WXXW基序对ADAMTS13分泌及功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ADAMTS13,又称为血管性血友病因子水解蛋白酶(VWF-CP),是存在于血浆中的金属蛋白酶,隶属于ADAMTSs(a disintegrin and metalloproteinase with thrombospondin motifs)金属蛋白酶超家族。人ADAMTS13基因于2001年首次被克隆报导,定位于9号染色体长臂端(9q34)。基因全长37kb,主要由29个外显子组成,其基因表达开放阅读框为4284bp,编码1427个氨基酸。ADAMTS13蛋白主要由9个结构功能域组成,从氨基端到羧基端依次为:信号肽、前导肽、金属蛋白酶结构域、去整合素结构域、凝血酶敏感蛋白1(TSP1)第1基序、富半胱氨酸区域、间隔区、凝血酶敏感蛋白1(TSP1)第2-8重复基序、补体结合区域(CUB)。ADAMTS13主要通过水解人血管性血友病因子(VWF),降解血浆中超大分子量VWF多聚体,使其对血小板的黏附与聚集能力降低,从而抑制血栓形成。ADAMTS13酶活性降低与血栓性血小板减少性紫癜(TTP)的发病密切相关。目前研究发现,ADAMTS13金属蛋白酶结构域识别并水解VWF蛋白A2区第1605酪氨酸残基和1606位蛋氨酸残基间肽键。而ADAMTS13金属蛋白酶结构域临近的羧基端结构域,包括去整合素结构域、凝血酶敏感蛋白1(TSP1)第1基序、富含半胱氨酸结构域、间隔区,确保ADAMTS13对VWF的正确识别及有效的水解。
     本文围绕ADAMTS13的结构与功能进行研究,主要包括三个部分:1)构建了ADAMTS13的TSR1结构域中WXXW基序突变体(W387A),观察其对ADAMTS13分泌及酶活性的影响;2)构建了ADAMTS13-pEGFP-N1绿色荧光真核表达载体,为研究ADAMTS13细胞内合成及转运过程提供有力的研究工具;3)获得了多株分泌抗ADAMTS13的单克隆抗体的杂交瘤细胞株,以备进一步单克隆抗体分选及功能研究。
     一、WXXW基序对ADAMTS13分泌及功能的影响
     WXXW基序在凝血酶敏感蛋白1蛋白超家族中普遍存在,其中包括ADAMTSs金属蛋白酶家族。对于WXXW基序的研究主要集中在凝血酶敏感蛋白1蛋白上,此基序被认为是凝血酶敏感蛋白1蛋白结合并活化TGF-β (transforming growth factor-β)所必需的。在对霍乱毒素分泌蛋白EpsM的研究中发现,WXXW基序中芳香族氨基酸残基之间的相互作用可能与跨膜蛋白质的二聚化有关。WXXW基序在ADAMTSs金属蛋白酶家族中普遍存在,然而,其功能尚未可知。为了研究该基序的功能,我们构建了WXXW基序的突变体W387A的真核表达载体。
     首先,我们用野生型ADAMTS13及W387A突变体的真核表达载体瞬时转染HeLa细胞,转染后48小时收集培养上清及细胞。将浓缩后培养上清及细胞裂解液行SDS-PAGE电泳及westblot,通过灰度值测定判断上清及细胞裂解液中蛋白的含量。用培养上清中蛋白含量除以培养上清及细胞裂解液中蛋白总量,计算蛋白的分泌量。实验结果表明:野生型ADAMTS13上清中蛋白含量为72.38%±10.70%,细胞裂解液中为27.62%±9.56%;而W387A突变体上清中蛋白含量为20.46%±5.85%,细胞裂解液中为79.54%±5.46%。结果表明,W387A突变抑制了ADAMTS13的分泌,使得大量的ADAMTS13蛋白积蓄在细胞内。蛋白细胞内定位实验结果显示,野生型蛋白细胞内分布呈指环状,而突变体蛋白细胞内分布弥散,提示突变体蛋白更多地滞留在内质网中。
     其次,我们构建了稳定表达野生型ADAMTS13及W387A突变体蛋白的HeLa细胞株,并扩大培养,收集无血清培养上清,从而获得野生型ADAMTS13及W387A突变体蛋白,并进一步完成ADAMTS13功能检测。
     第三,我们用非变性的人血浆来源VWF(pVWF)及经过预变性处理的pVWF包板,再分别加入野生型ADAMTS13或W387A突变体蛋白进行孵育,通过ELISA的方法,测定重组ADAMTS13蛋白与pVWF结合的量。结果表明,与野生型ADAMTS13相比,W387A突变体与变性的pVWF结合能力明显降低,而与非变性的pVWF的结合能力与野生型ADAMTS13没有明显区别。
     第四,我们分别在变性条件下及高剪切力条件下,以pVWF为底物,检测了野生型ADAMTS13及W387A突变体对pVWF的水解能力。通过还原条件下的5%SDS-PAGE电泳及western blotting方法,分析176kDa分子量大小的酶切产物生成量,从而判断重组ADAMTS13酶活性的高低。我们发现,在变性条件下,加入野生型ADAMTS13的反应体系中,176kDa分子量大小的酶切产物生成量明显多于加入W387A突变体的反应体系。此外,在多聚体琼脂糖凝胶电泳分析中,我们发现在野生型ADAMTS13酶切体系中,大中分子量VWF多聚体降低水平明显高于W387A突变体酶切的反应体系,进一步证实了在变性条件下,W387A突变体对VWF的水解能力明显降低。然而在高剪切力条件下,无论是野生型ADAMTS13酶切体系还是W387A酶切体系,176kDa分子量大小的酶切产物生成量没有明显区别。而多聚体琼脂糖凝胶电泳分析也显示,两个体系中,大中分子量VWF多聚体减少的量基本一致。
     第五,我们以以FRETS-VWF73为底物,测定野生型ADAMTS13及W387A突变体水解VWF的活性。以1:25稀释比例的正常人混合血浆中ADAMTS13活性为100%,计算重组ADAMTS13活性,结果以百分数表示。结果表明,野生型ADAMTS13活性约为97%±6.50%,明显高于W387A突变体活性(72%±5.50%)。此结果与变性条件下W387A突变体活性降低结果一致。
     二、构建ADAMTS13-pEGFP-N1绿色荧光真核表达载体
     既往研究表明,ADAMTS13与血栓性血小板减少性紫癜(TTP)的发病密切相关,ADAMTS13基因突变为遗传性TTP的基本病因。目前国际上报道的种ADAMTS13突变类型,绝大多数为错义突变。同时发现,大部分错义突变似乎都是通过影响蛋白的分泌而导致ADAMTS13缺失。为了进一步研究突变对ADAMTS13蛋白分泌的影响,我们构建了ADAMTS13-pEGFP-N1荧光表达载体,为深入研究ADAMTS13的突变体对其分泌的影响,以及进一步探讨ADAMTS13细胞内转运过程提供有力的研究工具。
     首先,我们以野生型ADAMTS13通过PCR的方法获得目的基因片段,并在目的基因两端添加两个限制性内切酶位点。将目的基因连接至T载体后扩增,酶切后将酶切产物与pEGFP-N1荧光表达载体连接,获得ADAMTS13-pEGFP-N1真核表达载体。
     其次,我们将该荧光表达载体转染HeLa细胞,48小时后收集细胞上清经超滤浓缩后6%SDS-PAGE电泳,以ADAMTS13-His蛋白为阳性对照western blotting鉴定。并将转染后细胞固定、破膜、染核后在荧光显微镜下观察绿色荧光蛋白的表达。结果显示:ADAMTS13-pEGFP蛋白在210kDa处显一蛋白条带,分子量略高于ADAMTS13-His。荧光显微镜下观察所见,转染pSecTag-ADAMTS13-His质粒的细胞内仅见DAPI蓝色荧光;转染pEGFP-N1空载体的细胞可见弥漫匀质绿色荧光;转染ADAMTS13-pEGFP-N1质粒的细胞内,可见多少不等的绿色荧光。表明带有绿色荧光标签的ADAMTS13蛋白成功表达。ADAMTS13-pEGFP-N1真核表达载体构建成功。
     三、初步获得多株分泌抗ADAMTS13的单克隆抗体的杂交瘤细胞株,以备进一步分选及功能研究。
     为了进一步方便ADAMTS13结构及功能的研究,并期待能筛选出具有一定功能活性的单克隆抗体,我们初步获得了多株分泌抗ADAMTS13的单克隆抗体的杂交瘤细胞株。
     首先,我们构建了稳定表达截短型ADAMTS13-T7蛋白的HeLa细胞株,并扩大培养,收集无血清培养上清。截短型ADAMTS13-T7的真核表达载体为pSectag-2A,该载体在蛋白的羧基端添加了6个组氨酸His标签。通过Ni-NTA Agarose将浓缩后上清纯化,然后通过SDS-PAGE电泳后进行考马斯亮蓝染色和western blot鉴定,以全长ADAMTS13为对照。结果显示,浓缩后上清及纯化后蛋白均能在150kDa左右处显单一蛋白区带。
     其次,我们用真核表达的截短型ADAMTS13-T7蛋白采用皮下多点注射免疫8周龄Balb/c雌性小鼠,并用纯蛋白液直接经尾静脉注射加强免疫。末次免疫后第3天眼球采血,分离上述小鼠抗血清,用ELISA方法测定免疫小鼠与ADAMTS13-T7蛋白的抗血清效价。用未免疫的正常小鼠血清作为阴性对照。用重组ADAMTS13-T7蛋白包板,ELISA检测免疫后balb/c雌性小鼠抗血清效价约为1:20000。取小鼠脾脏,制成单细胞悬液与SP2/0骨髓瘤细胞以10:1的比例混合,进行细胞的融合。将融合杂交瘤细胞稀释至96孔板后置于37℃、5%CO2培养箱中培养。两周后观察96孔板中是否有克隆,选生长良好的克隆孔检测,阳性克隆孔扩大培养并再次检测。初步检测结果显示已获得多株分泌抗重组ADAMTS13抗体的杂交瘤单克隆细胞株。
