纳米冷冻机油对制冷剂饱和蒸气压的作用机理及实验关联
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在蒸气压缩式制冷系统运行过程中,冷冻机油起着压缩机内部润滑和密封的作用,且与制冷剂一起循环。采用合适的纳米冷冻机油,有助于改善压缩机摩擦表面的润滑性能和含油制冷剂的传热性能,进而提高制冷装置的能效比和可靠性。含有纳米冷冻机油后,制冷剂的热物性(如饱和蒸气压)将发生变化,影响到制冷系统的性能。本文工作的主要目的是通过测试分析含有纳米冷冻机油后制冷剂的饱和压力的变化,探讨纳米冷冻机油对制冷剂饱和蒸气压的作用机理,对实验结果进行关联。完成的主要工作及获得的主要结论包括:
     1.纳米冷冻机油的配制与性质研究。配制出添加纳米NiFe_2O_4、富勒烯以及混合纳米粉体的纳米冷冻机油并利用傅里叶变换红外光谱仪对其性质进行了研究。研究发现:
     1)采用吐温和司盘复配的方法,可配制出稳定性较好的环烷基的纳米NiFe_2O_4、富勒烯以及混合纳米粉体的纳米冷冻机油;
     2)纳米粉体和分散剂可导致冷冻机油部分吸收特征峰发生变化。如按照一定的方法添加Span80和纳米NiFe_2O_4后,可使矿物基冷冻机油3GS的红外光谱中产生与160SZ相似的脂肪族酸、脂肪族醚和脂肪族伯醇的红外特征峰。这些特征峰对应的官能团是改善3GS和R134a相溶性的主要因素。
     2.含有纳米冷冻机油后制冷剂的饱和蒸气压的实验研究。测量了含油率为1~9wt%,温度范围为263~333K的含油制冷剂和含纳米油制冷剂的饱和蒸气压。研究发现:
     1)在相同的含油率下,含油制冷剂饱和蒸气压偏差随着温度的升高而增大;
     2)在相同的含油率下,冷冻机油KT56对R22制冷剂饱和蒸气压的影响明显大于3GS的影响,表明KT56/R22的互溶解性大于3GS/R22;
     3)在相同的含油率下,KT56基纳米冷冻机油对R22制冷剂饱和蒸气压的影响明显大于纯KT56的影响,表明KT56基纳米冷冻机油/R22的互溶解性大于KT56/R22;
     3.对含油制冷剂饱和蒸气压的实验结果进行关联。工作成果包括:
     1)结合Xiang方程和Cavestri方程,新提出了一个可描述含油制冷剂饱和蒸气压的方程,采用非线性最小二乘法拟合方程参数,并且对含油率为1%、3%、5%时含油制冷剂饱和蒸气压实验数据和利用新方程获得的计算值进行对比。发现:KT56/R22的最大偏差为0.42%,平均偏差为0.133%;3GS/R22的最大偏差为0.41%,平均偏差为0.193%。
     2)采用耦合油浓度的方法拟合出含纳米油制冷剂饱和蒸气压方程,并且对含油率为1%、3%、5%时含纳米油制冷剂饱和蒸气压实验数据和方程计算值进行比较,发现所有的实验值与计算值的偏差均在±0.23%以内。
The function of refrigeration oil in vapor compression refrigeration system is to lubricate and pressurize the compressor. When the system runs, refrigeration oil will circulate in the system with refrigerant. It is helpful to improve the lubricating ability of friction surface in compressor and heat transfer performance of refrigerant-oil mixture by adopting appropriate nano-refrigeration-oil. As a result, energy effciency and reliability of the refrigeration system will be improved. When the refrigerant containing nano- refrigeration-oil, its thermo physics properties, such as saturated vapor pressure, will be changed. Then, the performance of refrigeration system wil be influnced. The fundamental purpose of this thesis is to analyse the variation of refrigerant after containing nano-refrigeration-oil by measuring its saturated vapor pressure; discuss the mechanism of nano-refrigeration-oil’s action on the saturated vapor pressure of refrigerant; incidence the outcome of experiment. The primary task and conclusion of this thesis list as follow:
     1. Conducted an investigation in preparing and properties of the nano-refrigeration-oil. After preparing nano-refrigeration-oil added with nano-NiFe_2O_4, C60 and mixed nanoparticles, we investigated their properties by means of Fourier transform infrared spectrometry method. The results were as follows:
     1) The compositional formulation of Tween and Span was adopted to prepare naphthenic base nano-refrigeration-oil containing nano-NiFe_2O_4, C60 or mixed nanoparticles with superior stability.
