Catalysis A-Chemical,, 2008, 280 (1-2): 1~6.
    [25] Azzam T., Bronstein L., Eisenberg A. Water-soluble surface-anchored gold and palladium nanoparticles stabilized by exchange of low molecular weight ligands with biamphiphilic triblock copolymers[J]. LANGMUIR, 2008, 24(13): 6521-6529.
    [26] Scott R. W. J., Wilson O. M., Crooks R. M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles[J]. J Phys Chem B, 2005, 109(2): 692-704.
    [27] Zhou M. C. S., Zhao S. Synthesis of Icosahedral Gold Nanocrystals: A Thermal Process Strategy[J]. J Phys Chem B, 2006, 110(10): 4510-4513.
    [28] Haruta M., Kobayashi T. Low-temperature oxidation of CO over gold supported on TiO2, alpha-Fe2O3, and Co3O4[J]. Journal of Catalysis, 1993, 144 (1): 175~192.
    [29] Liu Y X, Xing T F, Wei Z J, et al. Liquid phase selective hydrogenation of phthalic anhydride to phthalide over titania supported gold catalysts [J]. Catalysis Communications, 2009, 10 (15): 2023-2026.
    [30] Zanella R., LUIS C., Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea[J]. Appl Catal A: Gen, 2005, (291): 62.
    [31] Cunningham W. V., Torres S., Tanaka K., et al. Structural analysis of Au/TiO2 catalysts by Debye function analysis[J]. Journal of catalysis, 1999, 183 (1): 24-31.
    [32] Cunningham W. V., Kageyama H., Tsubota S., et al. The relationship between the structure and activity of nanometer size gold when supported on Mg(OH)(2)[J]. Journal of catalysis, 1998, 177 (1): 1-10.
    [33] Tsubota S., Tanaka K., Haruta M.Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2 powder for CO oxidation [J]. CatalLett, 1998, (56): 131.
    [34] Grunwaldt J. D., Wogerbauer C., Baiker A. Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids [J].J Catal,Catal, A, 2005, 1~2(291): 222~229.
    [46] Shi H., Xu N., Zhao D. Immobilized PVA-stabilized gold nanoparticles on silica show an unusual selectivity in the hydrogenation of cinnamaldehyde[J]. Catalysis Communications 2008, (9): 1949-1954.
    [47] Mohr C., Hofmeister H., Claus P. The influence of real structure of gold catalysts in the partial hydrogenation of acrolein[J]. JOURNAL OF CATALYSIS 2003, 213 (1): 86-94.
    [48] Claus P., Hofmeister H., Mohr C. Identification of active sites and influence of real structure of gold catalysts in the selective hydrogenation of acrolein to allyl alcohol[J]. Gold Bull, 2004, 37 (3-4 ): 181~186.
    [49] Bailie J. E., Hutchings G. J. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation[J]. Chemical Communications 1999, 21: 2151~2.
    [50] Eveline B., Roel P., Jeroen A., et al. Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts[J]. Catalysis Communications 2007, 8: 1397-1402.
    [51] Milone C., Ingoglia R., Galvagno S. Gold supported on iron oxy-hydroxides: a versatile tool for the synthesis of fine chemicals [J]. GOLD BULLETIN, 2006, 39(2): 54-65.
    [52] Milone C., Ingoglia R., Schipilliti L., et al. Selective hydrogenation of alpha,beta-unsaturated ketone to alpha,beta-unsaturated alcohol on gold-supported iron oxide catalysts: Role of the support [J]. Journal of Catalysis, 2005, 236 (1): 80-90.
    [53] Milone C., Tropeano M. L., Gulino G., et al. Selective liquid Phase hydrogenation of citral on Au/Fe2O3 catalysts[J]. Chemical Communications, 2002, 8): 868-869.
    [54] Corma A., Concepcion P., Serna P. Different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts [J]. Angewandte Chemie International Edition,, 2007, 46 (38 ): 7266-7269.
    [55] Corma A., Serna P. Chemoselective hydrogenation of nitro compounds withsupported gold catalysts [J]. Science, 2006, 313(5785): 332-334.
    [56] Corma A., Serna P., Garcia H. Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of alpha,beta-unsaturated nitrocompounds with H2 [J]. Journal of the American Chemical Society, 2007, 129(20): 6358-6359.