ADAMTS13belongs to a family of proteases called ADAMTSs (a disintegrin andmetalloproteinase with thrombospondin motifs). ADAMTS13consists of1,427amino acid residues andis identified as a von Willebrand factor (VWF) cleaving protease. ADAMTS13cleaves the bondbetween the Tyr1605and Met1606residues in the central A2domain of VWF to decrease the activityof VWF. VWF is a carrier protein for factor VIII and, upon binding to platelets and the extracellularmatrix, promotes platelet aggregation or platelet adhesion to areas of vascular damage. A deficiency ofADAMTS13or the presence of autoantibodies against ADAMTS13causes congenital or acquiredidiopathic thrombotic thrombocytopenic purpura.
     ADAMTS13consists of a signal peptide, a propeptide, a metalloproteinase domain, adisintegrin-like domain, a central TSP1repeat, a cys-rich domain, a spacer domain, seven C-terminalTSP1repeats, and two CUB domains. With regard to the cleaving activity of ADAMTS13, previousstudies have demonstrated that the metalloprotease domain of ADAMTS13recognizes and cleaves theTyr1605–Met1606bond in the central A2domain of VWF. The proteolytic efficiency and specificitycan be enhanced by the participation of other domains of ADAMTS13such as the disintegrin domain,the first TSP1repeat, or the spacer domain. These additional domains might increase the bindingaffinity of ADAMTS13for VWF, and the first TSP1repeat appears to bind the more proximal VWFsegment Gln1624–Val1630from the scissile bond.
     As ADAMTS13is such an important factor in the pathophysiological process of thrombosis, ourstudy is focused on ADAMTS13, its structure, and its cleaving activity of VWF.
     Part I: The WXXW motif in the TSR1of ADAMTS13is important for its secretion andproteolytic activity.
     There is a WXXW motif in the first TSP1repeat of ADAMTS13, which is frequently found inproteins of the thrombospondin type1repeat (TSR) super family. Most studies of the WXXW motif areperformed with thrombospondin1. In thrombospondin1, WXXW is essential for the binding andactivation of latent transforming growth factor-β. WXXW is also the structural determinant for theadsorptivity of fibrinogen and the core consensus motif of five peptides, which could mimic thedrug-binding activity of P-glycoprotein. Moreover, a study of the cholera toxin secretion protein EpsMshowed that the WXXW motif is involved in the dimerization of transmembrane proteins and that suchdimerization is dependent on aromatic-aromatic interactions. However, the function of the WXXWmotif in ADAMTSs is unclear.
     We generated wild-type and WXXW mutant (W387A) constructs of ADAMTS13by PCRsite-directed mutagenesis and expressed these constructs in HeLa cells. To examine whether the WXXW motif is necessary for the secretion of ADAMTS13, we constructed a W387A mutant andexpressed the WT and mutant ADAMTS13in HeLa cells. After the transfections, equivalent fractionsof the media and cell lysates were subjected to SDS-PAGE followed by western blotting analysis. Ourresults showed that the percentage of protein secretion for the WT ADAMTS13was72.38%±10.70%,while the secretion of the W387A mutant was reduced dramatically to20.46%±5.85%. Thepercentages of the protein that remained in the WT and W387A mutant transfected cell lysates were27.62%±9.56%and79.54%±5.46%, respectively. These results indicate that the W387A mutationcauses the defective secretion of ADAMTS13and that the mutant form of ADAMTS13is accumulatedinside cells.
     To determine whether the W387A mutation affects the binding of ADAMTS13to VWF, humanplasma-derived VWF (native or denatured,7.5 g/ml)was coated onto a microtiter plate and incubatedwith His-tagged WT and W387A ADAMTS13proteins, which had been expressed in HeLa cells. AnHRP-labeled mouse anti-His monoclonal antibody was used to detect the binding. Our results showedthat, in comparison to the WT protein, the W387A mutant binding to the pre-denatured VWF wasreduced significantly. However, no significant difference was observed in the binding of the WT andW387A mutant proteins to native VWF.