     2) Nanoparticle and dispersant may change some of absorption characteristic peaks of refrigeration oil. For instance, the infrared spectrum of mineral refrigeration oil 3GS would generate similar infrared characteristic peaks as 160SZ, such as aliphatic acetate esters, aliphatic ethers and primary aliphatic alcohols. These characteristic peaks’corresponding functional groups were the main factors that improve the dissolving ability between 3GS and R134a.
     2. Experimental study on the saturated vapor pressure of refrigerant after containing nano-refrigeration-oil. The saturated vapor pressure of refrigerant mixed with refrigeration oil and nano-refrigeration-oil were measured with different mass fractions from 1 to 9wt%, at the temperature range from 263 to 333K. The results were as follows:
     1) The pressure deviation of the refrigerant-oil mixture were increased as the temperature rised at the same mass fraction of refrigeration oil.
     2) Impaction of refrigeration oil KT56 on the saturated vapor pressure of R22 was greater than 3GS obviously at the same mass fraction of refrigeration oil. It showed that the dissolving ability of KT56 and R22 was better than 3GS and R22.
     3) Impaction of KT56 based nano-refrigeration-oil on the saturated vapor pressure of R22 was greater than pure KT56 obviously at the same mass fraction of refrigeration oil. It showed that the dissolving ability of KT56 based nano-refrigeration-oil and R22 was better than pure KT56 and R22.
     3. The experimental data of refrigerant oil mixture on saturated vapor pressure were correlated. The working achievements were as follows:
     1) A saturated vapor pressure equation of refrigerant-oil mixture was developed in this thesis, combining with Cavestri equation and Xiang equation. A nonlinear least square method was employed to fit parameters of the equation. The saturated vapor pressure experimental data of refrigerant oil mixture were compared with the calculated value of the new equation at different mass fractions from 1 to 5wt%. The result showed that: The maximum and mean deviation of R22-KT56 mixture is 0.42% and 0.133%, respectively; The maximum and mean deviation of R22-3GS mixture is 0.41% and 0.193% , respectively.
     2) A saturated vapor pressure equation of refrigerant containing nano-refrigeration -oil by means of coupling the mass fractions of nano-refrigeration-oil. The saturated vapor pressure experimental data of refrigerant and nano-oil mixture were compared with the calculated value of the new equation at different mass fractions from 1 to 5wt%. The result showed that the calculated value of the equation match all of the experimental data within the deviation of±0.23%.