    [57] Shimizu K., Miyamoto Y., Kawasaki T. Chemoselective Hydrogenation of Nitroaromatics by Supported Gold Catalysts: Mechanistic Reasons of Size- and Support-Dependent Activity and Selectivity[J]. Applied Catalysis A-General, 2009, 353 (1): 36~45.
    [58] Chen Y Y., Qiu J. S., Wang X. K. et al. Preparation and application of highly dispersed gold nanoparticles supported on silica for catalytic hydrogenation of aromatic nitro compounds [J]. Journal of Catalysis, 2006, 242 (1): 227-230.
    [59] Maris E. P., Ketchie W. C., Murayama M., et al. Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts[J]. Journal of Catalysis, 2007, 251(2): 281-294.
    [60] Budroni G., Corma A. Gold and gold-platinum as active and selective catalyst for biomass conversion: Synthesis of gamma-butyrolactone and one-pot synthesis of pyrrolidone[J]. Journal of Catalysis, 2008, 257(2): 403-408.
    [61] Gan S., Liang Y., Baer DR.,et al. Effect of platinum nanocluster size and titania surface structure upon CO surface chemistry on platinum-supported TiO2 (110) [J]. J Phys Chem B, 2001, (105): 2412.
    [62] Yang C G., He C. Gold(I)-Catalyzed Intermolecular Addition of Phenols and Carboxylic Acids to Olefins [J]. Journal of the American Chemical Society, 2005, 127 (19): 6966~6967.
    [63] Carrettin S., Guzman J., Corma A. Supported gold catalyzes the homocoupling of phenylboronic acid with high conversion and selectivity[J]. Angewandte Chemie, International Edition, 2005, 44(15): 2242~2245.
    [64] Javier G., Bruce C. G. Structure and reactivity of a mononuclear gold-complex catalyst supported on magnesium oxide [J]. Angewandte Chemie, International Edition, 2003, 42 (6): 690-693
    [65] Guzman, Javier; Gates, et al. A mononuclear gold complex catalyst supported on MgO: spectroscopic characterization during ethylene hydrogenation catalysis[J]. Journal of Catalysis, 2004, 226 (1): 111-119.
    [66] Comas-Vives A., Gonzalez-Arellano C., Corma A. Single-site homogeneous and heterogeneized gold(III) hydrogenation catalysts: mechanistic implications[J]. Journal of the American Chemical Society, 2006, 128 (14): 4756~4765. [67 Pillai U. R., Deevi S. Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide[J]. Applied catalysis section A: General, 2006, 299(266-273)
    [68] Gupta N. M., Tripathi A. K. The role of nanosized gold particles in adsorption and oxidation of carbon monoxide over Au/Fe2O3 catalyst[J]. Gold Bull, 2001, 34 (4): 120-128.
    [69]李常艳,沈岳年,胡瑞生,等. Au/Fe-O催化剂活性组分在CO催化氧化反应中的存在状态[J].催化学报, 2006, 27(3): 259-62.
    [70] Hermes S., Schroter MK., Schmid R., et al. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition [J]. Angew Chem Int Ed Engl,, 2005, 44 (6237-6241).
    [71] Schulz J., Roucoux A., Patin H. Stabilized rhodium(0) nanoparticles: A reusable hydrogenation catalyst for arene derivatives in a biphasic water-liquid system[J]. Chemistry-A European Journal, 2000,6 (4): 618~624.
    [72] Shiju NR,Guliants VV. Recent developments in catalysis using nanostructured materials[J]. Applied Catalysis A-General, 2009,356 (1): 1-17
    [73] Biella S., Prati L., Rossi M. Selective oxidation of D-glucose on gold catalyst[J]. Journal of Catalysis, 2002, 206 (2): 242~247.
    [74] Dimitratos N., Villa A., Bianchi C. L., et al. Gold on titania: Effect of preparation method in the liquid phase oxidation [J]. Applied Catalysis A-General, 2006, 311.
    [75] Mertens P. G. N., Poelman H., Ye X., et al. Au0 nanocolloids as recyclable quasihomogeneous metal catalystsin the chemoselective hydrogenation of a,b-unsaturated aldehydes and ketones to allylic alcohols[J]. Catalysis Today, 2007, 122 (352~360).