     To investigate the enzymatic activity of the WT and W387A mutant ADAMTS13proteins, weused human plasma-derived VWF as the substrate under denatured condition or shear stress. Thecleaved products were detected by SDS-PAGE under reducing conditions and agarose gelelectrophoresis to visualize the VWF multimers. Under static/denaturing condition, the amount of the176kDa VWF cleaved product in the WT ADAMTS13reactions was increased significantly; however,the W387A mutant reactions produced much less of the176kDa VWF cleaved product. Consistent withthese results, the amounts of the high and intermediate molecular weight multimers of VWF weredramatically reduced when WT ADAMTS13was used to digest the VWF multimers, in comparison toW378A mutant digestions. However, under shear stress, no obvious differences in the amounts of176kDa cleaved products were detected between the WT and W378A mutant groups. In addition, the WTADAMTS13showed no detectable proteolysis of the VWF without guanidine chloride. A multimeranalysis also showed equal reductions in the high and intermediate molecular weight multimers of VWFafter WT or W378A mutant ADAMTS13digestion. Experimental reactions without ADAMTS13, orwith ADAMTS13in the presence of20mM EDTA, showed no detectable proteolysis of VWF, whichindicates that the proteolytic degradation of VWF by ADAMTS13is specific.
     The FRETS-VWF73assay was also used to validate the proteolytic activity of the WT and mutantADAMTS13proteins. The percentage of recombinant ADAMTS13activity was defined as the valuedivided by that of the normal human plasma diluted at1:25, and multiplied by100%. The W387Amutant activity was approximately72%±5.50%, which was much less than that of the WTADAMTS13(97%±6.50%). This result was consistent with the full-length VWF cleaving activity ofADAMTS13under static/denaturing condition.
     Part II: Construction of ADAMTS13-pEGFP-N1Vector
     We generated a pEGFP-N1Vector of von Willebrand factor cleaving protease (ADAMTS13, adisintegrin and metalloprotease with a thromboSpondin type1motifs13), for the further studies on itssynthesization and secretion. Human full-length cDNA sequence of ADAMTS13was acquired bypolymerase chain reaction with Phusion High-Fidelity (NEB). Then the PCR products were doubledigested with EcoRⅠ a ndXho Ⅰ. The products of digestion were purified and ligated to the pEGFP-N1vector. DNA sequence analysis showed that ADAMTS13was ligated to the pEGFP-N1vector correctly.After transient expression in Hela cells, the green fluorescence was visible under fluorescencemicroscope, and the proteins were identified with SDS-PAGE and western blotting. The results showedthat the ADAMTS13-pEGFP-N1vector was generated correctly, and it could be widely used in furtherresearch on the mechanism of the synthesis and secretion of ADAMTS13.
     Part III: Preparation of monoclonal antibodies against ADAMTS13
     Monoclonal antibodies (mAb) are used extensively in basic biomedical research, in diagnosis ofdisease, and in treatment of illnesses. Antibodies are important tools used by many investigators in theirresearch and have led to many medical advances. For the further studies on ADAMTS13, we preparedseveral monoclonal antibodies against ADAMTS13.
     Production of monoclonal antibodies involves in vivo or in vitro procedures. At first, thegeneration of mAb-producing cells requires the use of animals, usually mice. We expressed theADAMTS13-T7constructs in HeLa cells, and then the recombined protein ADAMTS13-T7waspurified by Ni-NTA agarose. After purification, the purified protein was used to immunize three femaleBalb/c mice of8weeks old as the antigen. These mice were immunized every4weeks. When asufficient antibody titer was reached in serum, immunized mice were euthanized and the spleens wereremoved to use as a source of cells for fusion with myeloma cells. After the immunized mice wereeuthanized, blood samples were obtained from mice for measurement of serum antibodies. Serumantibody titer was determined with enzyme-linked immunosorbent assay (ELISA). The result showedthat the titer was about1:20000. A week before cell fusion, myeloma cells are grown in8-azaguanine.Single spleen cells from the immunized mouse are fused with the previously prepared myeloma cells.The cells were then distributed to96well plates containing feeder cells derived from saline peritonealwashes of mice, and were cultured in HAT selection medium after cell fusion. Only fused cells willgrow in the special selection medium. Then the small clusters of hybridoma cells from the96wellplates were grown in tissue culture followed by selection for antigen binding. Cloning by “limitingdilution” at this time ensured that a majority of wells each contained at most a single clone. After twocycles of cloning by limiting dilution, several hybrid cells that will produce the antibodies aregenerated.
引文
[1] Furlan M, Robles R, Lammle B. Partial purification and characterization of a protease fromhuman plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis.Blood,1996,87(10):4223-4234.
    [2] Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent onits conformation and requires calcium ion. Blood,1996,87(10):4235-4244.
    [3] Bukowski RM, Hewlett JS, Harris JW, et al. Exchange transfusions in the treatment ofthrombotic thrombocytopenic purpura. Semin Hematol,1976,13(3):219-232.
    [4] Bukowski RM, King JW, Hewlett JS. Plasmapheresis in the treatment of thromboticthrombocytopenic purpura. Blood,1977,50(3):413-417.
    [5] Shepard KV, Bukowski RM. The treatment of thrombotic thrombocytopenic purpura withexchange transfusions, plasma infusions, and plasma exchange. Semin Hematol,1987,24(3):178-193.
    [6] Furlan M, Robles R, Solenthaler M, et al. Deficient activity of von Willebrand factor-cleavingprotease in chronic relapsing thrombotic thrombocytopenic purpura. Blood,1997,89(9):3097-3103.
    [7] Furlan M, Robles R, Solenthaler M, et al. Acquired deficiency of von Willebrandfactor-cleaving protease in a patient with thrombotic thrombocytopenic purpura. Blood,1998,91(8):2839-2846.
    [8] Sarkodee-Adoo C, Gojo I, Heyman MR. von Willebrand factor-cleaving protease in thromboticthrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med,1999,340(17):1368; author reply1369.
    [9] Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thromboticthrombocytopenic purpura. N Engl J Med,1998,339(22):1585-1594.
    [10] Furlan M, Lammle B. Deficiency of von Willebrand factor-cleaving protease in familial andacquired thrombotic thrombocytopenic purpura. Baillieres Clin Haematol,1998,11(2):509-514.
    [11] Levy GG, Nichols WC, Lian EC, et al. Mutations in a member of the ADAMTS gene familycause thrombotic thrombocytopenic purpura. Nature,2001,413(6855):488-494.
    [12] Gerritsen HE, Robles R, Lammle B, et al. Partial amino acid sequence of purified vonWillebrand factor-cleaving protease. Blood,2001,98(6):1654-1661.
    [13] Zhou W, Inada M, Lee TP, et al. ADAMTS13is expressed in hepatic stellate cells. Lab Invest,2005,85(6):780-788.
    [14] Soejima K, Mimura N, Hirashima M, et al. A novel human metalloprotease synthesized in theliver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease? JBiochem,2001,130(4):475-480.
    [15] Uemura M, Tatsumi K, Matsumoto M, et al. Localization of ADAMTS13to the stellate cells ofhuman liver. Blood,2005,106(3):922-924.
    [16] Turner N, Nolasco L, Tao Z, et al. Human endothelial cells synthesize and release ADAMTS-13.J Thromb Haemost,2006,4(6):1396-1404.
    [17] Manea M, Tati R, Karlsson J, et al. Biologically active ADAMTS13is expressed in renal tubularepithelial cells. Pediatr Nephrol,2010,25(1):87-96.