引文
1李兆坚,江亿.我国城镇住宅夏季空调能耗状况分析[J].暖通空调, 2009, 39(5):82-88
    2 Carrie Corporation. Variable speed screw compressor[R]. New York: Carrie Corporation,2005
    3马一太,田华.制冷空调关键节能减排技术的现状及进展[J].机械工程学报,2009,45(3):49-56
    4 Stephen U. S. Choi. Enhancing thermal conductivity of fluids with nanoparticles[J]. Asme, Fed, 1995,231(12): 99-103
    5 Stephen U. S. Choi, Seok Pil Jang. Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J]. Applied Physics, 2004,84(21):4316-4318
    6王瑞祥,邹德宝,张秋丽,郝斌.纳米颗粒用于HFCs制冷系统的可行性研究[J].流体机械,2003,31卷增刊:120-124
    7夏延秋,金寿日.纳米级金属粉对润滑油摩擦磨损性能的影响[J].润滑与密封,1999,(3):33-34
    8 Zou debao. Investigation on the Action of Nano - particles on the Solubility and Miscibility of Mineral Lubricant Oil AND HFC Refrigerant[C], Proceedings of the 4th International Conference on Compressor and Refrigeration. Beijing ,2003 ,pp. 461– 469
    9邹德宝.纳米颗粒对HFC/矿物冷冻机油工质体系作用的初步研究[D].北京:北京建筑工程学院,2004:41-46
    10 Lilje, K.C., The impact of chemistry on the use of polyol ester lubricants in refrigeration[J]. ASHRAE Transaction. 2000, 106(2):661-667
    11 Wang, S., Gu, J., Dickson, T., Modeling and experimental investigation of accumulators for automotive air conditioning systems[J]. International Journal of Refrigeration. 2006, 29(7):1109-1118
    12 Lottin, O., Optimum control of the gas overheat in the evaporator of a vapour compression refrigeration system when the refrigerant is polluted[J]. InternationalJournal of Refrigeration. 2004, 27(8):1003-1006
    13 Lottin, O., Guillemet, P., Lebreton, J.M., Effects of synthetic oil in a compression refrigeration system using R410A– part I: modelling of the whole system and analysis of its response to an increase in the amount of circulating oil[J]. International Journal of Refrigeration. 2003, 26(7):772-782
    14 Wahlstro¨m, A., Vamling, L. The solubility of HFC22, CFC114 and HFC152a in n-hexadecane[J]. The Canadian Journal of Chemical Engineering, 1996, 74:426-428
    15 Mohammed Youbi-Idrissi, Jocelyn Bonjour. The effect of oil in refrigeration: Current research issues and critical review of thermodynamic aspects[J]. International Journal of Refrigeration. 2008, 31(2):165-179
    16 Youbi-Idrissi, M., Bonjour, J., Marvillet, C., Meunier, F. Impact of refrigerant–oil solubility on an evaporator performances working with R-407C[J]. International Journal of Refrigeration. 2003, 26(3):284-292
    17吴江涛.高精度流体热物性测试实验系统的研制及二甲醚热物理性质的研究[D].西安:西安交通大学能源与动力工程学院,2003:69-74
    18 Navarro, E., Urchueguia, J., Gonzalvez, J., Corberan, J.M., Experimental investigation on performance and oil circulation rate in reciprocating compressors of different sizes using propane as refrigerant[C], Proceedings of the 4th European Thermal Sciences Conference, 2004, Birmingham, England.
    19 Navarro, E., Urchueguia, J., Gonzalvez, J., Corberan, J.M., Test results of performance and oil circulation rate of commercial reciprocating compressors of different capacities working with propane (R290) as refrigerant[J]. International Journal of Refrigeration. 2005, 28(6):881-888
    20 Hernandez, O., Lawinscky, M., Duarte, J., Pimenta, J., Oil–refrigerant mixture effects on refrigeration compressor flow rate evaluation[C]. Proceedings of the 20th International Congress of Refrigeration, 1999, Sydney, Australia, pp 106