    [76] Mertens P. G. N., Vandezande P., Ye X., et al. Recyclable Au-0, Ag-0 and Au-0-Ag-0 nanocolloids for the chemoselective hydrogenation of alpha,beta-unsaturated aldehydes and ketones to allylic alcohols [J]. Applied Catalysis A-General, 2009, 355 (1-2): 176~183.
    [77] Bonnemann H., Nagabhushana K. S., Richards R. M. Nanoparticles and Catalysis:Colloidal Nanoparticles Stabilized by Surfactants or Organo-Aluminum Derivatives: Preparation and Use as Catalyst Precursors[M]. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA,2008.
    [78] Haider P., Schmidt E., et al. Selective blocking of active sites on supported gold catalysts by adsorbed thiols and its effect on the catalytic behavior: A combined experimental and theoretical study [J]. J Mol Catal A-Chem, .2009, 305 (161-169).
    [79] Mertens P. G. N., Poelman H., Ye X., et al. Au0 nanocolloids as recyclable quasihomogeneous metal catalystsin the chemoselective hydrogenation of a,b-unsaturated aldehydes and ketones to allylic alcohols[J]. Catalysis Today 2007, 122 (352~360).
    [80] Jana N. R. Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles[J]. Chem Mater, 2001, (13): 2313~2322. .
    [81]原弘,蔡汝秀,庞代文.两亲分子有序组合体中纳米金的可控性合成[J].武汉大学学报(理学版), 2002, (2): 129-132
    [82]王一均.铁系纳米合金的合成及性能研究[D].哈尔滨:哈尔滨工程大学, 2004, 18-60.
    [83]彭思,严华,刘善堂. PVP在水相金纳米粒子表面吸附过程的研究[J].材料工程, 2008, (10): 353-355.
    [84] Milone C., Crisafulli C., Ingoglia R. Comparative Study on the Selective Hydrogenation ofα,βUnsaturated Aldehyde and Ketone to Unsaturated Alcohols on Au Supported Catalysts[J]. Catal Today, 2007, 122 (3~4): 341~531.
    [85] Qian K., Huang W. X., Jiang Z Q., et al.Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. Journal of Catalysis, 2007, 248 (1): 137~141.
    [86] Venezia, A. M., Parola L., Deganello V., et al. Synergetic effect of gold in Au/Pdcatalysts during hydrodesulfurization reactions of model compounds [J]. Journal of Catalysis, 2003, 215 (2): 317-325.
    [87]邢铁锋.负载型纳米Au催化剂上苯酐选择性加氢制备苯酞的研究[J].浙江:浙江工业学,2009
    [88]李锦卫,陈崇启,林性贻.助剂对低温水煤气变换反应Au/α-Fe_2O_3催化剂性能的影响[J].燃料化学学报, 2006, 34 (6): 712~716.
    [89]廉红蕾,潘维成,贾明君. Au/Fe_2O_3催化剂上的低温水煤气变换反应[J].石油化工, 2009, 33 (Suppl):299-301.
    [90] Rothenberger G. M., Graetzelm, Serponen, et al. Charge carrier trapping and recombination dynamics in small semiconductor particles[J]. Journal of the American Chemical Society, 1985, 26 (107): 8054~8059.
    [91] Keane M. A., Gomez-Quero S., Cardenas-Lizana F., et al. Alumina-Supported Ni-Au: Surface Synergistic Effects in Catalytic Hydrodechlorination[J]. Chemcatchem, 2009, 1 (2): 270-278.
    [92] Villa A, Campione C., Prati L. Bimetallic gold/palladium catalysts for the selective liquid phase oxidation of glycerol[J]. Catalysis Letters, 2007, 115 (3-4): 133-136.
    [93] Menegazzo F., Canton P., Pinna F, et al. Bimetallic Pd-Au catalysts for benzaldehyde hydrogenation: Effects of preparation and of sulfur poisoning[J]. Catalysis Communications, 2008, 9 (14): 2353-2356.
    [94] Serna P., Concepcion P., Corma A. Design of highly active and chemoselective bimetallic gold-platinum hydrogenation catalysts through kinetic and isotopic studies [J]. Journal of Catalysis, 2009, 265 (1): 19-25.
    [95] Jain A., Kjergaard S. Effect of aging time and calcination on the preferential oxidation of CO over au supported on doped ceria[J]. Catalysis Letters, 2005, 104 (3-4): 191-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700