    [18] Liu L, Choi H, Bernardo A, et al. Platelet-derived VWF-cleaving metalloprotease ADAMTS-13.J Thromb Haemost,2005,3(11):2536-2544.
    [19] Furlan M, Robles R, Morselli B, et al. Recovery and half-life of von Willebrand factor-cleavingprotease after plasma therapy in patients with thrombotic thrombocytopenic purpura. ThrombHaemost,1999,81(1):8-13.
    [20] Porter S, Clark IM, Kevorkian L, et al. The ADAMTS metalloproteinases. Biochem J,2005,386(Pt1):15-27.
    [21] Lancellotti S, De Cristofaro R. Structure and proteolytic properties of ADAMTS13, ametalloprotease involved in the pathogenesis of thrombotic microangiopathies. Prog Mol BiolTransl Sci,2011,99:105-144.
    [22] Zheng X, Chung D, Takayama TK, et al. Structure of von Willebrand factor-cleaving protease(ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J BiolChem,2001,276(44):41059-41063.
    [23] Majerus EM, Zheng X, Tuley EA, et al. Cleavage of the ADAMTS13propeptide is not requiredfor protease activity. J Biol Chem,2003,278(47):46643-46648.
    [24] Dong JF, Moake JL, Bernardo A, et al. ADAMTS-13metalloprotease interacts with theendothelial cell-derived ultra-large von Willebrand factor. J Biol Chem,2003,278(32):29633-29639.
    [25] Feys HB, Pareyn I, Vancraenenbroeck R, et al. Mutation of the H-bond acceptor S119in theADAMTS13metalloprotease domain reduces secretion and substrate turnover in a patient withcongenital thrombotic thrombocytopenic purpura. Blood,2009,114(21):4749-4752.
    [26] Anderson PJ, Kokame K, Sadler JE. Zinc and calcium ions cooperatively modulateADAMTS13activity. J Biol Chem,2006,281(2):850-857.
    [27] Gardner MD, Chion CK, de Groot R, et al. A functional calcium-binding site in themetalloprotease domain of ADAMTS13. Blood,2009,113(5):1149-1157.
    [28] Ai J, Smith P, Wang S, et al. The proximal carboxyl-terminal domains of ADAMTS13determine substrate specificity and are all required for cleavage of von Willebrand factor. J BiolChem,2005,280(33):29428-29434.
    [29] Soejima K, Matsumoto M, Kokame K, et al. ADAMTS-13cysteine-rich/spacer domains arefunctionally essential for von Willebrand factor cleavage. Blood,2003,102(9):3232-3237.
    [30] Zheng X, Nishio K, Majerus EM, et al. Cleavage of von Willebrand factor requires the spacerdomain of the metalloprotease ADAMTS13. J Biol Chem,2003,278(32):30136-30141.
    [31] Jin SY, Skipwith CG, Zheng XL. Amino acid residues Arg(659), Arg(660), and Tyr(661) in thespacer domain of ADAMTS13are critical for cleavage of von Willebrand factor. Blood,2010,115(11):2300-2310.
    [32] Majerus EM, Anderson PJ, Sadler JE. Binding of ADAMTS13to von Willebrand factor. J BiolChem,2005,280(23):21773-21778.
    [33] Tao Z, Peng Y, Nolasco L, et al. Recombinant CUB-1domain polypeptide inhibits the cleavageof ULVWF strings by ADAMTS13under flow conditions. Blood,2005,106(13):4139-4145.
    [34] Tao Z, Wang Y, Choi H, et al. Cleavage of ultralarge multimers of von Willebrand factor byC-terminal-truncated mutants of ADAMTS-13under flow. Blood,2005,106(1):141-143.
    [35] Zhang P, Pan W, Rux AH, et al. The cooperative activity between the carboxyl-terminal TSP1repeats and the CUB domains of ADAMTS13is crucial for recognition of von Willebrand factorunder flow. Blood,2007,110(6):1887-1894.
    [36] Zhou Z, Yeh HC, Jing H, et al. Cysteine residues in CUB-1domain are critical for ADAMTS13secretion and stability. Thromb Haemost,2011,105(1):21-30.
    [37] Zhou Z, Jing H, Tao Z, et al. Effects of naturally occurring mutations in CUB-1domain onsynthesis, stability, and activity of ADAMTS-13. Thromb Res,2009,124(3):323-327.
    [38] Shang D, Zheng XW, Niiya M, et al. Apical sorting of ADAMTS13in vascular endothelial cellsand Madin-Darby canine kidney cells depends on the CUB domains and their association withlipid rafts. Blood,2006,108(7):2207-2215.
    [39] Plaimauer B, Scheiflinger F. Expression and characterization of recombinant humanADAMTS-13. Semin Hematol,2004,41(1):24-33.
    [40] Zhou W, Tsai HM. N-Glycans of ADAMTS13modulate its secretion and von Willebrand factorcleaving activity. Blood,2009,113(4):929-935.
    [41] Crawley JT, Lane DA, Woodward M, et al. Evidence that high von Willebrand factor and lowADAMTS-13levels independently increase the risk of a non-fatal heart attack. J ThrombHaemost,2008,6(4):583-588.
    [42] Fuchigami S, Kaikita K, Soejima K, et al. Changes in plasma von Willebrand factor-cleavingprotease (ADAMTS13) levels in patients with unstable angina. Thromb Res,2008,122(5):618-623.
    [43] Matsukawa M, Kaikita K, Soejima K, et al. Serial changes in von Willebrand factor-cleavingprotease (ADAMTS13) and prognosis after acute myocardial infarction. Am J Cardiol,2007,100(5):758-763.
    [44] Gombos T, Mako V, Cervenak L, et al. Levels of von Willebrand factor antigen and vonWillebrand factor cleaving protease (ADAMTS13) activity predict clinical events in chronicheart failure. Thromb Haemost,2009,102(3):573-580.
    [45] Bongers TN, de Maat MP, van Goor ML, et al. High von Willebrand factor levels increase therisk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability.Stroke,2006,37(11):2672-2677.
    [46] Ishikawa M, Uemura M, Matsuyama T, et al. Potential role of enhanced cytokinemia and plasmainhibitor on the decreased activity of plasma ADAMTS13in patients with alcoholic hepatitis:relationship to endotoxemia. Alcohol Clin Exp Res,2010,34Suppl1: S25-33.
    [47] Uemura M, Matsuyama T, Ishikawa M, et al. Decreased activity of plasma ADAMTS13maycontribute to the development of liver disturbance and multiorgan failure in patients withalcoholic hepatitis. Alcohol Clin Exp Res,2005,29(12Suppl):264S-271S.
    [48] Uemura M, Fujimura Y, Matsuyama T, et al. Potential role of ADAMTS13in the progression ofalcoholic hepatitis. Curr Drug Abuse Rev,2008,1(2):188-196.
    [49] Morioka C, Uemura M, Matsuyama T, et al. Plasma ADAMTS13activity parallels the APACHEII score, reflecting an early prognostic indicator for patients with severe acute pancreatitis.Scand J Gastroenterol,2008,43(11):1387-1396.
    [50] Larkin D, de Laat B, Jenkins PV, et al. Severe Plasmodium falciparum malaria is associatedwith circulating ultra-large von Willebrand multimers and ADAMTS13inhibition. PLoS Pathog,2009,5(3): e1000349.