    21 Wang, S., Gu, J., Dickson, T., Investigation of the effects of vapour quality and oil concentration on performance of a swash plate compressor[J]. International Journal of Energy Research. 2006, 30(11):835-849
    22 Moisés A. Marcelino Neto, Jader R. Barbosa Jr. Solubility, density and viscosity of mixtures of isobutane (R-600a) and a linear alkylbenzene lubricant oil[J]. Fluid Phase Equilibria. 2010, 292(1-2):7-12
    23 Grebner, J.J., Crawford, R.R., The effects of oil on the thermodynamic properties ofdichlorodifluoromethane (R-12) and tetrafluoroethane (R-134a)[R]. Report ACRC-TR-13, University of Illinois at Urbana-Champaign, 1992
    24 Thome, J.R., Phil, D., Comprehensive thermodynamic approach to modelling refrigerant lubricating oil mixture[J]. HVAC&R Research, 1995, res.1:110-126
    25 Mermond, Y., Feidt, M., Marvillet, C., Thermodynamic and physical properties of mixtures of refrigerants and oils[J]. International Journal of Refrigeration. 1999, 22(7):569-579
    26 Tesser, R., Musso, E., Basile, G., Di Serio, M., Santacesaria, E., Description of the vapour–liquid equilibrium in binary refrigerant/lubricating oil systems by means of an extended Flory–Huggins model[J]. Journal of Fluorine Chemistry, 1999, 99(1):29-36
    27 Tesser, R., Di Serio, M., Gargiulo, R., Basile, G., Bragante, L., Santacesaria, E., Vapour–liquid equilibrium measurements for binary mixtures of R32, R143a, R134a and R125 with a perfluoropolyether lubricant [J]. Journal of Fluorine Chemistry, 2003, 121(1):15-22
    28 Yokozeki, A., Solubility of refrigerants in various lubricants [J]. International Journal of Thermophys, 2001, 22(4):1057-1071
    29 Guillemet, P., Lottin, O., Modelling of the liquid–vapor equilibrium of oil and HFC refrigerant fluids mixtures [J]. International Journal of Refrigeration. 2004, 27(2):102-110
    30 Yokozeki, A., Solubility correlation and phase behaviors of carbon dioxide and lubricant oil mixtures [J]. Applied Energy. 2007, 84(2):159-175
    31 Bi SS, Shi L, Zhang LL. Application of nanoparticles in domestic refrigerators[J]. Applied Thermal Engineering, 2008, 28(13-14):1834-1843
    32 Bi SS, Shi L. Experimental investigation of a refrigerator with a nano-refrigerant [J]. Journal of Tsinghua Univercity. 2007, 47(11):1999-2002
    33 Shengshan Bi , Kai Guo, Zhigang Liu, Jiangtao Wu, Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid [J]. Energy Conversion and Management, 2011, 52(1):733-737
    34 Guoliang Ding, Hao Peng, Weiting Jiang ,Yifeng Gao. The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant-oil mixture [J]. International Journal of Refrigeration. 2009, 32(1):114-123
    35 Ruixiang Wang, Qingping Wua, Yezheng Wua., Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants [J]. Energy and Buildings, 2010, 42(11):2111-2117
    36 M.A. Kedzierskia, M. Gong, Effect of CuO nanolubricant on R134a pool boiling heat transfer [J]. International Journal of Refrigeration. 2009, 32(5):791-799
    37 Hao Peng , Guoliang Ding , Haitao Hu, Weiting Jiang, Dawei Zhuang , Kaijian Wang. Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles [J]. International Journal of Refrigeration. 2010, 33(2):347-358