    [51] Kobayashi T, Wada H, Usui M, et al. Decreased ADAMTS13levels in patients after livingdonor liver transplantation. Thromb Res,2009,124(5):541-545.
    [52] Bander J, Elmariah S, Aledort LM, et al. Changes in von Willebrand factor-cleaving protease(ADAMTS-13) in patients with aortic stenosis undergoing valve replacement or balloonvalvuloplasty. Thromb Haemost,2012,108(1):86-93.
    [53] Kobayashi S, Yokoyama Y, Matsushita T, et al. Increased von Willebrand Factor to ADAMTS13ratio as a predictor of thrombotic complications following a major hepatectomy. Arch Surg,2012,147(10):909-917.
    [54] Plaimauer B, Kremer Hovinga JA, Juno C, et al. Recombinant ADAMTS13normalizes vonWillebrand factor-cleaving activity in plasma of acquired TTP patients by overriding inhibitoryantibodies. J Thromb Haemost,2011,9(5):936-944.
    [1] Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent onits conformation and requires calcium ion. Blood,1996,87(10):4235-4244.
    [2] Furlan M, Robles R, Lammle B. Partial purification and characterization of a protease fromhuman plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis.Blood,1996,87(10):4223-4234.
    [3] Porter S, Clark IM, Kevorkian L, et al. The ADAMTS metalloproteinases. Biochem J,2005,386(Pt1):15-27.
    [4] Zheng X, Chung D, Takayama TK, et al. Structure of von Willebrand factor-cleaving protease(ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J BiolChem,2001,276(44):41059-41063.
    [5] Sadler JE. von Willebrand factor: two sides of a coin. J Thromb Haemost,2005,3(8):1702-1709.
    [6] Schultz-Cherry S, Chen H, Mosher DF, et al. Regulation of transforming growth factor-betaactivation by discrete sequences of thrombospondin1. J Biol Chem,1995,270(13):7304-7310.
    [7] Gebhardt K, Lauvrak V, Babaie E, et al. Adhesive peptides selected by phage display:characterization, applications and similarities with fibrinogen. Pept Res,1996,9(6):269-278.
    [8] Popkov M, Lussier I, Medvedkine V, et al. Multidrug-resistance drug-binding peptidesgenerated by using a phage display library. Eur J Biochem,1998,251(1-2):155-163.
    [9] Sal-Man N, Gerber D, Bloch I, et al. Specificity in transmembrane helix-helix interactionsmediated by aromatic residues. J Biol Chem,2007,282(27):19753-19761.
    [10] Wang LW, Leonhard-Melief C, Haltiwanger RS, et al. Post-translational modification ofthrombospondin type-1repeats in ADAMTS-like1/punctin-1by C-mannosylation of tryptophan.J Biol Chem,2009,284(44):30004-30015.
    [11] Levy GG, Nichols WC, Lian EC, et al. Mutations in a member of the ADAMTS gene familycause thrombotic thrombocytopenic purpura. Nature,2001,413(6855):488-494.
    [12] Licht C, Stapenhorst L, Simon T, et al. Two novel ADAMTS13gene mutations in thromboticthrombocytopenic purpura/hemolytic-uremic syndrome (TTP/HUS). Kidney Int,2004,66(3):955-958.
    [13] Schneppenheim R, Budde U, Oyen F, et al. von Willebrand factor cleaving protease andADAMTS13mutations in childhood TTP. Blood,2003,101(5):1845-1850.
    [14] Zhang J, Ma Z, Dong N, et al. A conformation-sensitive monoclonal antibody against the A2domain of von Willebrand factor reduces its proteolysis by ADAMTS13. PLoS One,2011,6(7):e22157.
    [15] Ma Z, Dong N, Zhang J, et al. Stable expression and characterization of the von Willebrandfactor cleaving protease. Sheng Wu Gong Cheng Xue Bao,2010,26(2):244-248.
    [16] Zhou W, Tsai HM. N-Glycans of ADAMTS13modulate its secretion and von Willebrand factorcleaving activity. Blood,2009,113(4):929-935.
    [17] Ricketts LM, Dlugosz M, Luther KB, et al. O-fucosylation is required for ADAMTS13secretion. J Biol Chem,2007,282(23):17014-17023.
    [18] Wang A, Liu F, Dong N, et al. Thrombospondin-1and ADAMTS13competitively bind to VWFA2and A3domains in vitro. Thromb Res,2010,126(4): e260-265.
    [19] Jin SY, Skipwith CG, Zheng XL. Amino acid residues Arg(659), Arg(660), and Tyr(661) in thespacer domain of ADAMTS13are critical for cleavage of von Willebrand factor. Blood,2010,115(11):2300-2310.
    [20] Cao W, Krishnaswamy S, Camire RM, et al. Factor VIII accelerates proteolytic cleavage of vonWillebrand factor by ADAMTS13. Proc Natl Acad Sci U S A,2008,105(21):7416-7421.
    [21] Kokame K, Nobe Y, Kokubo Y, et al. FRETS-VWF73, a first fluorogenic substrate forADAMTS13assay. Br J Haematol,2005,129(1):93-100.
    [22] Furlan M. Proteolytic cleavage of von Willebrand factor by ADAMTS-13prevents uninvitedclumping of blood platelets. J Thromb Haemost,2004,2(9):1505-1509.
    [23] Sadler JE. Thrombotic thrombocytopenic purpura: a moving target. Hematology Am SocHematol Educ Program,2006:415-420.
    [24] Rock G, Yousef H, Neurath D, et al. ADAMTS-13levels in fresh, stored, and solvent detergenttreated plasma. Transfus Apher Sci,2006,35(3):235-238.
    [25] Hofsteenge J, Muller DR, de Beer T, et al. New type of linkage between a carbohydrate and aprotein: C-glycosylation of a specific tryptophan residue in human RNase Us. Biochemistry,1994,33(46):13524-13530.
    [26] Doucey MA, Hess D, Blommers MJ, et al. Recombinant human interleukin-12is the secondexample of a C-mannosylated protein. Glycobiology,1999,9(5):435-441.
    [27] Hofsteenge J, Blommers M, Hess D, et al. The four terminal components of the complementsystem are C-mannosylated on multiple tryptophan residues. J Biol Chem,1999,274(46):32786-32794.
    [28] Perez-Vilar J, Randell SH, Boucher RC. C-Mannosylation of MUC5AC and MUC5B Cyssubdomains. Glycobiology,2004,14(4):325-337.
    [29] Hofsteenge J, Huwiler KG, Macek B, et al. C-mannosylation and O-fucosylation of thethrombospondin type1module. J Biol Chem,2001,276(9):6485-6498.
    [30] Hamming OJ, Kang L, Svensson A, et al. Crystal structure of interleukin-21receptor (IL-21R)bound to IL-21reveals that sugar chain interacting with WSXWS motif is integral part ofIL-21R. J Biol Chem,2012,287(12):9454-9460.
    [31] Ai J, Smith P, Wang S, et al. The proximal carboxyl-terminal domains of ADAMTS13determine substrate specificity and are all required for cleavage of von Willebrand factor. J BiolChem,2005,280(33):29428-29434.
    [32] Soejima K, Matsumoto M, Kokame K, et al. ADAMTS-13cysteine-rich/spacer domains arefunctionally essential for von Willebrand factor cleavage. Blood,2003,102(9):3232-3237.
    [33] Zheng X, Nishio K, Majerus EM, et al. Cleavage of von Willebrand factor requires the spacerdomain of the metalloprotease ADAMTS13. J Biol Chem,2003,278(32):30136-30141.
    [34] Majerus EM, Anderson PJ, Sadler JE. Binding of ADAMTS13to von Willebrand factor. J BiolChem,2005,280(23):21773-21778.
    [35]Julenius K. NetCGlyc1.0: prediction of mammalian C-mannosylation sites. Glycobiology,2007,17(8):868-876.
    [1] Furlan M, Robles R, Lammle B. Partial purification and characterization of a protease fromhuman plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis.Blood,1996,87(10):4223-4234.
    [2] Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent onits conformation and requires calcium ion. Blood,1996,87(10):4235-4244.
    [3] Zheng X, Chung D, Takayama TK, et al. Structure of von Willebrand factor-cleaving protease(ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J BiolChem,2001,276(44):41059-41063.
    [4] Porter S, Clark IM, Kevorkian L, et al. The ADAMTS metalloproteinases. Biochem J,2005,386(Pt1):15-27.
    [5] Zhou Z, Nguyen TC, Guchhait P, et al. Von Willebrand factor, ADAMTS-13, and thromboticthrombocytopenic purpura. Semin Thromb Hemost,2010,36(1):71-81.
    [6] Lotta LA, Garagiola I, Palla R, et al. ADAMTS13mutations and polymorphisms in congenitalthrombotic thrombocytopenic purpura. Hum Mutat,2010,31(1):11-19.
    [7] Zheng XL, Sadler JE. Pathogenesis of thrombotic microangiopathies. Annu Rev Pathol,2008,3:249-277.
    [8] Kokame K, Matsumoto M, Soejima K, et al. Mutations and common polymorphisms inADAMTS13gene responsible for von Willebrand factor-cleaving protease activity. Proc NatlAcad Sci U S A,2002,99(18):11902-11907.
    [9] Gandhi C, Khan MM, Lentz SR, et al. ADAMTS13reduces vascular inflammation and thedevelopment of early atherosclerosis in mice. Blood,2012,119(10):2385-2391.
    [10] Khan MM, Motto DG, Lentz SR, et al. ADAMTS13reduces VWF-mediated acute inflammationfollowing focal cerebral ischemia in mice. J Thromb Haemost,2012,10(8):1665-1671.
    [11] Claus RA, Bockmeyer CL, Sossdorf M, et al. The balance between von-Willebrand factor andits cleaving protease ADAMTS13: biomarker in systemic inflammation and development oforgan failure? Curr Mol Med,2010,10(2):236-248.
    [12] Zhao BQ, Chauhan AK, Canault M, et al. von Willebrand factor-cleaving protease ADAMTS13reduces ischemic brain injury in experimental stroke. Blood,2009,114(15):3329-3334.
    [13] Zhou W, Tsai HM. N-Glycans of ADAMTS13modulate its secretion and von Willebrand factorcleaving activity. Blood,2009,113(4):929-935.
    [14] Ricketts LM, Dlugosz M, Luther KB, et al. O-fucosylation is required for ADAMTS13secretion. J Biol Chem,2007,282(23):17014-17023.
    [1] Furlan M, Robles R, Lammle B. Partial purification and characterization of a protease fromhuman plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis.Blood,1996,87(10):4223-4234.
    [2] Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent onits conformation and requires calcium ion. Blood,1996,87(10):4235-4244.
    [3] Porter S, Clark IM, Kevorkian L, et al. The ADAMTS metalloproteinases. Biochem J,2005,386(Pt1):15-27.
    [4] Furlan M, Lammle B. Aetiology and pathogenesis of thrombotic thrombocytopenic purpura andhaemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best PractRes Clin Haematol,2001,14(2):437-454.
    [5] Furlan M. Proteolytic cleavage of von Willebrand factor by ADAMTS-13prevents uninvitedclumping of blood platelets. J Thromb Haemost,2004,2(9):1505-1509.
    [6] Zhou Z, Nguyen TC, Guchhait P, et al. Von Willebrand factor, ADAMTS-13, and thromboticthrombocytopenic purpura. Semin Thromb Hemost,2010,36(1):71-81.
    [7] Tsai HM. ADAMTS13and microvascular thrombosis. Expert Rev Cardiovasc Ther,2006,4(6):813-825.
    [8] Sadler JE. Thrombotic thrombocytopenic purpura: a moving target. Hematology Am SocHematol Educ Program,2006:415-420.
    [9] George JN. ADAMTS13, thrombotic thrombocytopenic purpura, and hemolytic uremicsyndrome. Curr Hematol Rep,2005,4(3):167-169.
    [10] Tsai HM. Molecular mechanisms in thrombotic thrombocytopenic purpura. Semin ThrombHemost,2004,30(5):549-557.
    [11] Moake JL. von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura.Semin Hematol,2004,41(1):4-14.
    [12] Adams M, Ward C, Thom J, et al. Emerging technologies in hemostasis diagnostics: a reportfrom the Australasian Society of Thrombosis and Haemostasis Emerging Technologies Group.Semin Thromb Hemost,2007,33(3):226-234.
    [13] Terrell DR, Williams LA, Vesely SK, et al. The incidence of thrombotic thrombocytopenicpurpura-hemolytic uremic syndrome: all patients, idiopathic patients, and patients with severeADAMTS-13deficiency. J Thromb Haemost,2005,3(7):1432-1436.
    [14] Johnson KK, Duvall D, Gilcher RO, et al. The Oklahoma Thrombotic ThrombocytopenicPurpura-Hemolytic Uremic Syndrome Registry: a community service. J Okla State Med Assoc,2007,100(7):273-278.
    [15] George JN. The thrombotic thrombocytopenic purpura and hemolytic uremic syndromes:overview of pathogenesis (Experience of The Oklahoma TTP-HUS Registry,1989-2007).Kidney Int Suppl,2009,(112): S8-S10.
    [16] Zheng X, Chung D, Takayama TK, et al. Structure of von Willebrand factor-cleaving protease(ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J BiolChem,2001,276(44):41059-41063.
    [17] Ma Z, Dong N, Zhang J, et al. Stable expression and characterization of the von Willebrandfactor cleaving protease. Sheng Wu Gong Cheng Xue Bao,2010,26(2):244-248.
    [18] Levy GG, Nichols WC, Lian EC, et al. Mutations in a member of the ADAMTS gene familycause thrombotic thrombocytopenic purpura. Nature,2001,413(6855):488-494.
    [19] Zheng X, Majerus EM, Sadler JE. ADAMTS13and TTP. Curr Opin Hematol,2002,9(5):389-394.
    [20] Zhou W, Inada M, Lee TP, et al. ADAMTS13is expressed in hepatic stellate cells. Lab Invest,2005,85(6):780-788.
    [21] Soejima K, Mimura N, Hirashima M, et al. A novel human metalloprotease synthesized in theliver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease? JBiochem,2001,130(4):475-480.