    38 Lee J, Cho S, Hwang Y, Cho H-J, Lee C, Choi Y. Application of fullerene added nano-oil for lubrication enhancement in friction surfaces[J]. Tribology International. 2009, 42(3):440-447
    39 Lee K, Hwang Y, Cheong S, Kwon L, Kim S, Lee J. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil[J]. Current Applied Physics. 2009, 9(1):128-131
    40宗玉博.含油制冷剂及添加纳米微粒的含油制冷剂饱和蒸气压实验研究[D].北京:北京建筑工程学院环境与能源工程学院,2008:50-59
    41 Lee J, Mudawar I. Assessment of the effectiveness of nanofluids for single phase and two-phase heat transfer in micro-channels[J]. International Journal of Heat and Mass Transfer. 2007, 50(3-4):452-463
    42任爽,董志军,潘大伟,陆大年.原位乳液聚合法制备超易分散纳米氧化锌[J].上海化工,2009, 34(2):12-14
    43毕胜山,史琳,王磊.纳米TiO2颗粒在制冷工质中的分散[J].过程工程学报, 2007, 7(3):541-545
    44江成军,段志伟,张振忠,王超.不同表面活性剂对纳米银粉在乙醇中分散性能的影响[J].稀有金属材料与工程, 2007, 36(4):724-427
    45 Choi C, Yoo HS, Oh JM. Preparation and heat transfer properties of nanoparticle in transformer oil dispersions as advanced energy-efficient coolants [J]. Current Applied Physics, 2008, 8(6):710-712
    46 Che Man Y B,Mirghami M E S.Rapid method for determining moisture content in crude palm oil by Fourier transform infrared spectroscopy[J].Journal of the American Oil Chemists' Society,2000,77(6):631-637
    47 Al-Alawi A,van de Voort F R,Sedman J.A new Fourier transform infrared method for the determination of moisture in edible oils[J].Applied spectroscopy,2005,59(10):1295-1299
    48 Payman Roonasi, Allan Holmgren. A Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) study of oleate adsorbed on magnetite nano-particle surface [J]. Applied Surface Science, 2009, 255(11):5891-5895
    49 Charles Baudot, Cher Ming Tan, Jeng Chien Kong, FTIR spectroscopy as a tool for nano-material characterization [J]. Infrared Physics & Technology, 2010, 53(6):434-438
    50 Sauvage L, Fank D, Stearne J, Trace metal studies of selected white wines: an alternative approach [J]. Analytica Chimica Acta. 2002, 458(1):223-230
    51高濂,孙静,刘阳桥纳米粉体的分散剂表面改性[M].北京:化学工业出版社, 2003
    52 Mill C C. Rhelogy of Disperse Systems [M]. Pergamon Press, London, 1959.
    53 Warren L.J, in Principles of Mineral Flotation [M] Eds. Jones M H, Woodcock J T. Australian Institute of Mining and Metallurgy, 1984
    54李玲.表面活性剂与纳米技术[M].北京:化学工业出版社, 2004
    55高深,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社, 2003
    56陈宗淇等.胶体和界面化学[M].北京:高等教育出版社, 2001
    57贾晓林,谭伟.纳米粉体分散技术发展概况闭[J].非金属矿,2003,26(3):1-3
    58周祖康,顾惕人,马季铭.胶体化学基础[M].北京:北京大学出版社, 1996
    59王世荣等著.表面活性剂化学[M],北京:化学工业出版社,2005
    60欧文忠,徐滨士,马世宁,等.纳米材料在表面工程中应用的研究进展[J].中国表面工程, 2000, 13( 2) : 52-59
    61施利毅.纳米材料[M].上海:华东理工大学出版社, 2007
    62 Park KJ, Jung DS. Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air conditioning [J]. Energy and Buildings, 2007, 39(9):1061–4.
    63 Trisaksri V, Wongwises S. Nucleate pool boiling heat transfer of TiO2–R141b nanofluids [J]. International Journal of Heat and Mass Transfer, 2009, 52(56):1582-1588
    64 Hao P, Guoliang D, Weiting J, Haitao H, Yifeng G. Heat transfer characteristics ofrefrigerant-based nanofluid flow boiling inside a horizontal smooth tube [J]. International Journal of Refrigeration, 2009, 32(6):1259–1270.
    65 Peng H, Ding G, Jiang W, Hu H, Gao Y. Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube [J]. International Journal of Refrigeration, 2009, 32(7):1756–1764.