    [22] Turner N, Nolasco L, Tao Z, et al. Human endothelial cells synthesize and release ADAMTS-13.J Thromb Haemost,2006,4(6):1396-1404.
    [23] Manea M, Tati R, Karlsson J, et al. Biologically active ADAMTS13is expressed in renal tubularepithelial cells. Pediatr Nephrol,2010,25(1):87-96.
    [24] Dong JF, Moake JL, Bernardo A, et al. ADAMTS-13metalloprotease interacts with theendothelial cell-derived ultra-large von Willebrand factor. J Biol Chem,2003,278(32):29633-29639.
    [25] Gardner MD, Chion CK, de Groot R, et al. A functional calcium-binding site in themetalloprotease domain of ADAMTS13. Blood,2009,113(5):1149-1157.
    [26] Feys HB, Pareyn I, Vancraenenbroeck R, et al. Mutation of the H-bond acceptor S119in theADAMTS13metalloprotease domain reduces secretion and substrate turnover in a patient withcongenital thrombotic thrombocytopenic purpura. Blood,2009,114(21):4749-4752.
    [27] Ai J, Smith P, Wang S, et al. The proximal carboxyl-terminal domains of ADAMTS13determine substrate specificity and are all required for cleavage of von Willebrand factor. J BiolChem,2005,280(33):29428-29434.
    [28] Soejima K, Matsumoto M, Kokame K, et al. ADAMTS-13cysteine-rich/spacer domains arefunctionally essential for von Willebrand factor cleavage. Blood,2003,102(9):3232-3237.
    [29] Zheng X, Nishio K, Majerus EM, et al. Cleavage of von Willebrand factor requires the spacerdomain of the metalloprotease ADAMTS13. J Biol Chem,2003,278(32):30136-30141.
    [30] Jin SY, Skipwith CG, Zheng XL. Amino acid residues Arg(659), Arg(660), and Tyr(661) in thespacer domain of ADAMTS13are critical for cleavage of von Willebrand factor. Blood,2010,115(11):2300-2310.
    [31] Majerus EM, Anderson PJ, Sadler JE. Binding of ADAMTS13to von Willebrand factor. J BiolChem,2005,280(23):21773-21778.
    [32] Zhang P, Pan W, Rux AH, et al. The cooperative activity between the carboxyl-terminal TSP1repeats and the CUB domains of ADAMTS13is crucial for recognition of von Willebrand factorunder flow. Blood,2007,110(6):1887-1894.
    [33] De Maeyer B, De Meyer SF, Feys HB, et al. The distal carboxyterminal domains of murineADAMTS13influence proteolysis of platelet-decorated VWF strings in vivo. J ThrombHaemost,2010,8(10):2305-2312.
    [34] Zhou Z, Yeh HC, Jing H, et al. Cysteine residues in CUB-1domain are critical for ADAMTS13secretion and stability. Thromb Haemost,2011,105(1):21-30.
    [35] Zhou Z, Jing H, Tao Z, et al. Effects of naturally occurring mutations in CUB-1domain onsynthesis, stability, and activity of ADAMTS-13. Thromb Res,2009,124(3):323-327.
    [36] Tao Z, Peng Y, Nolasco L, et al. Recombinant CUB-1domain polypeptide inhibits the cleavageof ULVWF strings by ADAMTS13under flow conditions. Blood,2005,106(13):4139-4145.
    [37] Majerus EM, Zheng X, Tuley EA, et al. Cleavage of the ADAMTS13propeptide is not requiredfor protease activity. J Biol Chem,2003,278(47):46643-46648.
    [38] Plaimauer B, Scheiflinger F. Expression and characterization of recombinant humanADAMTS-13. Semin Hematol,2004,41(1):24-33.
    [39] Zhou W, Tsai HM. N-Glycans of ADAMTS13modulate its secretion and von Willebrand factorcleaving activity. Blood,2009,113(4):929-935.
    [40] Ricketts LM, Dlugosz M, Luther KB, et al. O-fucosylation is required for ADAMTS13secretion. J Biol Chem,2007,282(23):17014-17023.
    [1] Hofsteenge J, Muller DR, de Beer T, et al. New type of linkage between a carbohydrate and aprotein: C-glycosylation of a specific tryptophan residue in human RNase Us. Biochemistry,1994,33(46):13524-13530.
    [2] Beintema JJ, Hofsteenge J, Iwama M, et al. Amino acid sequence of the nonsecretoryribonuclease of human urine. Biochemistry,1988,27(12):4530-4538.
    [3] Hamann KJ, Ten RM, Loegering DA, et al. Structure and chromosome localization of thehuman eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence forintronless coding sequences in the ribonuclease gene superfamily. Genomics,1990,7(4):535-546.
    [4] de Beer T, Vliegenthart JF, Loffler A, et al. The hexopyranosyl residue that is C-glycosidicallylinked to the side chain of tryptophan-7in human RNase Us is alpha-mannopyranose.Biochemistry,1995,34(37):11785-11789.
    [5] Loffler A, Doucey MA, Jansson AM, et al. Spectroscopic and protein chemical analysesdemonstrate the presence of C-mannosylated tryptophan in intact human RNase2and itsisoforms. Biochemistry,1996,35(37):12005-12014.
    [6] Krieg J, Hartmann S, Vicentini A, et al. Recognition signal for C-mannosylation of Trp-7inRNase2consists of sequence Trp-x-x-Trp. Mol Biol Cell,1998,9(2):301-309.
    [7] Hofsteenge J, Blommers M, Hess D, et al. The four terminal components of the complementsystem are C-mannosylated on multiple tryptophan residues. J Biol Chem,1999,274(46):32786-32794.
    [8] Julenius K. NetCGlyc1.0: prediction of mammalian C-mannosylation sites. Glycobiology,2007,17(8):868-876.
    [9] Doucey MA, Hess D, Cacan R, et al. Protein C-mannosylation is enzyme-catalysed and usesdolichyl-phosphate-mannose as a precursor. Mol Biol Cell,1998,9(2):291-300.
    [10] Anand M, Rush JS, Ray S, et al. Requirement of the Lec35gene for all known classes ofmonosaccharide-P-dolichol-dependent glycosyltransferase reactions in mammals. Mol Biol Cell,2001,12(2):487-501.
    [11] Maeda Y, Kinoshita T. Dolichol-phosphate mannose synthase: structure, function and regulation.Biochim Biophys Acta,2008,1780(6):861-868.
    [12] Perez-Vilar J, Randell SH, Boucher RC. C-Mannosylation of MUC5AC and MUC5B Cyssubdomains. Glycobiology,2004,14(4):325-337.
    [13] Horiuchi K, Yonekawa O, Iwahara K, et al. A hydrophilic tetrahydro-beta-carboline in humanurine. J Biochem,1994,115(2):362-366.
    [14] Gutsche B, Grun C, Scheutzow D, et al. Tryptophan glycoconjugates in food and human urine.Biochem J,1999,343Pt1:11-19.
    [15] Krieg J, Glasner W, Vicentini A, et al. C-Mannosylation of human RNase2is an intracellularprocess performed by a variety of cultured cells. J Biol Chem,1997,272(42):26687-26692.