    66刘志强,纳米铁酸镍冷冻油溶胶对HFC134a制冷剂饱和压力的影响研究[D],北京:北京建筑工程学院,2008
    67郑明强,纳米冷冻机油的制备及其对HFC134a饱和压力的影响研究[D],北京:北京建筑工程学院,2009
    68李新中,纳米冷冻机油对HFC134a饱和蒸气压影响规律的实验研究[D],北京:北京建筑工程学院,2010
    69齐天娇,邓建国,黄奕刚,不同表面活性剂对铟锡氧化物纳米悬浮液稳定性的影响[J],材料科学与工程学报,2010,28(4):601-604
    70张天胜.表面活性剂应用技术[M],北京:化学工业出版社,2001
    71江小华,纳米冷冻机油的制备、稳定性及其粘度的实验研究[D],北京:北京建筑工程学院,2010
    72毋伟,陈建峰,卢寿慈,超细粉体表面修饰[M],北京:化工出版社,2004
    73 Guillemet, P., Lottin, O., Modelling of the liquid–vapor equilibrium of oil and HFC refrigerant fluids mixtures [J]. International Journal of Refrigeration, 2004, 27(2):102-110
    74 Cavestri RC. Measurement of viscosity, density, and solubility of refrigerant blends in selected synthetic lubricants [D].The Air-Conditioning and Refrigeration Technology Institute; 1995. Project Number 655-51400.
    75 Wagner W,Ewers J,Pentermann W.New vapour-pressure measurements and a new rational vapour-pressure equation for oxygen[J].Journal of Chemical Thermodynamics, 1976, 8(11):1049~1060
    76项红卫.流体的新蒸气压方程和新跨接状态方程[D].西安:西安交通大学能源与动力工程学院,1996
    77 Jiangtao Wu, Jianguo Yin, An accurate vapor pressure equation with good extrapolation characteristics [J]. International Journal of Thermophysics, 2005,26(3):767-784
    78宋明顺.测量不确定度评定与数据处理[M].北京:中国计量出版社,2000
    79吴业正.制冷原理与设备[M]西安:西安交通大学出版社, 1997
    80 Youbi-Idrissi, M., Impact of the Lubricating Oil on the Thermodynamic Performances of Reversible Heat Pumps [C]. Ph.D. thesis (in French), Conservatoire National des Arts et Me′tiers, Paris, France. 2003
    81 Cavestri RC. Measurement of viscosity, density, and gazsolubility of refrigerant blends in selected synthetic lubricants [J]. The Air-Conditioning and Refrigeration Technology Institute. 1995, Projecct Number 655-51400
    82李莉娟,孙凤久.红外光谱法在金属氧化物纳米材料研究中的应用[J].材料导报,2006,20(1):92-94
    83 Ye Xisheng , Jian sha. Size effect on structure and infrared behavior in nanocrystalline magnesium oxide [J]. Nano Structured Material, 1997, 7(8):945
    84林轩,张平民,等.纳米Sm2O3的表面改性研究[J].化学世界,2006, 47(8): 454-458
    85王德平,娄敏毅,等.偶联剂修饰纳米磁性粒子红外光谱及相关分析[J].同济大学学报,2005,33(2):201-204
    86全大萍,李世普,袁润章,等.聚DL-丙交酯/羟基磷灰石(PDLLA/HA)复合材料——Ⅱ:硅烷偶联剂处理羟基磷灰石表面的作用研究[J].复合材料学报,2002,17(4):114-118
    87于海燕,黄酒品质和酒龄的近红外光谱分析方法研究[D].杭州:浙江大学,2007
    88陈斌.液态食品品质的近红外光谱分析技术[D].镇江:江苏理工大学,2001
    89卢涌泉,邓振华.实用红外光谱解析[ M] .北京:电子工业出版社, 1985
    90 Vinayak P. Dravid, Shengzhong Liub , Manfred M. Kappes. Transmission electron microscopy of chromatographically purified solid state C60 and C70 [J]. Chemical Physics Letters, 1991,185(1-2):75-81
    91 S. J. Duclos, R. C. Haddon, S. H. Glarum, A. F. Hebard ,K. B. Lyons. The influence of oxygen on the Raman spectrum of C60 films [J]. Solid State Communications, 1991, 80(7):481-484
    92翁诗甫,傅里叶变换红外光谱仪[M],北京:化学工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700