    [16] Doucey MA, Hess D, Blommers MJ, et al. Recombinant human interleukin-12is the secondexample of a C-mannosylated protein. Glycobiology,1999,9(5):435-441.
    [17] Adams JC, Tucker RP. The thrombospondin type1repeat (TSR) superfamily: diverse proteinswith related roles in neuronal development. Dev Dyn,2000,218(2):280-299.
    [18]Tucker RP. The thrombospondin type1repeat superfamily. Int J Biochem Cell Biol,2004,36(6):969-974.
    [19] Muroi E, Manabe S, Ikezaki M, et al. C-Mannosylated peptides derived from thethrombospondin type1repeat enhance lipopolysaccharide-induced signaling inmacrophage-like RAW264.7cells. Glycobiology,2007,17(9):1015-1028.
    [20] Hofsteenge J, Huwiler KG, Macek B, et al. C-mannosylation and O-fucosylation of thethrombospondin type1module. J Biol Chem,2001,276(9):6485-6498.
    [21] Leung-Hagesteijn C, Spence AM, Stern BD, et al. UNC-5, a transmembrane protein withimmunoglobulin and thrombospondin type1domains, guides cell and pioneer axon migrationsin C. elegans. Cell,1992,71(2):289-299.
    [22] Klar A, Baldassare M, Jessell TM. F-spondin: a gene expressed at high levels in the floor plateencodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell,1992,69(1):95-110.
    [23] Li Y, Cao C, Jia W, et al. Structure of the F-spondin domain of mindin, an integrin ligand andpattern recognition molecule. EMBO J,2009,28(3):286-297.
    [24] Umemiya T, Takeichi M, Nose A. M-spondin, a novel ECM protein highly homologous tovertebrate F-spondin, is localized at the muscle attachment sites in the Drosophila embryo. DevBiol,1997,186(2):165-176.
    [25] Gobron S, Monnerie H, Meiniel R, et al. SCO-spondin: a new member of the thrombospondinfamily secreted by the subcommissural organ is a candidate in the modulation of neuronalaggregation. J Cell Sci,1996,109(Pt5):1053-1061.
    [26] Adams RH, Betz H, Puschel AW. A novel class of murine semaphorins with homology tothrombospondin is differentially expressed during early embryogenesis. Mech Dev,1996,57(1):33-45.
    [27] Nishimori H, Shiratsuchi T, Urano T, et al. A novel brain-specific p53-target gene, BAI1,containing thrombospondin type1repeats inhibits experimental angiogenesis. Oncogene,1997,15(18):2145-2150.
    [28] Shiratsuchi T, Nishimori H, Ichise H, et al. Cloning and characterization of BAI2and BAI3,novel genes homologous to brain-specific angiogenesis inhibitor1(BAI1). Cytogenet CellGenet,1997,79(1-2):103-108.
    [29] Kuno K, Terashima Y, Matsushima K. ADAMTS-1is an active metalloproteinase associatedwith the extracellular matrix. J Biol Chem,1999,274(26):18821-18826.
    [30] Hurskainen TL, Hirohata S, Seldin MF, et al. ADAM-TS5, ADAM-TS6, and ADAM-TS7, novelmembers of a new family of zinc metalloproteases. General features and genomic distribution ofthe ADAM-TS family. J Biol Chem,1999,274(36):25555-25563.
    [31] Porter S, Clark IM, Kevorkian L, et al. The ADAMTS metalloproteinases. Biochem J,2005,386(Pt1):15-27.
    [32] Wang LW, Leonhard-Melief C, Haltiwanger RS, et al. Post-translational modification ofthrombospondin type-1repeats in ADAMTS-like1/punctin-1by C-mannosylation of tryptophan.J Biol Chem,2009,284(44):30004-30015.
    [33] Arner EC, Pratta MA, Decicco CP, et al. Aggrecanase. A target for the design of inhibitors ofcartilage degradation. Ann N Y Acad Sci,1999,878:92-107.
    [34] Blelloch R, Kimble J. Control of organ shape by a secreted metalloprotease in the nematodeCaenorhabditis elegans. Nature,1999,399(6736):586-590.
    [35] Colige A, Li SW, Sieron AL, et al. cDNA cloning and expression of bovine procollagen IN-proteinase: a new member of the superfamily of zinc-metalloproteinases with binding sitesfor cells and other matrix components. Proc Natl Acad Sci U S A,1997,94(6):2374-2379.
    [36] Nardi JB, Martos R, Walden KK, et al. Expression of lacunin, a large multidomain extracellularmatrix protein, accompanies morphogenesis of epithelial monolayers in Manduca sexta. InsectBiochem Mol Biol,1999,29(10):883-897.
    [37] Robson KJ, Hall JR, Jennings MW, et al. A highly conserved amino-acid sequence inthrombospondin, properdin and in proteins from sporozoites and blood stages of a humanmalaria parasite. Nature,1988,335(6185):79-82.
    [38] Goundis D, Reid KB. Properdin, the terminal complement components, thrombospondin and thecircumsporozoite protein of malaria parasites contain similar sequence motifs. Nature,1988,335(6185):82-85.
    [39] Hartmann S, Hofsteenge J. Properdin, the positive regulator of complement, is highlyC-mannosylated. J Biol Chem,2000,275(37):28569-28574.
    [40] Hobart MJ, Fernie BA, DiScipio RG. Structure of the human C7gene and comparison with theC6, C8A, C8B, and C9genes. J Immunol,1995,154(10):5188-5194.
    [41] Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. ProcNatl Acad Sci U S A,1990,87(18):6934-6938.
    [42] Hamming OJ, Kang L, Svensson A, et al. Crystal structure of interleukin-21receptor (IL-21R)bound to IL-21reveals that sugar chain interacting with WSXWS motif is integral part ofIL-21R. J Biol Chem,2012,287(12):9454-9460.
    [43] Falzarano D, Krokhin O, Van Domselaar G, et al. Ebola sGP--the first viral glycoprotein shownto be C-mannosylated. Virology,2007,368(1):83-90.
    [44] Mosimann SC, Newton DL, Youle RJ, et al. X-ray crystallographic structure of recombinanteosinophil-derived neurotoxin at1.83A resolution. J Mol Biol,1996,260(4):540-552.
    [45] Gonzalez de Peredo A, Klein D, Macek B, et al. C-mannosylation and o-fucosylation ofthrombospondin type1repeats. Mol Cell Proteomics,2002,1(1):11-18.
    [46] Zanetta JP, Pons A, Richet C, et al. Quantitative gas chromatography/mass spectrometrydetermination of C-mannosylation of tryptophan residues in glycoproteins. Anal Biochem,2004,329(2):199-206.
    [47] Miyazaki T, Maruyama M, Yamada G, et al. The integrity of the conserved 'WS motif' commonto IL-2and other cytokine receptors is essential for ligand binding and signal transduction.EMBO J,1991,10(11):3191-3197.
    [48] Hilton DJ, Watowich SS, Katz L, et al. Saturation mutagenesis of the WSXWS motif of theerythropoietin receptor. J Biol Chem,1996,271(9):4699-4708.
    [49] Sal-Man N, Gerber D, Bloch I, et al. Specificity in transmembrane helix-helix interactionsmediated by aromatic residues. J Biol Chem,2007,282(27):19753-19761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700